Metamath Proof Explorer


Theorem bcled

Description: Inequality for binomial coefficients. (Contributed by metakunt, 12-May-2025)

Ref Expression
Hypotheses bcled.1 φ A 0
bcled.2 φ B 0
bcled.3 φ C
bcled.4 φ A B
Assertion bcled φ ( A C) ( B C)

Proof

Step Hyp Ref Expression
1 bcled.1 φ A 0
2 bcled.2 φ B 0
3 bcled.3 φ C
4 bcled.4 φ A B
5 bcval2 C 0 A ( A C) = A ! A C ! C !
6 5 adantl φ C 0 A ( A C) = A ! A C ! C !
7 1 adantr φ C 0 A A 0
8 7 faccld φ C 0 A A !
9 8 nncnd φ C 0 A A !
10 7 nn0zd φ C 0 A A
11 3 adantr φ C 0 A C
12 10 11 zsubcld φ C 0 A A C
13 11 zred φ C 0 A C
14 7 nn0red φ C 0 A A
15 0red φ C 0 A 0
16 elfzle2 C 0 A C A
17 16 adantl φ C 0 A C A
18 14 recnd φ C 0 A A
19 18 subid1d φ C 0 A A 0 = A
20 19 eqcomd φ C 0 A A = A 0
21 17 20 breqtrd φ C 0 A C A 0
22 13 14 15 21 lesubd φ C 0 A 0 A C
23 12 22 jca φ C 0 A A C 0 A C
24 elnn0z A C 0 A C 0 A C
25 23 24 sylibr φ C 0 A A C 0
26 25 faccld φ C 0 A A C !
27 26 nncnd φ C 0 A A C !
28 elfznn0 C 0 A C 0
29 28 adantl φ C 0 A C 0
30 29 faccld φ C 0 A C !
31 30 nncnd φ C 0 A C !
32 26 nnne0d φ C 0 A A C ! 0
33 30 nnne0d φ C 0 A C ! 0
34 9 27 31 32 33 divdiv1d φ C 0 A A ! A C ! C ! = A ! A C ! C !
35 34 eqcomd φ C 0 A A ! A C ! C ! = A ! A C ! C !
36 8 nnred φ C 0 A A !
37 26 nnred φ C 0 A A C !
38 36 37 32 redivcld φ C 0 A A ! A C !
39 2 adantr φ C 0 A B 0
40 39 faccld φ C 0 A B !
41 40 nnred φ C 0 A B !
42 39 nn0zd φ C 0 A B
43 42 11 zsubcld φ C 0 A B C
44 39 nn0red φ C 0 A B
45 4 adantr φ C 0 A A B
46 13 14 44 17 45 letrd φ C 0 A C B
47 44 recnd φ C 0 A B
48 47 subid1d φ C 0 A B 0 = B
49 48 eqcomd φ C 0 A B = B 0
50 46 49 breqtrd φ C 0 A C B 0
51 13 44 15 50 lesubd φ C 0 A 0 B C
52 43 51 jca φ C 0 A B C 0 B C
53 elnn0z B C 0 B C 0 B C
54 52 53 sylibr φ C 0 A B C 0
55 54 faccld φ C 0 A B C !
56 55 nnred φ C 0 A B C !
57 55 nnne0d φ C 0 A B C ! 0
58 41 56 57 redivcld φ C 0 A B ! B C !
59 30 nnrpd φ C 0 A C ! +
60 nfv k φ C 0 A
61 fzfid φ C 0 A 0 C 1 Fin
62 14 adantr φ C 0 A k 0 C 1 A
63 elfzelz k 0 C 1 k
64 63 adantl φ C 0 A k 0 C 1 k
65 64 zred φ C 0 A k 0 C 1 k
66 62 65 resubcld φ C 0 A k 0 C 1 A k
67 0red φ C 0 A k 0 C 1 0
68 29 nn0red φ C 0 A C
69 68 adantr φ C 0 A k 0 C 1 C
70 1red φ C 0 A k 0 C 1 1
71 69 70 resubcld φ C 0 A k 0 C 1 C 1
72 62 67 resubcld φ C 0 A k 0 C 1 A 0
73 elfzle2 k 0 C 1 k C 1
74 73 adantl φ C 0 A k 0 C 1 k C 1
75 17 adantr φ C 0 A k 0 C 1 C A
76 0le1 0 1
77 76 a1i φ C 0 A k 0 C 1 0 1
78 69 67 62 70 75 77 le2subd φ C 0 A k 0 C 1 C 1 A 0
79 65 71 72 74 78 letrd φ C 0 A k 0 C 1 k A 0
