Metamath Proof Explorer


Theorem aks6d1c7lem1

Description: The last set of inequalities of Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf . (Contributed by metakunt, 12-May-2025)

Ref Expression
Hypotheses aks6d1c7lem1.1 φ P
aks6d1c7lem1.2 φ R
aks6d1c7lem1.3 φ N 3
aks6d1c7lem1.4 φ P N
aks6d1c7lem1.5 φ N gcd R = 1
aks6d1c7lem1.6 E = k 0 , l 0 P k N P l
aks6d1c7lem1.7 L = ℤRHom /R
aks6d1c7lem1.8 D = L E 0 × 0
aks6d1c7lem1.9 A = ϕ R log 2 N
aks6d1c7lem1.10 φ log 2 N 2 < od R N
Assertion aks6d1c7lem1 φ N D < ( D + A D 1 )

Proof

Step Hyp Ref Expression
1 aks6d1c7lem1.1 φ P
2 aks6d1c7lem1.2 φ R
3 aks6d1c7lem1.3 φ N 3
4 aks6d1c7lem1.4 φ P N
5 aks6d1c7lem1.5 φ N gcd R = 1
6 aks6d1c7lem1.6 E = k 0 , l 0 P k N P l
7 aks6d1c7lem1.7 L = ℤRHom /R
8 aks6d1c7lem1.8 D = L E 0 × 0
9 aks6d1c7lem1.9 A = ϕ R log 2 N
10 aks6d1c7lem1.10 φ log 2 N 2 < od R N
11 eluzelz N 3 N
12 3 11 syl φ N
13 0red φ 0
14 3re 3
15 14 a1i φ 3
16 12 zred φ N
17 3pos 0 < 3
18 17 a1i φ 0 < 3
19 eluzle N 3 3 N
20 3 19 syl φ 3 N
21 13 15 16 18 20 ltletrd φ 0 < N
22 12 21 jca φ N 0 < N
23 elnnz N N 0 < N
24 22 23 sylibr φ N
25 24 nnred φ N
26 8 a1i φ D = L E 0 × 0
27 eqid /R = /R
28 24 1 4 2 5 6 7 27 hashscontpowcl φ L E 0 × 0 0
29 26 28 eqeltrd φ D 0
30 29 nn0red φ D
31 29 nn0ge0d φ 0 D
32 30 31 resqrtcld φ D
33 32 flcld φ D
34 30 31 sqrtge0d φ 0 D
35 0zd φ 0
36 flge D 0 0 D 0 D
37 32 35 36 syl2anc φ 0 D 0 D
38 34 37 mpbid φ 0 D
39 33 38 jca φ D 0 D
40 elnn0z D 0 D 0 D
41 39 40 sylibr φ D 0
42 25 41 reexpcld φ N D
43 2re 2
44 43 a1i φ 2
45 2pos 0 < 2
46 45 a1i φ 0 < 2
47 24 nngt0d φ 0 < N
48 1ne2 1 2
49 48 necomi 2 1
50 49 a1i φ 2 1
51 44 46 25 47 50 relogbcld φ log 2 N
52 26 30 eqeltrrd φ L E 0 × 0
53 31 26 breqtrd φ 0 L E 0 × 0
54 52 53 resqrtcld φ L E 0 × 0
55 51 54 remulcld φ log 2 N L E 0 × 0
56 55 flcld φ log 2 N L E 0 × 0
57 1red φ 1
58 0le1 0 1
59 58 a1i φ 0 1
60 44 recnd φ 2
61 13 46 gtned φ 2 0
62 logbid1 2 2 0 2 1 log 2 2 = 1
63 60 61 50 62 syl3anc φ log 2 2 = 1
64 63 eqcomd φ 1 = log 2 2
65 2z 2
66 65 a1i φ 2
67 44 leidd φ 2 2
68 1nn0 1 0
69 43 68 nn0addge1i 2 2 + 1
70 2p1e3 2 + 1 = 3
71 69 70 breqtri 2 3
72 71 a1i φ 2 3
73 44 15 16 72 20 letrd φ 2 N
74 66 67 44 46 16 21 73 logblebd φ log 2 2 log 2 N
75 64 74 eqbrtrd φ 1 log 2 N
76 13 57 51 59 75 letrd φ 0 log 2 N
77 52 53 sqrtge0d φ 0 L E 0 × 0
78 51 54 76 77 mulge0d φ 0 log 2 N L E 0 × 0
79 flge log 2 N L E 0 × 0 0 0 log 2 N L E 0 × 0 0 log 2 N L E 0 × 0
