| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c7lem1.1 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | aks6d1c7lem1.2 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 3 |  | aks6d1c7lem1.3 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 4 |  | aks6d1c7lem1.4 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 5 |  | aks6d1c7lem1.5 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 6 |  | aks6d1c7lem1.6 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 7 |  | aks6d1c7lem1.7 | ⊢ 𝐿  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 8 |  | aks6d1c7lem1.8 | ⊢ 𝐷  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 9 |  | aks6d1c7lem1.9 | ⊢ 𝐴  =  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 10 |  | aks6d1c7lem1.10 | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) | 
						
							| 11 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℤ ) | 
						
							| 12 | 3 11 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 13 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 14 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  3  ∈  ℝ ) | 
						
							| 16 | 12 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 17 |  | 3pos | ⊢ 0  <  3 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  0  <  3 ) | 
						
							| 19 |  | eluzle | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  3  ≤  𝑁 ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝜑  →  3  ≤  𝑁 ) | 
						
							| 21 | 13 15 16 18 20 | ltletrd | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 22 | 12 21 | jca | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℤ  ∧  0  <  𝑁 ) ) | 
						
							| 23 |  | elnnz | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  ∈  ℤ  ∧  0  <  𝑁 ) ) | 
						
							| 24 | 22 23 | sylibr | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 25 | 24 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 26 | 8 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( ℤ/nℤ ‘ 𝑅 )  =  ( ℤ/nℤ ‘ 𝑅 ) | 
						
							| 28 | 24 1 4 2 5 6 7 27 | hashscontpowcl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ0 ) | 
						
							| 29 | 26 28 | eqeltrd | ⊢ ( 𝜑  →  𝐷  ∈  ℕ0 ) | 
						
							| 30 | 29 | nn0red | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 31 | 29 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝐷 ) | 
						
							| 32 | 30 31 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 33 | 32 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ 𝐷 ) )  ∈  ℤ ) | 
						
							| 34 | 30 31 | sqrtge0d | ⊢ ( 𝜑  →  0  ≤  ( √ ‘ 𝐷 ) ) | 
						
							| 35 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 36 |  | flge | ⊢ ( ( ( √ ‘ 𝐷 )  ∈  ℝ  ∧  0  ∈  ℤ )  →  ( 0  ≤  ( √ ‘ 𝐷 )  ↔  0  ≤  ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 37 | 32 35 36 | syl2anc | ⊢ ( 𝜑  →  ( 0  ≤  ( √ ‘ 𝐷 )  ↔  0  ≤  ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 38 | 34 37 | mpbid | ⊢ ( 𝜑  →  0  ≤  ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) | 
						
							| 39 | 33 38 | jca | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( √ ‘ 𝐷 ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 40 |  | elnn0z | ⊢ ( ( ⌊ ‘ ( √ ‘ 𝐷 ) )  ∈  ℕ0  ↔  ( ( ⌊ ‘ ( √ ‘ 𝐷 ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 41 | 39 40 | sylibr | ⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ 𝐷 ) )  ∈  ℕ0 ) | 
						
							| 42 | 25 41 | reexpcld | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  ∈  ℝ ) | 
						
							| 43 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 44 | 43 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 45 |  | 2pos | ⊢ 0  <  2 | 
						
							| 46 | 45 | a1i | ⊢ ( 𝜑  →  0  <  2 ) | 
						
							| 47 | 24 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 48 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 49 | 48 | necomi | ⊢ 2  ≠  1 | 
						
							| 50 | 49 | a1i | ⊢ ( 𝜑  →  2  ≠  1 ) | 
						
							| 51 | 44 46 25 47 50 | relogbcld | ⊢ ( 𝜑  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 52 | 26 30 | eqeltrrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℝ ) | 
						
							| 53 | 31 26 | breqtrd | ⊢ ( 𝜑  →  0  ≤  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 54 | 52 53 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ∈  ℝ ) | 
						
							| 55 | 51 54 | remulcld | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 56 | 55 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℤ ) | 
						
							| 57 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 58 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 59 | 58 | a1i | ⊢ ( 𝜑  →  0  ≤  1 ) | 
						
							| 60 | 44 | recnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 61 | 13 46 | gtned | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 62 |  | logbid1 | ⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0  ∧  2  ≠  1 )  →  ( 2  logb  2 )  =  1 ) | 
						
							| 63 | 60 61 50 62 | syl3anc | ⊢ ( 𝜑  →  ( 2  logb  2 )  =  1 ) | 
						
							| 64 | 63 | eqcomd | ⊢ ( 𝜑  →  1  =  ( 2  logb  2 ) ) | 
						
							| 65 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 66 | 65 | a1i | ⊢ ( 𝜑  →  2  ∈  ℤ ) | 
						
