Description: Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | cxpmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 | |
|
2 | simp2 | |
|
3 | 2 | recnd | |
4 | relogcl | |
|
5 | 4 | 3ad2ant1 | |
6 | 5 | recnd | |
7 | 1 3 6 | mulassd | |
8 | 3 1 | mulcomd | |
9 | 8 | oveq1d | |
10 | rpcn | |
|
11 | 10 | 3ad2ant1 | |
12 | rpne0 | |
|
13 | 12 | 3ad2ant1 | |
14 | cxpef | |
|
15 | 11 13 3 14 | syl3anc | |
16 | 15 | fveq2d | |
17 | 2 5 | remulcld | |
18 | 17 | relogefd | |
19 | 16 18 | eqtrd | |
20 | 19 | oveq2d | |
21 | 7 9 20 | 3eqtr4d | |
22 | 21 | fveq2d | |
23 | 3 1 | mulcld | |
24 | cxpef | |
|
25 | 11 13 23 24 | syl3anc | |
26 | cxpcl | |
|
27 | 11 3 26 | syl2anc | |
28 | cxpne0 | |
|
29 | 11 13 3 28 | syl3anc | |
30 | cxpef | |
|
31 | 27 29 1 30 | syl3anc | |
32 | 22 25 31 | 3eqtr4d | |