80 55 35 79 syl2anc φ 0 log 2 N L E 0 × 0 0 log 2 N L E 0 × 0
81 78 80 mpbid φ 0 log 2 N L E 0 × 0
82 56 81 jca φ log 2 N L E 0 × 0 0 log 2 N L E 0 × 0
83 elnn0z log 2 N L E 0 × 0 0 log 2 N L E 0 × 0 0 log 2 N L E 0 × 0
84 82 83 sylibr φ log 2 N L E 0 × 0 0
85 68 a1i φ 1 0
86 84 85 nn0addcld φ log 2 N L E 0 × 0 + 1 0
87 2 phicld φ ϕ R
88 87 nnred φ ϕ R
89 87 nnnn0d φ ϕ R 0
90 89 nn0ge0d φ 0 ϕ R
91 88 90 resqrtcld φ ϕ R
92 91 51 remulcld φ ϕ R log 2 N
93 92 flcld φ ϕ R log 2 N
94 88 90 sqrtge0d φ 0 ϕ R
95 91 51 94 76 mulge0d φ 0 ϕ R log 2 N
96 flge ϕ R log 2 N 0 0 ϕ R log 2 N 0 ϕ R log 2 N
97 92 35 96 syl2anc φ 0 ϕ R log 2 N 0 ϕ R log 2 N
98 95 97 mpbid φ 0 ϕ R log 2 N
99 93 98 jca φ ϕ R log 2 N 0 ϕ R log 2 N
100 elnn0z ϕ R log 2 N 0 ϕ R log 2 N 0 ϕ R log 2 N
101 99 100 sylibr φ ϕ R log 2 N 0
102 86 101 nn0addcld φ log 2 N L E 0 × 0 + 1 + ϕ R log 2 N 0
103 56 peano2zd φ log 2 N L E 0 × 0 + 1
104 1zzd φ 1
105 104 znegcld φ 1
106 103 105 zaddcld φ log 2 N L E 0 × 0 + 1 + -1
107 bccl log 2 N L E 0 × 0 + 1 + ϕ R log 2 N 0 log 2 N L E 0 × 0 + 1 + -1 ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 + 1 + -1 ) 0
108 102 106 107 syl2anc φ ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 + 1 + -1 ) 0
109 108 nn0red φ ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 + 1 + -1 )
110 28 101 nn0addcld φ L E 0 × 0 + ϕ R log 2 N 0
111 28 nn0zd φ L E 0 × 0
112 111 105 zaddcld φ L E 0 × 0 + -1
113 bccl L E 0 × 0 + ϕ R log 2 N 0 L E 0 × 0 + -1 ( L E 0 × 0 + ϕ R log 2 N L E 0 × 0 + -1) 0
114 110 112 113 syl2anc φ ( L E 0 × 0 + ϕ R log 2 N L E 0 × 0 + -1) 0
115 114 nn0red φ ( L E 0 × 0 + ϕ R log 2 N L E 0 × 0 + -1)
116 54 51 remulcld φ L E 0 × 0 log 2 N
117 116 flcld φ L E 0 × 0 log 2 N
118 54 51 77 76 mulge0d φ 0 L E 0 × 0 log 2 N
119 flge L E 0 × 0 log 2 N 0 0 L E 0 × 0 log 2 N 0 L E 0 × 0 log 2 N
120 116 35 119 syl2anc φ 0 L E 0 × 0 log 2 N 0 L E 0 × 0 log 2 N
121 118 120 mpbid φ 0 L E 0 × 0 log 2 N
122 117 121 jca φ L E 0 × 0 log 2 N 0 L E 0 × 0 log 2 N
123 elnn0z L E 0 × 0 log 2 N 0 L E 0 × 0 log 2 N 0 L E 0 × 0 log 2 N
124 122 123 sylibr φ L E 0 × 0 log 2 N 0
125 86 124 nn0addcld φ log 2 N L E 0 × 0 + 1 + L E 0 × 0 log 2 N 0
126 bccl log 2 N L E 0 × 0 + 1 + L E 0 × 0 log 2 N 0 log 2 N L E 0 × 0 ( log 2 N L E 0 × 0 + 1 + L E 0 × 0 log 2 N log 2 N L E 0 × 0 ) 0
127 125 56 126 syl2anc φ ( log 2 N L E 0 × 0 + 1 + L E 0 × 0 log 2 N log 2 N L E 0 × 0 ) 0