							| 67 | 44 | leidd | ⊢ ( 𝜑  →  2  ≤  2 ) | 
						
							| 68 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 69 | 43 68 | nn0addge1i | ⊢ 2  ≤  ( 2  +  1 ) | 
						
							| 70 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 71 | 69 70 | breqtri | ⊢ 2  ≤  3 | 
						
							| 72 | 71 | a1i | ⊢ ( 𝜑  →  2  ≤  3 ) | 
						
							| 73 | 44 15 16 72 20 | letrd | ⊢ ( 𝜑  →  2  ≤  𝑁 ) | 
						
							| 74 | 66 67 44 46 16 21 73 | logblebd | ⊢ ( 𝜑  →  ( 2  logb  2 )  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 75 | 64 74 | eqbrtrd | ⊢ ( 𝜑  →  1  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 76 | 13 57 51 59 75 | letrd | ⊢ ( 𝜑  →  0  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 77 | 52 53 | sqrtge0d | ⊢ ( 𝜑  →  0  ≤  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 78 | 51 54 76 77 | mulge0d | ⊢ ( 𝜑  →  0  ≤  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 79 |  | flge | ⊢ ( ( ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℝ  ∧  0  ∈  ℤ )  →  ( 0  ≤  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ↔  0  ≤  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 80 | 55 35 79 | syl2anc | ⊢ ( 𝜑  →  ( 0  ≤  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ↔  0  ≤  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 81 | 78 80 | mpbid | ⊢ ( 𝜑  →  0  ≤  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 82 | 56 81 | jca | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 83 |  | elnn0z | ⊢ ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℕ0  ↔  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 84 | 82 83 | sylibr | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 85 | 68 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ0 ) | 
						
							| 86 | 84 85 | nn0addcld | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  ∈  ℕ0 ) | 
						
							| 87 | 2 | phicld | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑅 )  ∈  ℕ ) | 
						
							| 88 | 87 | nnred | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑅 )  ∈  ℝ ) | 
						
							| 89 | 87 | nnnn0d | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑅 )  ∈  ℕ0 ) | 
						
							| 90 | 89 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( ϕ ‘ 𝑅 ) ) | 
						
							| 91 | 88 90 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ϕ ‘ 𝑅 ) )  ∈  ℝ ) | 
						
							| 92 | 91 51 | remulcld | ⊢ ( 𝜑  →  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ ) | 
						
							| 93 | 92 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ ) | 
						
							| 94 | 88 90 | sqrtge0d | ⊢ ( 𝜑  →  0  ≤  ( √ ‘ ( ϕ ‘ 𝑅 ) ) ) | 
						
							| 95 | 91 51 94 76 | mulge0d | ⊢ ( 𝜑  →  0  ≤  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 96 |  | flge | ⊢ ( ( ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ  ∧  0  ∈  ℤ )  →  ( 0  ≤  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ↔  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 97 | 92 35 96 | syl2anc | ⊢ ( 𝜑  →  ( 0  ≤  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ↔  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 98 | 95 97 | mpbid | ⊢ ( 𝜑  →  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) | 
						
							| 99 | 93 98 | jca | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 100 |  | elnn0z | ⊢ ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℕ0  ↔  ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 101 | 99 100 | sylibr | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℕ0 ) | 
						
							| 102 | 86 101 | nn0addcld | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) )  ∈  ℕ0 ) | 
						
							| 103 | 56 | peano2zd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  ∈  ℤ ) | 
						
							| 104 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 105 | 104 | znegcld | ⊢ ( 𝜑  →  - 1  ∈  ℤ ) | 
						
							| 106 | 103 105 | zaddcld | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  - 1 )  ∈  ℤ ) | 
						
							| 107 |  | bccl | ⊢ ( ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) )  ∈  ℕ0  ∧  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  - 1 )  ∈  ℤ )  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  - 1 ) )  ∈  ℕ0 ) | 
						
							| 108 | 102 106 107 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  - 1 ) )  ∈  ℕ0 ) | 
						
							| 109 | 108 | nn0red | ⊢ ( 𝜑  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  - 1 ) )  ∈  ℝ ) | 
						
							| 110 | 28 101 | nn0addcld | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) )  ∈  ℕ0 ) | 
						
							| 111 | 28 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℤ ) | 
						
							| 112 | 111 105 | zaddcld | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  - 1 )  ∈  ℤ ) | 
						
							| 113 |  | bccl | ⊢ ( ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) )  ∈  ℕ0  ∧  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  - 1 )  ∈  ℤ )  →  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  - 1 ) )  ∈  ℕ0 ) | 
						
							| 114 | 110 112 113 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  - 1 ) )  ∈  ℕ0 ) | 
						
							| 115 | 114 | nn0red | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  - 1 ) )  ∈  ℝ ) | 
						
							| 116 | 54 51 | remulcld | ⊢ ( 𝜑  →  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ ) | 
						
