Metamath Proof Explorer


Theorem cxpled

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φA
cxpltd.2 φ1<A
cxpltd.3 φB
cxpltd.4 φC
Assertion cxpled φBCABAC

Proof

Step Hyp Ref Expression
1 recxpcld.1 φA
2 cxpltd.2 φ1<A
3 cxpltd.3 φB
4 cxpltd.4 φC
5 cxple A1<ABCBCABAC
6 1 2 3 4 5 syl22anc φBCABAC