Metamath Proof Explorer


Theorem ltord1

Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ltord.1 x=yA=B
ltord.2 x=CA=M
ltord.3 x=DA=N
ltord.4 S
ltord.5 φxSA
ltord.6 φxSySx<yA<B
Assertion ltord1 φCSDSC<DM<N

Proof

Step Hyp Ref Expression
1 ltord.1 x=yA=B
2 ltord.2 x=CA=M
3 ltord.3 x=DA=N
4 ltord.4 S
5 ltord.5 φxSA
6 ltord.6 φxSySx<yA<B
7 1 2 3 4 5 6 ltordlem φCSDSC<DM<N
8 eqeq1 x=Cx=DC=D
9 2 eqeq1d x=CA=NM=N
10 8 9 imbi12d x=Cx=DA=NC=DM=N
11 10 3 vtoclg CSC=DM=N
12 11 ad2antrl φCSDSC=DM=N
13 1 3 2 4 5 6 ltordlem φDSCSD<CN<M
14 13 ancom2s φCSDSD<CN<M
15 12 14 orim12d φCSDSC=DD<CM=NN<M
16 15 con3d φCSDS¬M=NN<M¬C=DD<C
17 5 ralrimiva φxSA
18 2 eleq1d x=CAM
19 18 rspccva xSACSM
20 17 19 sylan φCSM
21 3 eleq1d x=DAN
22 21 rspccva xSADSN
23 17 22 sylan φDSN
24 20 23 anim12dan φCSDSMN
25 axlttri MNM<N¬M=NN<M
26 24 25 syl φCSDSM<N¬M=NN<M
27 4 sseli CSC
28 4 sseli DSD
29 axlttri CDC<D¬C=DD<C
30 27 28 29 syl2an CSDSC<D¬C=DD<C
31 30 adantl φCSDSC<D¬C=DD<C
32 16 26 31 3imtr4d φCSDSM<NC<D
33 7 32 impbid φCSDSC<DM<N