							| 117 | 116 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ ) | 
						
							| 118 | 54 51 77 76 | mulge0d | ⊢ ( 𝜑  →  0  ≤  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 119 |  | flge | ⊢ ( ( ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ  ∧  0  ∈  ℤ )  →  ( 0  ≤  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) )  ↔  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 120 | 116 35 119 | syl2anc | ⊢ ( 𝜑  →  ( 0  ≤  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) )  ↔  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 121 | 118 120 | mpbid | ⊢ ( 𝜑  →  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) | 
						
							| 122 | 117 121 | jca | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 123 |  | elnn0z | ⊢ ( ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℕ0  ↔  ( ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 124 | 122 123 | sylibr | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℕ0 ) | 
						
							| 125 | 86 124 | nn0addcld | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) )  ∈  ℕ0 ) | 
						
							| 126 |  | bccl | ⊢ ( ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) )  ∈  ℕ0  ∧  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℤ )  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 127 | 125 56 126 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 128 | 127 | nn0red | ⊢ ( 𝜑  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 129 |  | bccl | ⊢ ( ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) )  ∈  ℕ0  ∧  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℤ )  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 130 | 102 56 129 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 131 | 130 | nn0red | ⊢ ( 𝜑  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 132 | 44 86 | reexpcld | ⊢ ( 𝜑  →  ( 2 ↑ ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) )  ∈  ℝ ) | 
						
							| 133 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 134 | 133 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ0 ) | 
						
							| 135 | 134 84 | nn0mulcld | ⊢ ( 𝜑  →  ( 2  ·  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 136 | 135 85 | nn0addcld | ⊢ ( 𝜑  →  ( ( 2  ·  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 )  ∈  ℕ0 ) | 
						
							| 137 |  | bccl | ⊢ ( ( ( ( 2  ·  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 )  ∈  ℕ0  ∧  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℤ )  →  ( ( ( 2  ·  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 138 | 136 56 137 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 139 | 138 | nn0red | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 140 | 13 44 46 | ltled | ⊢ ( 𝜑  →  0  ≤  2 ) | 
						
							| 141 | 44 140 55 | recxpcld | ⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 142 |  | reflcl | ⊢ ( ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℝ  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 143 | 55 142 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 144 | 143 57 | readdcld | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  ∈  ℝ ) | 
						
							| 145 | 44 140 144 | recxpcld | ⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) )  ∈  ℝ ) | 
						
							| 146 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 147 | 146 | a1i | ⊢ ( 𝜑  →  1  ≤  2 ) | 
						
							| 148 | 57 44 16 147 73 | letrd | ⊢ ( 𝜑  →  1  ≤  𝑁 ) | 
						
							| 149 |  | reflcl | ⊢ ( ( √ ‘ 𝐷 )  ∈  ℝ  →  ( ⌊ ‘ ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 150 | 32 149 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 151 | 26 | fveq2d | ⊢ ( 𝜑  →  ( √ ‘ 𝐷 )  =  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 152 | 151 | fveq2d | ⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ 𝐷 ) )  =  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 153 |  | flle | ⊢ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ∈  ℝ  →  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ≤  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 154 | 54 153 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ≤  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 155 | 152 154 | eqbrtrd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ 𝐷 ) )  ≤  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 156 | 16 148 150 54 155 | cxplead | ⊢ ( 𝜑  →  ( 𝑁 ↑𝑐 ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  ≤  ( 𝑁 ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 157 | 16 | recnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 158 | 13 21 | gtned | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 159 | 157 158 33 | cxpexpzd | ⊢ ( 𝜑  →  ( 𝑁 ↑𝑐 ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  =  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 160 | 61 50 | nelprd | ⊢ ( 𝜑  →  ¬  2  ∈  { 0 ,  1 } ) | 
						
							| 161 | 60 160 | eldifd | ⊢ ( 𝜑  →  2  ∈  ( ℂ  ∖  { 0 ,  1 } ) ) | 
						
							| 162 | 158 | neneqd | ⊢ ( 𝜑  →  ¬  𝑁  =  0 ) | 
						
							| 163 |  | elsng | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  ∈  { 0 }  ↔  𝑁  =  0 ) ) | 
						
							| 164 | 24 163 | syl | ⊢ ( 𝜑  →  ( 𝑁  ∈  { 0 }  ↔  𝑁  =  0 ) ) | 
						
							| 165 | 162 164 | mtbird | ⊢ ( 𝜑  →  ¬  𝑁  ∈  { 0 } ) | 
						
							| 166 | 157 165 | eldifd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 167 |  | cxplogb | ⊢ ( ( 2  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑁  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 2 ↑𝑐 ( 2  logb  𝑁 ) )  =  𝑁 ) | 
						