128 127 nn0red φ ( log 2 N L E 0 × 0 + 1 + L E 0 × 0 log 2 N log 2 N L E 0 × 0 )
129 bccl log 2 N L E 0 × 0 + 1 + ϕ R log 2 N 0 log 2 N L E 0 × 0 ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 ) 0
130 102 56 129 syl2anc φ ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 ) 0
131 130 nn0red φ ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 )
132 44 86 reexpcld φ 2 log 2 N L E 0 × 0 + 1
133 2nn0 2 0
134 133 a1i φ 2 0
135 134 84 nn0mulcld φ 2 log 2 N L E 0 × 0 0
136 135 85 nn0addcld φ 2 log 2 N L E 0 × 0 + 1 0
137 bccl 2 log 2 N L E 0 × 0 + 1 0 log 2 N L E 0 × 0 ( 2 log 2 N L E 0 × 0 + 1 log 2 N L E 0 × 0 ) 0
138 136 56 137 syl2anc φ ( 2 log 2 N L E 0 × 0 + 1 log 2 N L E 0 × 0 ) 0
139 138 nn0red φ ( 2 log 2 N L E 0 × 0 + 1 log 2 N L E 0 × 0 )
140 13 44 46 ltled φ 0 2
141 44 140 55 recxpcld φ 2 log 2 N L E 0 × 0
142 reflcl log 2 N L E 0 × 0 log 2 N L E 0 × 0
143 55 142 syl φ log 2 N L E 0 × 0
144 143 57 readdcld φ log 2 N L E 0 × 0 + 1
145 44 140 144 recxpcld φ 2 log 2 N L E 0 × 0 + 1
146 1le2 1 2
147 146 a1i φ 1 2
148 57 44 16 147 73 letrd φ 1 N
149 reflcl D D
150 32 149 syl φ D
151 26 fveq2d φ D = L E 0 × 0
152 151 fveq2d φ D = L E 0 × 0
153 flle L E 0 × 0 L E 0 × 0 L E 0 × 0
154 54 153 syl φ L E 0 × 0 L E 0 × 0
155 152 154 eqbrtrd φ D L E 0 × 0
156 16 148 150 54 155 cxplead φ N D N L E 0 × 0
157 16 recnd φ N
158 13 21 gtned φ N 0
159 157 158 33 cxpexpzd φ N D = N D
160 61 50 nelprd φ ¬ 2 0 1
161 60 160 eldifd φ 2 0 1
162 158 neneqd φ ¬ N = 0
163 elsng N N 0 N = 0
164 24 163 syl φ N 0 N = 0
165 162 164 mtbird φ ¬ N 0
166 157 165 eldifd φ N 0
167 cxplogb 2 0 1 N 0 2 log 2 N = N
168 161 166 167 syl2anc φ 2 log 2 N = N
169 168 eqcomd φ N = 2 log 2 N
170 169 oveq1d φ N L E 0 × 0 = 2 log 2 N L E 0 × 0
171 156 159 170 3brtr3d φ N D 2 log 2 N L E 0 × 0
172 44 46 elrpd φ 2 +
173 54 recnd φ L E 0 × 0
174 cxpmul 2 + log 2 N L E 0 × 0 2 log 2 N L E 0 × 0 = 2 log 2 N L E 0 × 0
175 172 51 173 174 syl3anc φ 2 log 2 N L E 0 × 0 = 2 log 2 N L E 0 × 0
176 171 175 breqtrrd φ N D 2 log 2 N L E 0 × 0
177 fllep1 log 2 N L E 0 × 0 log 2 N L E 0 × 0 log 2 N L E 0 × 0 + 1
178 55 177 syl φ log 2 N L E 0 × 0 log 2 N L E 0 × 0 + 1
179 57 44 147 50 leneltd φ 1 < 2
180 86 nn0red φ log 2 N L E 0 × 0 + 1
181 44 179 55 180 cxpled φ log 2 N L E 0 × 0 log 2 N L E 0 × 0 + 1 2 log 2 N L E 0 × 0 2 log 2 N L E 0 × 0 + 1
182 178 181 mpbid φ 2 log 2 N L E 0 × 0 2 log 2 N L E 0 × 0 + 1
