Metamath Proof Explorer


Theorem cxpmul

Description: Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpmul A+BCABC=ABC

Proof

Step Hyp Ref Expression
1 simp3 A+BCC
2 simp2 A+BCB
3 2 recnd A+BCB
4 relogcl A+logA
5 4 3ad2ant1 A+BClogA
6 5 recnd A+BClogA
7 1 3 6 mulassd A+BCCBlogA=CBlogA
8 3 1 mulcomd A+BCBC=CB
9 8 oveq1d A+BCBClogA=CBlogA
10 rpcn A+A
11 10 3ad2ant1 A+BCA
12 rpne0 A+A0
13 12 3ad2ant1 A+BCA0
14 cxpef AA0BAB=eBlogA
15 11 13 3 14 syl3anc A+BCAB=eBlogA
16 15 fveq2d A+BClogAB=logeBlogA
17 2 5 remulcld A+BCBlogA
18 17 relogefd A+BClogeBlogA=BlogA
19 16 18 eqtrd A+BClogAB=BlogA
20 19 oveq2d A+BCClogAB=CBlogA
21 7 9 20 3eqtr4d A+BCBClogA=ClogAB
22 21 fveq2d A+BCeBClogA=eClogAB
23 3 1 mulcld A+BCBC
24 cxpef AA0BCABC=eBClogA
25 11 13 23 24 syl3anc A+BCABC=eBClogA
26 cxpcl ABAB
27 11 3 26 syl2anc A+BCAB
28 cxpne0 AA0BAB0
29 11 13 3 28 syl3anc A+BCAB0
30 cxpef ABAB0CABC=eClogAB
31 27 29 1 30 syl3anc A+BCABC=eClogAB
32 22 25 31 3eqtr4d A+BCABC=ABC