							| 168 | 161 166 167 | syl2anc | ⊢ ( 𝜑  →  ( 2 ↑𝑐 ( 2  logb  𝑁 ) )  =  𝑁 ) | 
						
							| 169 | 168 | eqcomd | ⊢ ( 𝜑  →  𝑁  =  ( 2 ↑𝑐 ( 2  logb  𝑁 ) ) ) | 
						
							| 170 | 169 | oveq1d | ⊢ ( 𝜑  →  ( 𝑁 ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  =  ( ( 2 ↑𝑐 ( 2  logb  𝑁 ) ) ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 171 | 156 159 170 | 3brtr3d | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  ≤  ( ( 2 ↑𝑐 ( 2  logb  𝑁 ) ) ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 172 | 44 46 | elrpd | ⊢ ( 𝜑  →  2  ∈  ℝ+ ) | 
						
							| 173 | 54 | recnd | ⊢ ( 𝜑  →  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ∈  ℂ ) | 
						
							| 174 |  | cxpmul | ⊢ ( ( 2  ∈  ℝ+  ∧  ( 2  logb  𝑁 )  ∈  ℝ  ∧  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ∈  ℂ )  →  ( 2 ↑𝑐 ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  =  ( ( 2 ↑𝑐 ( 2  logb  𝑁 ) ) ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 175 | 172 51 173 174 | syl3anc | ⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  =  ( ( 2 ↑𝑐 ( 2  logb  𝑁 ) ) ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 176 | 171 175 | breqtrrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  ≤  ( 2 ↑𝑐 ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 177 |  | fllep1 | ⊢ ( ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℝ  →  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ≤  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) ) | 
						
							| 178 | 55 177 | syl | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ≤  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) ) | 
						
							| 179 | 57 44 147 50 | leneltd | ⊢ ( 𝜑  →  1  <  2 ) | 
						
							| 180 | 86 | nn0red | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  ∈  ℝ ) | 
						
							| 181 | 44 179 55 180 | cxpled | ⊢ ( 𝜑  →  ( ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ≤  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  ↔  ( 2 ↑𝑐 ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ≤  ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) ) ) ) | 
						
							| 182 | 178 181 | mpbid | ⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ≤  ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) ) ) | 
						
							| 183 | 42 141 145 176 182 | letrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  ≤  ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) ) ) | 
						
							| 184 |  | cxpexpz | ⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0  ∧  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  ∈  ℤ )  →  ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) )  =  ( 2 ↑ ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) ) ) | 
						
							| 185 | 60 61 103 184 | syl3anc | ⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) )  =  ( 2 ↑ ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) ) ) | 
						
							| 186 | 183 185 | breqtrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  ≤  ( 2 ↑ ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) ) ) | 
						
							| 187 | 51 51 | jca | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 )  ∈  ℝ  ∧  ( 2  logb  𝑁 )  ∈  ℝ ) ) | 
						
							| 188 |  | remulcl | ⊢ ( ( ( 2  logb  𝑁 )  ∈  ℝ  ∧  ( 2  logb  𝑁 )  ∈  ℝ )  →  ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ ) | 
						
							| 189 | 187 188 | syl | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ ) | 
						
							| 190 |  | reflcl | ⊢ ( ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℝ ) | 
						
							| 191 | 189 190 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℝ ) | 
						
							| 192 | 84 | nn0red | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 193 | 44 46 15 18 50 | relogbcld | ⊢ ( 𝜑  →  ( 2  logb  3 )  ∈  ℝ ) | 
						
							| 194 | 193 | resqcld | ⊢ ( 𝜑  →  ( ( 2  logb  3 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 195 | 51 | recnd | ⊢ ( 𝜑  →  ( 2  logb  𝑁 )  ∈  ℂ ) | 
						
							| 196 | 195 | sqvald | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  =  ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 197 | 196 189 | eqeltrd | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 198 |  | 3lexlogpow2ineq2 | ⊢ ( 2  <  ( ( 2  logb  3 ) ↑ 2 )  ∧  ( ( 2  logb  3 ) ↑ 2 )  <  3 ) | 
						
							| 199 | 198 | simpli | ⊢ 2  <  ( ( 2  logb  3 ) ↑ 2 ) | 
						
							| 200 | 199 | a1i | ⊢ ( 𝜑  →  2  <  ( ( 2  logb  3 ) ↑ 2 ) ) | 
						
							| 201 | 44 194 200 | ltled | ⊢ ( 𝜑  →  2  ≤  ( ( 2  logb  3 ) ↑ 2 ) ) | 
						
							| 202 | 15 44 61 | redivcld | ⊢ ( 𝜑  →  ( 3  /  2 )  ∈  ℝ ) | 
						
							| 203 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 204 | 203 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ+ ) | 
						
							| 205 | 13 15 18 | ltled | ⊢ ( 𝜑  →  0  ≤  3 ) | 
						
							| 206 | 15 204 205 | divge0d | ⊢ ( 𝜑  →  0  ≤  ( 3  /  2 ) ) | 
						
							| 207 |  | 3lexlogpow2ineq1 | ⊢ ( ( 3  /  2 )  <  ( 2  logb  3 )  ∧  ( 2  logb  3 )  <  ( 5  /  3 ) ) | 
						