183 42 141 145 176 182 letrd φ N D 2 log 2 N L E 0 × 0 + 1
184 cxpexpz 2 2 0 log 2 N L E 0 × 0 + 1 2 log 2 N L E 0 × 0 + 1 = 2 log 2 N L E 0 × 0 + 1
185 60 61 103 184 syl3anc φ 2 log 2 N L E 0 × 0 + 1 = 2 log 2 N L E 0 × 0 + 1
186 183 185 breqtrd φ N D 2 log 2 N L E 0 × 0 + 1
187 51 51 jca φ log 2 N log 2 N
188 remulcl log 2 N log 2 N log 2 N log 2 N
189 187 188 syl φ log 2 N log 2 N
190 reflcl log 2 N log 2 N log 2 N log 2 N
191 189 190 syl φ log 2 N log 2 N
192 84 nn0red φ log 2 N L E 0 × 0
193 44 46 15 18 50 relogbcld φ log 2 3
194 193 resqcld φ log 2 3 2
195 51 recnd φ log 2 N
196 195 sqvald φ log 2 N 2 = log 2 N log 2 N
197 196 189 eqeltrd φ log 2 N 2
198 3lexlogpow2ineq2 2 < log 2 3 2 log 2 3 2 < 3
199 198 simpli 2 < log 2 3 2
200 199 a1i φ 2 < log 2 3 2
201 44 194 200 ltled φ 2 log 2 3 2
202 15 44 61 redivcld φ 3 2
203 2rp 2 +
204 203 a1i φ 2 +
205 13 15 18 ltled φ 0 3
206 15 204 205 divge0d φ 0 3 2
207 3lexlogpow2ineq1 3 2 < log 2 3 log 2 3 < 5 3
208 207 simpli 3 2 < log 2 3
209 208 a1i φ 3 2 < log 2 3
210 202 193 209 ltled φ 3 2 log 2 3
211 13 202 193 206 210 letrd φ 0 log 2 3
212 66 67 15 18 16 21 20 logblebd φ log 2 3 log 2 N
213 193 51 134 211 212 leexp1ad φ log 2 3 2 log 2 N 2
214 44 194 197 201 213 letrd φ 2 log 2 N 2
215 214 196 breqtrd φ 2 log 2 N log 2 N
216 flge log 2 N log 2 N 2 2 log 2 N log 2 N 2 log 2 N log 2 N
217 189 66 216 syl2anc φ 2 log 2 N log 2 N 2 log 2 N log 2 N
218 215 217 mpbid φ 2 log 2 N log 2 N
219 51 51 remulcld φ log 2 N log 2 N
220 24 1 4 2 5 6 7 27 10 aks6d1c3 φ log 2 N 2 < L E 0 × 0
221 173 sqvald φ L E 0 × 0 2 = L E 0 × 0 L E 0 × 0
222 28 nn0cnd φ L E 0 × 0
223 222 msqsqrtd φ L E 0 × 0 L E 0 × 0 = L E 0 × 0
224 221 223 eqtr2d φ L E 0 × 0 = L E 0 × 0 2
225 220 224 breqtrd φ log 2 N 2 < L E 0 × 0 2
226 51 54 76 77 lt2sqd φ log 2 N < L E 0 × 0 log 2 N 2 < L E 0 × 0 2
227 225 226 mpbird φ log 2 N < L E 0 × 0
228 51 54 227 ltled φ log 2 N L E 0 × 0
229 51 54 51 76 228 lemul2ad φ log 2 N log 2 N log 2 N L E 0 × 0
230 flwordi log 2 N log 2 N log 2 N L E 0 × 0 log 2 N log 2 N log 2 N L E 0 × 0 log 2 N log 2 N log 2 N L E 0 × 0
231 219 55 229 230 syl3anc φ log 2 N log 2 N log 2 N L E 0 × 0
232 44 191 192 218 231 letrd φ 2 log 2 N L E 0 × 0
233 56 232 2ap1caineq φ 2 log 2 N L E 0 × 0 + 1 < ( 2 log 2 N L E 0 × 0 + 1 log 2 N L E 0 × 0 )
234 42 132 139 186 233 lelttrd φ N D < ( 2 log 2 N L E 0 × 0 + 1 log 2 N L E 0 × 0 )
235 84 nn0cnd φ log 2 N L E 0 × 0
