Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltord.1 | |
|
ltord.2 | |
||
ltord.3 | |
||
ltord.4 | |
||
ltord.5 | |
||
ltord.6 | |
||
Assertion | ltord1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltord.1 | |
|
2 | ltord.2 | |
|
3 | ltord.3 | |
|
4 | ltord.4 | |
|
5 | ltord.5 | |
|
6 | ltord.6 | |
|
7 | 1 2 3 4 5 6 | ltordlem | |
8 | eqeq1 | |
|
9 | 2 | eqeq1d | |
10 | 8 9 | imbi12d | |
11 | 10 3 | vtoclg | |
12 | 11 | ad2antrl | |
13 | 1 3 2 4 5 6 | ltordlem | |
14 | 13 | ancom2s | |
15 | 12 14 | orim12d | |
16 | 15 | con3d | |
17 | 5 | ralrimiva | |
18 | 2 | eleq1d | |
19 | 18 | rspccva | |
20 | 17 19 | sylan | |
21 | 3 | eleq1d | |
22 | 21 | rspccva | |
23 | 17 22 | sylan | |
24 | 20 23 | anim12dan | |
25 | axlttri | |
|
26 | 24 25 | syl | |
27 | 4 | sseli | |
28 | 4 | sseli | |
29 | axlttri | |
|
30 | 27 28 29 | syl2an | |
31 | 30 | adantl | |
32 | 16 26 31 | 3imtr4d | |
33 | 7 32 | impbid | |