							| 208 | 207 | simpli | ⊢ ( 3  /  2 )  <  ( 2  logb  3 ) | 
						
							| 209 | 208 | a1i | ⊢ ( 𝜑  →  ( 3  /  2 )  <  ( 2  logb  3 ) ) | 
						
							| 210 | 202 193 209 | ltled | ⊢ ( 𝜑  →  ( 3  /  2 )  ≤  ( 2  logb  3 ) ) | 
						
							| 211 | 13 202 193 206 210 | letrd | ⊢ ( 𝜑  →  0  ≤  ( 2  logb  3 ) ) | 
						
							| 212 | 66 67 15 18 16 21 20 | logblebd | ⊢ ( 𝜑  →  ( 2  logb  3 )  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 213 | 193 51 134 211 212 | leexp1ad | ⊢ ( 𝜑  →  ( ( 2  logb  3 ) ↑ 2 )  ≤  ( ( 2  logb  𝑁 ) ↑ 2 ) ) | 
						
							| 214 | 44 194 197 201 213 | letrd | ⊢ ( 𝜑  →  2  ≤  ( ( 2  logb  𝑁 ) ↑ 2 ) ) | 
						
							| 215 | 214 196 | breqtrd | ⊢ ( 𝜑  →  2  ≤  ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 216 |  | flge | ⊢ ( ( ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ  ∧  2  ∈  ℤ )  →  ( 2  ≤  ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) )  ↔  2  ≤  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 217 | 189 66 216 | syl2anc | ⊢ ( 𝜑  →  ( 2  ≤  ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) )  ↔  2  ≤  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 218 | 215 217 | mpbid | ⊢ ( 𝜑  →  2  ≤  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) ) ) ) | 
						
							| 219 | 51 51 | remulcld | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ ) | 
						
							| 220 | 24 1 4 2 5 6 7 27 10 | aks6d1c3 | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 221 | 173 | sqvald | ⊢ ( 𝜑  →  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ↑ 2 )  =  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 222 | 28 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℂ ) | 
						
							| 223 | 222 | msqsqrtd | ⊢ ( 𝜑  →  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 224 | 221 223 | eqtr2d | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  =  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ↑ 2 ) ) | 
						
							| 225 | 220 224 | breqtrd | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ↑ 2 ) ) | 
						
							| 226 | 51 54 76 77 | lt2sqd | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 )  <  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ↔  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ↑ 2 ) ) ) | 
						
							| 227 | 225 226 | mpbird | ⊢ ( 𝜑  →  ( 2  logb  𝑁 )  <  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 228 | 51 54 227 | ltled | ⊢ ( 𝜑  →  ( 2  logb  𝑁 )  ≤  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 229 | 51 54 51 76 228 | lemul2ad | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) )  ≤  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 230 |  | flwordi | ⊢ ( ( ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ  ∧  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℝ  ∧  ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) )  ≤  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) ) )  ≤  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 231 | 219 55 229 230 | syl3anc | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( 2  logb  𝑁 ) ) )  ≤  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 232 | 44 191 192 218 231 | letrd | ⊢ ( 𝜑  →  2  ≤  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 233 | 56 232 | 2ap1caineq | ⊢ ( 𝜑  →  ( 2 ↑ ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) )  <  ( ( ( 2  ·  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 234 | 42 132 139 186 233 | lelttrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  <  ( ( ( 2  ·  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 235 | 84 | nn0cnd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  ∈  ℂ ) | 
						
							| 236 | 235 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  =  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 237 | 236 | oveq1d | ⊢ ( 𝜑  →  ( ( 2  ·  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 )  =  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 ) ) | 
						
							| 238 | 237 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 2  ·  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  =  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 239 | 234 238 | breqtrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  <  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 240 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 241 | 235 235 240 | addassd | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 )  =  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) ) ) | 
						
							| 242 | 86 | nn0cnd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  ∈  ℂ ) | 
						
							| 243 | 235 242 | addcomd | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 ) )  =  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 244 | 241 243 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 )  =  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 245 | 244 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  +  1 ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  =  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 246 | 239 245 | breqtrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  <  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 247 | 195 173 | mulcomd | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  =  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 248 | 247 | fveq2d | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  =  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) | 
						
							| 249 | 248 | oveq2d | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  =  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 250 | 249 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  =  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 251 | 246 250 | breqtrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  <  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 252 | 124 | nn0red | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℝ ) | 
						
							| 253 | 101 | nn0red | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℝ ) | 
						
							| 254 | 8 29 | eqeltrrid | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ0 ) | 
						
							| 255 | 254 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℝ ) | 
						
							| 256 | 254 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 257 | 255 256 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ∈  ℝ ) | 
						