236 235 2timesd φ 2 log 2 N L E 0 × 0 = log 2 N L E 0 × 0 + log 2 N L E 0 × 0
237 236 oveq1d φ 2 log 2 N L E 0 × 0 + 1 = log 2 N L E 0 × 0 + log 2 N L E 0 × 0 + 1
238 237 oveq1d φ ( 2 log 2 N L E 0 × 0 + 1 log 2 N L E 0 × 0 ) = ( log 2 N L E 0 × 0 + log 2 N L E 0 × 0 + 1 log 2 N L E 0 × 0 )
239 234 238 breqtrd φ N D < ( log 2 N L E 0 × 0 + log 2 N L E 0 × 0 + 1 log 2 N L E 0 × 0 )
240 1cnd φ 1
241 235 235 240 addassd φ log 2 N L E 0 × 0 + log 2 N L E 0 × 0 + 1 = log 2 N L E 0 × 0 + log 2 N L E 0 × 0 + 1
242 86 nn0cnd φ log 2 N L E 0 × 0 + 1
243 235 242 addcomd φ log 2 N L E 0 × 0 + log 2 N L E 0 × 0 + 1 = log 2 N L E 0 × 0 + 1 + log 2 N L E 0 × 0
244 241 243 eqtrd φ log 2 N L E 0 × 0 + log 2 N L E 0 × 0 + 1 = log 2 N L E 0 × 0 + 1 + log 2 N L E 0 × 0
245 244 oveq1d φ ( log 2 N L E 0 × 0 + log 2 N L E 0 × 0 + 1 log 2 N L E 0 × 0 ) = ( log 2 N L E 0 × 0 + 1 + log 2 N L E 0 × 0 log 2 N L E 0 × 0 )
246 239 245 breqtrd φ N D < ( log 2 N L E 0 × 0 + 1 + log 2 N L E 0 × 0 log 2 N L E 0 × 0 )
247 195 173 mulcomd φ log 2 N L E 0 × 0 = L E 0 × 0 log 2 N
248 247 fveq2d φ log 2 N L E 0 × 0 = L E 0 × 0 log 2 N
249 248 oveq2d φ log 2 N L E 0 × 0 + 1 + log 2 N L E 0 × 0 = log 2 N L E 0 × 0 + 1 + L E 0 × 0 log 2 N
250 249 oveq1d φ ( log 2 N L E 0 × 0 + 1 + log 2 N L E 0 × 0 log 2 N L E 0 × 0 ) = ( log 2 N L E 0 × 0 + 1 + L E 0 × 0 log 2 N log 2 N L E 0 × 0 )
251 246 250 breqtrd φ N D < ( log 2 N L E 0 × 0 + 1 + L E 0 × 0 log 2 N log 2 N L E 0 × 0 )
252 124 nn0red φ L E 0 × 0 log 2 N
253 101 nn0red φ ϕ R log 2 N
254 8 29 eqeltrrid φ L E 0 × 0 0
255 254 nn0red φ L E 0 × 0
256 254 nn0ge0d φ 0 L E 0 × 0
257 255 256 resqrtcld φ L E 0 × 0
258 257 51 remulcld φ L E 0 × 0 log 2 N
259 24 1 4 2 5 6 7 aks6d1c4 φ L E 0 × 0 ϕ R
260 52 53 88 90 sqrtled φ L E 0 × 0 ϕ R L E 0 × 0 ϕ R
261 259 260 mpbid φ L E 0 × 0 ϕ R
262 257 91 51 76 261 lemul1ad φ L E 0 × 0 log 2 N ϕ R log 2 N
263 flwordi L E 0 × 0 log 2 N ϕ R log 2 N L E 0 × 0 log 2 N ϕ R log 2 N L E 0 × 0 log 2 N ϕ R log 2 N
264 258 92 262 263 syl3anc φ L E 0 × 0 log 2 N ϕ R log 2 N
265 252 253 144 264 leadd2dd φ log 2 N L E 0 × 0 + 1 + L E 0 × 0 log 2 N log 2 N L E 0 × 0 + 1 + ϕ R log 2 N
266 125 102 56 265 bcled φ ( log 2 N L E 0 × 0 + 1 + L E 0 × 0 log 2 N log 2 N L E 0 × 0 ) ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 )
267 42 128 131 251 266 ltletrd φ N D < ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 )