80 65 62 67 79 lesubd φ C 0 A k 0 C 1 0 A k
81 44 adantr φ C 0 A k 0 C 1 B
82 81 65 resubcld φ C 0 A k 0 C 1 B k
83 4 ad2antrr φ C 0 A k 0 C 1 A B
84 62 81 65 83 lesub1dd φ C 0 A k 0 C 1 A k B k
85 60 61 66 80 82 84 fprodle φ C 0 A k = 0 C 1 A k k = 0 C 1 B k
86 7 nn0cnd φ C 0 A A
87 fallfacval A C 0 A C _ = k = 0 C 1 A k
88 86 29 87 syl2anc φ C 0 A A C _ = k = 0 C 1 A k
89 88 eqcomd φ C 0 A k = 0 C 1 A k = A C _
90 39 nn0cnd φ C 0 A B
91 fallfacval B C 0 B C _ = k = 0 C 1 B k
92 90 29 91 syl2anc φ C 0 A B C _ = k = 0 C 1 B k
93 92 eqcomd φ C 0 A k = 0 C 1 B k = B C _
94 85 89 93 3brtr3d φ C 0 A A C _ B C _
95 fallfacval4 C 0 A A C _ = A ! A C !
96 95 adantl φ C 0 A A C _ = A ! A C !
97 0zd φ C 0 A 0
98 29 nn0ge0d φ C 0 A 0 C
99 68 14 44 17 45 letrd φ C 0 A C B
100 97 42 11 98 99 elfzd φ C 0 A C 0 B
101 fallfacval4 C 0 B B C _ = B ! B C !
102 100 101 syl φ C 0 A B C _ = B ! B C !
103 94 96 102 3brtr3d φ C 0 A A ! A C ! B ! B C !
104 38 58 59 103 lediv1dd φ C 0 A A ! A C ! C ! B ! B C ! C !
105 40 nncnd φ C 0 A B !
106 55 nncnd φ C 0 A B C !
107 105 106 31 57 33 divdiv1d φ C 0 A B ! B C ! C ! = B ! B C ! C !
108 104 107 breqtrd φ C 0 A A ! A C ! C ! B ! B C ! C !
109 35 108 eqbrtrd φ C 0 A A ! A C ! C ! B ! B C ! C !
110 2 nn0zd φ B
111 110 adantr φ C 0 A B
112 elfzle1 C 0 A 0 C
113 112 adantl φ C 0 A 0 C
114 1 nn0red φ A
115 114 adantr φ C 0 A A
116 111 zred φ C 0 A B
117 13 115 116 17 45 letrd φ C 0 A C B
118 97 111 11 113 117 elfzd φ C 0 A C 0 B
119 bcval2 C 0 B ( B C) = B ! B C ! C !
120 118 119 syl φ C 0 A ( B C) = B ! B C ! C !
121 120 eqcomd φ C 0 A B ! B C ! C ! = ( B C)
122 109 121 breqtrd φ C 0 A A ! A C ! C ! ( B C)
123 6 122 eqbrtrd φ C 0 A ( A C) ( B C)
124 1 adantr φ ¬ C 0 A A 0
125 3 adantr φ ¬ C 0 A C
126 simpr φ ¬ C 0 A ¬ C 0 A
127 bcval3 A 0 C ¬ C 0 A ( A C) = 0
128 124 125 126 127 syl3anc φ ¬ C 0 A ( A C) = 0
129 bccl2 C 0 B ( B C)
130 129 adantl φ ¬ C 0 A C 0 B ( B C)
131 130 nnnn0d φ ¬ C 0 A C 0 B ( B C) 0
132 131 nn0ge0d φ ¬ C 0 A C 0 B 0 ( B C)
133 0le0 0 0
134 133 a1i φ ¬ C 0 A ¬ C 0 B 0 0
135 2 ad2antrr φ ¬ C 0 A ¬ C 0 B B 0
136 125 adantr φ ¬ C 0 A ¬ C 0 B C
137 simpr φ ¬ C 0 A ¬ C 0 B ¬ C 0 B
138 bcval3 B 0 C ¬ C 0 B ( B C) = 0
139 135 136 137 138 syl3anc φ ¬ C 0 A ¬ C 0 B ( B C) = 0
140 139 eqcomd φ ¬ C 0 A ¬ C 0 B 0 = ( B C)
141 134 140 breqtrd φ ¬ C 0 A ¬ C 0 B 0 ( B C)
142 132 141 pm2.61dan φ ¬ C 0 A 0 ( B C)
143 128 142 eqbrtrd φ ¬ C 0 A ( A C) ( B C)
144 123 143 pm2.61dan φ ( A C) ( B C)