							| 258 | 257 51 | remulcld | ⊢ ( 𝜑  →  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ ) | 
						
							| 259 | 24 1 4 2 5 6 7 | aks6d1c4 | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≤  ( ϕ ‘ 𝑅 ) ) | 
						
							| 260 | 52 53 88 90 | sqrtled | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≤  ( ϕ ‘ 𝑅 )  ↔  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ≤  ( √ ‘ ( ϕ ‘ 𝑅 ) ) ) ) | 
						
							| 261 | 259 260 | mpbid | ⊢ ( 𝜑  →  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ≤  ( √ ‘ ( ϕ ‘ 𝑅 ) ) ) | 
						
							| 262 | 257 91 51 76 261 | lemul1ad | ⊢ ( 𝜑  →  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) )  ≤  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 263 |  | flwordi | ⊢ ( ( ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ  ∧  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ  ∧  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) )  ≤  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  →  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) )  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) | 
						
							| 264 | 258 92 262 263 | syl3anc | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) )  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) | 
						
							| 265 | 252 253 144 264 | leadd2dd | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) )  ≤  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 266 | 125 102 56 265 | bcled | ⊢ ( 𝜑  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  ≤  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 267 | 42 128 131 251 266 | ltletrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  <  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) ) | 
						
							| 268 | 235 240 | pncand | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  −  1 )  =  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 269 | 268 | eqcomd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  =  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  −  1 ) ) | 
						
							| 270 | 242 240 | negsubd | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  - 1 )  =  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  −  1 ) ) | 
						
							| 271 | 270 | eqcomd | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  −  1 )  =  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  - 1 ) ) | 
						
							| 272 | 269 271 | eqtrd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  =  ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  - 1 ) ) | 
						
							| 273 | 272 | oveq2d | ⊢ ( 𝜑  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) )  =  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  - 1 ) ) ) | 
						
							| 274 | 267 273 | breqtrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  <  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  - 1 ) ) ) | 
						
							| 275 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑅  ∈  ℕ0 ) | 
						
							| 276 | 27 | zncrng | ⊢ ( 𝑅  ∈  ℕ0  →  ( ℤ/nℤ ‘ 𝑅 )  ∈  CRing ) | 
						
							| 277 | 275 276 | syl | ⊢ ( 𝜑  →  ( ℤ/nℤ ‘ 𝑅 )  ∈  CRing ) | 
						
							| 278 |  | crngring | ⊢ ( ( ℤ/nℤ ‘ 𝑅 )  ∈  CRing  →  ( ℤ/nℤ ‘ 𝑅 )  ∈  Ring ) | 
						
							| 279 | 7 | zrhrhm | ⊢ ( ( ℤ/nℤ ‘ 𝑅 )  ∈  Ring  →  𝐿  ∈  ( ℤring  RingHom  ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 280 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 281 |  | eqid | ⊢ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) )  =  ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 282 | 280 281 | rhmf | ⊢ ( 𝐿  ∈  ( ℤring  RingHom  ( ℤ/nℤ ‘ 𝑅 ) )  →  𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 283 | 277 278 279 282 | 4syl | ⊢ ( 𝜑  →  𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 284 | 283 | ffnd | ⊢ ( 𝜑  →  𝐿  Fn  ℤ ) | 
						
							| 285 | 24 1 4 6 | aks6d1c2p1 | ⊢ ( 𝜑  →  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℕ ) | 
						
							| 286 |  | nnssz | ⊢ ℕ  ⊆  ℤ | 
						
							| 287 | 286 | a1i | ⊢ ( 𝜑  →  ℕ  ⊆  ℤ ) | 
						
							| 288 | 285 287 | fssd | ⊢ ( 𝜑  →  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℤ ) | 
						
							| 289 |  | frn | ⊢ ( 𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℤ  →  ran  𝐸  ⊆  ℤ ) | 
						
							| 290 | 288 289 | syl | ⊢ ( 𝜑  →  ran  𝐸  ⊆  ℤ ) | 
						
							| 291 | 285 | ffnd | ⊢ ( 𝜑  →  𝐸  Fn  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 292 |  | fnima | ⊢ ( 𝐸  Fn  ( ℕ0  ×  ℕ0 )  →  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  =  ran  𝐸 ) | 
						
							| 293 | 291 292 | syl | ⊢ ( 𝜑  →  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  =  ran  𝐸 ) | 
						
							| 294 | 293 | sseq1d | ⊢ ( 𝜑  →  ( ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ℤ  ↔  ran  𝐸  ⊆  ℤ ) ) | 
						
							| 295 | 290 294 | mpbird | ⊢ ( 𝜑  →  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ℤ ) | 
						
							| 296 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 297 |  | vex | ⊢ 𝑙  ∈  V | 
						