268 235 240 pncand φ log 2 N L E 0 × 0 + 1 - 1 = log 2 N L E 0 × 0
269 268 eqcomd φ log 2 N L E 0 × 0 = log 2 N L E 0 × 0 + 1 - 1
270 242 240 negsubd φ log 2 N L E 0 × 0 + 1 + -1 = log 2 N L E 0 × 0 + 1 - 1
271 270 eqcomd φ log 2 N L E 0 × 0 + 1 - 1 = log 2 N L E 0 × 0 + 1 + -1
272 269 271 eqtrd φ log 2 N L E 0 × 0 = log 2 N L E 0 × 0 + 1 + -1
273 272 oveq2d φ ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 ) = ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 + 1 + -1 )
274 267 273 breqtrd φ N D < ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 + 1 + -1 )
275 2 nnnn0d φ R 0
276 27 zncrng R 0 /R CRing
277 275 276 syl φ /R CRing
278 crngring /R CRing /R Ring
279 7 zrhrhm /R Ring L ring RingHom /R
280 zringbas = Base ring
281 eqid Base /R = Base /R
282 280 281 rhmf L ring RingHom /R L : Base /R
283 277 278 279 282 4syl φ L : Base /R
284 283 ffnd φ L Fn
285 24 1 4 6 aks6d1c2p1 φ E : 0 × 0
286 nnssz
287 286 a1i φ
288 285 287 fssd φ E : 0 × 0
289 frn E : 0 × 0 ran E
290 288 289 syl φ ran E
291 285 ffnd φ E Fn 0 × 0
292 fnima E Fn 0 × 0 E 0 × 0 = ran E
293 291 292 syl φ E 0 × 0 = ran E
294 293 sseq1d φ E 0 × 0 ran E
295 290 294 mpbird φ E 0 × 0
296 vex k V
297 vex l V
298 296 297 op1std v = k l 1 st v = k
299 298 oveq2d v = k l P 1 st v = P k
300 296 297 op2ndd v = k l 2 nd v = l
301 300 oveq2d v = k l N P 2 nd v = N P l
302 299 301 oveq12d v = k l P 1 st v N P 2 nd v = P k N P l
303 302 mpompt v 0 × 0 P 1 st v N P 2 nd v = k 0 , l 0 P k N P l
304 303 eqcomi k 0 , l 0 P k N P l = v 0 × 0 P 1 st v N P 2 nd v
305 6 304 eqtri E = v 0 × 0 P 1 st v N P 2 nd v
306 305 a1i φ E = v 0 × 0 P 1 st v N P 2 nd v
307 c0ex 0 V
308 307 307 op1std v = 0 0 1 st v = 0
309 308 adantl φ v = 0 0 1 st v = 0
310 309 oveq2d φ v = 0 0 P 1 st v = P 0
311 307 307 op2ndd v = 0 0 2 nd v = 0
312 311 adantl φ v = 0 0 2 nd v = 0
313 312 oveq2d φ v = 0 0 N P 2 nd v = N P 0
314 310 313 oveq12d φ v = 0 0 P 1 st v N P 2 nd v = P 0 N P 0
315 prmnn P P
316 1 315 syl φ P
317 316 nncnd φ P
318 317 exp0d φ P 0 = 1
319 316 nnne0d φ P 0
320 157 317 319 divcld φ N P
321 320 exp0d φ N P 0 = 1
322 318 321 oveq12d φ P 0 N P 0 = 1 1
323 240 mulridd φ 1 1 = 1
324 322 323 eqtrd φ P 0 N P 0 = 1
325 324 adantr φ v = 0 0 P 0 N P 0 = 1
326 314 325 eqtrd φ v = 0 0 P 1 st v N P 2 nd v = 1
327 0nn0 0 0
328 327 a1i φ 0 0
329 328 328 opelxpd φ 0 0 0 × 0
330 1nn 1
331 330 a1i φ 1
332 306 326 329 331 fvmptd φ E 0 0 = 1