							| 298 | 296 297 | op1std | ⊢ ( 𝑣  =  〈 𝑘 ,  𝑙 〉  →  ( 1st  ‘ 𝑣 )  =  𝑘 ) | 
						
							| 299 | 298 | oveq2d | ⊢ ( 𝑣  =  〈 𝑘 ,  𝑙 〉  →  ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  =  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 300 | 296 297 | op2ndd | ⊢ ( 𝑣  =  〈 𝑘 ,  𝑙 〉  →  ( 2nd  ‘ 𝑣 )  =  𝑙 ) | 
						
							| 301 | 300 | oveq2d | ⊢ ( 𝑣  =  〈 𝑘 ,  𝑙 〉  →  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) | 
						
							| 302 | 299 301 | oveq12d | ⊢ ( 𝑣  =  〈 𝑘 ,  𝑙 〉  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) )  =  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 303 | 302 | mpompt | ⊢ ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) )  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 304 | 303 | eqcomi | ⊢ ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) )  =  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ) | 
						
							| 305 | 6 304 | eqtri | ⊢ 𝐸  =  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ) | 
						
							| 306 | 305 | a1i | ⊢ ( 𝜑  →  𝐸  =  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ) ) | 
						
							| 307 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 308 | 307 307 | op1std | ⊢ ( 𝑣  =  〈 0 ,  0 〉  →  ( 1st  ‘ 𝑣 )  =  0 ) | 
						
							| 309 | 308 | adantl | ⊢ ( ( 𝜑  ∧  𝑣  =  〈 0 ,  0 〉 )  →  ( 1st  ‘ 𝑣 )  =  0 ) | 
						
							| 310 | 309 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑣  =  〈 0 ,  0 〉 )  →  ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  =  ( 𝑃 ↑ 0 ) ) | 
						
							| 311 | 307 307 | op2ndd | ⊢ ( 𝑣  =  〈 0 ,  0 〉  →  ( 2nd  ‘ 𝑣 )  =  0 ) | 
						
							| 312 | 311 | adantl | ⊢ ( ( 𝜑  ∧  𝑣  =  〈 0 ,  0 〉 )  →  ( 2nd  ‘ 𝑣 )  =  0 ) | 
						
							| 313 | 312 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑣  =  〈 0 ,  0 〉 )  →  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) )  =  ( ( 𝑁  /  𝑃 ) ↑ 0 ) ) | 
						
							| 314 | 310 313 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑣  =  〈 0 ,  0 〉 )  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) )  =  ( ( 𝑃 ↑ 0 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 0 ) ) ) | 
						
							| 315 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 316 | 1 315 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 317 | 316 | nncnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 318 | 317 | exp0d | ⊢ ( 𝜑  →  ( 𝑃 ↑ 0 )  =  1 ) | 
						
							| 319 | 316 | nnne0d | ⊢ ( 𝜑  →  𝑃  ≠  0 ) | 
						
							| 320 | 157 317 319 | divcld | ⊢ ( 𝜑  →  ( 𝑁  /  𝑃 )  ∈  ℂ ) | 
						
							| 321 | 320 | exp0d | ⊢ ( 𝜑  →  ( ( 𝑁  /  𝑃 ) ↑ 0 )  =  1 ) | 
						
							| 322 | 318 321 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 0 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 0 ) )  =  ( 1  ·  1 ) ) | 
						
							| 323 | 240 | mulridd | ⊢ ( 𝜑  →  ( 1  ·  1 )  =  1 ) | 
						
							| 324 | 322 323 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 0 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 0 ) )  =  1 ) | 
						
							| 325 | 324 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  =  〈 0 ,  0 〉 )  →  ( ( 𝑃 ↑ 0 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 0 ) )  =  1 ) | 
						
							| 326 | 314 325 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑣  =  〈 0 ,  0 〉 )  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) )  =  1 ) | 
						
							| 327 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 328 | 327 | a1i | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 329 | 328 328 | opelxpd | ⊢ ( 𝜑  →  〈 0 ,  0 〉  ∈  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 330 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 331 | 330 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ ) | 
						
							| 332 | 306 326 329 331 | fvmptd | ⊢ ( 𝜑  →  ( 𝐸 ‘ 〈 0 ,  0 〉 )  =  1 ) | 
						
							| 333 |  | ssidd | ⊢ ( 𝜑  →  ( ℕ0  ×  ℕ0 )  ⊆  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 334 |  | fnfvima | ⊢ ( ( 𝐸  Fn  ( ℕ0  ×  ℕ0 )  ∧  ( ℕ0  ×  ℕ0 )  ⊆  ( ℕ0  ×  ℕ0 )  ∧  〈 0 ,  0 〉  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐸 ‘ 〈 0 ,  0 〉 )  ∈  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 335 | 291 333 329 334 | syl3anc | ⊢ ( 𝜑  →  ( 𝐸 ‘ 〈 0 ,  0 〉 )  ∈  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 336 | 332 335 | eqeltrrd | ⊢ ( 𝜑  →  1  ∈  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 337 |  | fnfvima | ⊢ ( ( 𝐿  Fn  ℤ  ∧  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ℤ  ∧  1  ∈  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  →  ( 𝐿 ‘ 1 )  ∈  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 338 | 284 295 336 337 | syl3anc | ⊢ ( 𝜑  →  ( 𝐿 ‘ 1 )  ∈  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 339 | 7 | a1i | ⊢ ( 𝜑  →  𝐿  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 340 |  | fvexd | ⊢ ( 𝜑  →  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  ∈  V ) | 
						