333 ssidd φ 0 × 0 0 × 0
334 fnfvima E Fn 0 × 0 0 × 0 0 × 0 0 0 0 × 0 E 0 0 E 0 × 0
335 291 333 329 334 syl3anc φ E 0 0 E 0 × 0
336 332 335 eqeltrrd φ 1 E 0 × 0
337 fnfvima L Fn E 0 × 0 1 E 0 × 0 L 1 L E 0 × 0
338 284 295 336 337 syl3anc φ L 1 L E 0 × 0
339 7 a1i φ L = ℤRHom /R
340 fvexd φ ℤRHom /R V
341 339 340 eqeltrd φ L V
342 341 imaexd φ L E 0 × 0 V
343 338 342 hashelne0d φ ¬ L E 0 × 0 = 0
344 343 neqned φ L E 0 × 0 0
345 28 344 jca φ L E 0 × 0 0 L E 0 × 0 0
346 elnnne0 L E 0 × 0 L E 0 × 0 0 L E 0 × 0 0
347 345 346 sylibr φ L E 0 × 0
348 347 nnrpd φ L E 0 × 0 +
349 348 rpsqrtcld φ L E 0 × 0 +
350 51 54 349 227 ltmul1dd φ log 2 N L E 0 × 0 < L E 0 × 0 L E 0 × 0
351 52 53 52 53 sqrtmuld φ L E 0 × 0 L E 0 × 0 = L E 0 × 0 L E 0 × 0
352 351 eqcomd φ L E 0 × 0 L E 0 × 0 = L E 0 × 0 L E 0 × 0
353 350 352 breqtrd φ log 2 N L E 0 × 0 < L E 0 × 0 L E 0 × 0
354 351 223 eqtrd φ L E 0 × 0 L E 0 × 0 = L E 0 × 0
355 353 354 breqtrd φ log 2 N L E 0 × 0 < L E 0 × 0
356 fllt log 2 N L E 0 × 0 L E 0 × 0 log 2 N L E 0 × 0 < L E 0 × 0 log 2 N L E 0 × 0 < L E 0 × 0
357 55 111 356 syl2anc φ log 2 N L E 0 × 0 < L E 0 × 0 log 2 N L E 0 × 0 < L E 0 × 0
358 355 357 mpbid φ log 2 N L E 0 × 0 < L E 0 × 0
359 56 111 zltp1led φ log 2 N L E 0 × 0 < L E 0 × 0 log 2 N L E 0 × 0 + 1 L E 0 × 0
360 358 359 mpbid φ log 2 N L E 0 × 0 + 1 L E 0 × 0
361 57 renegcld φ 1
362 df-neg 1 = 0 1
363 362 a1i φ 1 = 0 1
364 13 lem1d φ 0 1 0
365 363 364 eqbrtrd φ 1 0
366 361 13 253 365 98 letrd φ 1 ϕ R log 2 N
367 86 28 101 105 360 366 bcle2d φ ( log 2 N L E 0 × 0 + 1 + ϕ R log 2 N log 2 N L E 0 × 0 + 1 + -1 ) ( L E 0 × 0 + ϕ R log 2 N L E 0 × 0 + -1)
368 42 109 115 274 367 ltletrd φ N D < ( L E 0 × 0 + ϕ R log 2 N L E 0 × 0 + -1)
369 222 240 negsubd φ L E 0 × 0 + -1 = L E 0 × 0 1
370 369 oveq2d φ ( L E 0 × 0 + ϕ R log 2 N L E 0 × 0 + -1) = ( L E 0 × 0 + ϕ R log 2 N L E 0 × 0 1 )
371 368 370 breqtrd φ N D < ( L E 0 × 0 + ϕ R log 2 N L E 0 × 0 1 )
372 9 eqcomi ϕ R log 2 N = A
373 372 a1i φ ϕ R log 2 N = A
374 373 oveq2d φ L E 0 × 0 + ϕ R log 2 N = L E 0 × 0 + A
375 374 oveq1d φ ( L E 0 × 0 + ϕ R log 2 N L E 0 × 0 1 ) = ( L E 0 × 0 + A L E 0 × 0 1 )
376 371 375 breqtrd φ N D < ( L E 0 × 0 + A L E 0 × 0 1 )
377 26 eqcomd φ L E 0 × 0 = D
378 377 oveq1d φ L E 0 × 0 + A = D + A
379 377 oveq1d φ L E 0 × 0 1 = D 1
380 378 379 oveq12d φ ( L E 0 × 0 + A L E 0 × 0 1 ) = ( D + A D 1 )
381 376 380 breqtrd φ N D < ( D + A D 1 )