							| 341 | 339 340 | eqeltrd | ⊢ ( 𝜑  →  𝐿  ∈  V ) | 
						
							| 342 | 341 | imaexd | ⊢ ( 𝜑  →  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  V ) | 
						
							| 343 | 338 342 | hashelne0d | ⊢ ( 𝜑  →  ¬  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  =  0 ) | 
						
							| 344 | 343 | neqned | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≠  0 ) | 
						
							| 345 | 28 344 | jca | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ0  ∧  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≠  0 ) ) | 
						
							| 346 |  | elnnne0 | ⊢ ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ  ↔  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ0  ∧  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≠  0 ) ) | 
						
							| 347 | 345 346 | sylibr | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ ) | 
						
							| 348 | 347 | nnrpd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℝ+ ) | 
						
							| 349 | 348 | rpsqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ∈  ℝ+ ) | 
						
							| 350 | 51 54 349 227 | ltmul1dd | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  <  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 351 | 52 53 52 53 | sqrtmuld | ⊢ ( 𝜑  →  ( √ ‘ ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ·  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  =  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 352 | 351 | eqcomd | ⊢ ( 𝜑  →  ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  =  ( √ ‘ ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ·  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 353 | 350 352 | breqtrd | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  <  ( √ ‘ ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ·  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 354 | 351 223 | eqtrd | ⊢ ( 𝜑  →  ( √ ‘ ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ·  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 355 | 353 354 | breqtrd | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  <  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 356 |  | fllt | ⊢ ( ( ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℝ  ∧  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℤ )  →  ( ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  <  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ↔  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  <  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 357 | 55 111 356 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  <  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ↔  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  <  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 358 | 355 357 | mpbid | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  <  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 359 | 56 111 | zltp1led | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  <  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ↔  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  ≤  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 360 | 358 359 | mpbid | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  ≤  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 361 | 57 | renegcld | ⊢ ( 𝜑  →  - 1  ∈  ℝ ) | 
						
							| 362 |  | df-neg | ⊢ - 1  =  ( 0  −  1 ) | 
						
							| 363 | 362 | a1i | ⊢ ( 𝜑  →  - 1  =  ( 0  −  1 ) ) | 
						
							| 364 | 13 | lem1d | ⊢ ( 𝜑  →  ( 0  −  1 )  ≤  0 ) | 
						
							| 365 | 363 364 | eqbrtrd | ⊢ ( 𝜑  →  - 1  ≤  0 ) | 
						
							| 366 | 361 13 253 365 98 | letrd | ⊢ ( 𝜑  →  - 1  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) | 
						
							| 367 | 86 28 101 105 360 366 | bcle2d | ⊢ ( 𝜑  →  ( ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2  logb  𝑁 )  ·  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) )  +  1 )  +  - 1 ) )  ≤  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  - 1 ) ) ) | 
						
							| 368 | 42 109 115 274 367 | ltletrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  <  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  - 1 ) ) ) | 
						
							| 369 | 222 240 | negsubd | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  - 1 )  =  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) ) | 
						
							| 370 | 369 | oveq2d | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  - 1 ) )  =  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) ) ) | 
						
							| 371 | 368 370 | breqtrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  <  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) ) ) | 
						
							| 372 | 9 | eqcomi | ⊢ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  =  𝐴 | 
						
							| 373 | 372 | a1i | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  =  𝐴 ) | 
						
							| 374 | 373 | oveq2d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) )  =  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  𝐴 ) ) | 
						
							| 375 | 374 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) )  =  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  𝐴 ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) ) ) | 
						
							| 376 | 371 375 | breqtrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  <  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  𝐴 ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) ) ) | 
						
							| 377 | 26 | eqcomd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  =  𝐷 ) | 
						
							| 378 | 377 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  𝐴 )  =  ( 𝐷  +  𝐴 ) ) | 
						
							| 379 | 377 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 )  =  ( 𝐷  −  1 ) ) | 
						
							| 380 | 378 379 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  +  𝐴 ) C ( ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  −  1 ) )  =  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) ) ) | 
						
							| 381 | 376 380 | breqtrd | ⊢ ( 𝜑  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  <  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) ) ) |