| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c7lem1.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 2 |
|
aks6d1c7lem1.2 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 3 |
|
aks6d1c7lem1.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 4 |
|
aks6d1c7lem1.4 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| 5 |
|
aks6d1c7lem1.5 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 6 |
|
aks6d1c7lem1.6 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
| 7 |
|
aks6d1c7lem1.7 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
| 8 |
|
aks6d1c7lem1.8 |
⊢ 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 9 |
|
aks6d1c7lem1.9 |
⊢ 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
| 10 |
|
aks6d1c7lem1.10 |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
| 11 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 13 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 14 |
|
3re |
⊢ 3 ∈ ℝ |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 16 |
12
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 17 |
|
3pos |
⊢ 0 < 3 |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
| 19 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
| 20 |
3 19
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
| 21 |
13 15 16 18 20
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 22 |
12 21
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 23 |
|
elnnz |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 24 |
22 23
|
sylibr |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 25 |
24
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 26 |
8
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 27 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑅 ) = ( ℤ/nℤ ‘ 𝑅 ) |
| 28 |
24 1 4 2 5 6 7 27
|
hashscontpowcl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
| 29 |
26 28
|
eqeltrd |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
| 30 |
29
|
nn0red |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 31 |
29
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐷 ) |
| 32 |
30 31
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝐷 ) ∈ ℝ ) |
| 33 |
32
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ∈ ℤ ) |
| 34 |
30 31
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ 𝐷 ) ) |
| 35 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 36 |
|
flge |
⊢ ( ( ( √ ‘ 𝐷 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( √ ‘ 𝐷 ) ↔ 0 ≤ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) |
| 37 |
32 35 36
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( √ ‘ 𝐷 ) ↔ 0 ≤ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) |
| 38 |
34 37
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) |
| 39 |
33 38
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) |
| 40 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) |
| 41 |
39 40
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ∈ ℕ0 ) |
| 42 |
25 41
|
reexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ∈ ℝ ) |
| 43 |
|
2re |
⊢ 2 ∈ ℝ |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 45 |
|
2pos |
⊢ 0 < 2 |
| 46 |
45
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 47 |
24
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 48 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 49 |
48
|
necomi |
⊢ 2 ≠ 1 |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → 2 ≠ 1 ) |
| 51 |
44 46 25 47 50
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
| 52 |
26 30
|
eqeltrrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ) |
| 53 |
31 26
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 54 |
52 53
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ ) |
| 55 |
51 54
|
remulcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℝ ) |
| 56 |
55
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℤ ) |
| 57 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 58 |
|
0le1 |
⊢ 0 ≤ 1 |
| 59 |
58
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 60 |
44
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 61 |
13 46
|
gtned |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 62 |
|
logbid1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 2 ) = 1 ) |
| 63 |
60 61 50 62
|
syl3anc |
⊢ ( 𝜑 → ( 2 logb 2 ) = 1 ) |
| 64 |
63
|
eqcomd |
⊢ ( 𝜑 → 1 = ( 2 logb 2 ) ) |
| 65 |
|
2z |
⊢ 2 ∈ ℤ |
| 66 |
65
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 67 |
44
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
| 68 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 69 |
43 68
|
nn0addge1i |
⊢ 2 ≤ ( 2 + 1 ) |
| 70 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 71 |
69 70
|
breqtri |
⊢ 2 ≤ 3 |
| 72 |
71
|
a1i |
⊢ ( 𝜑 → 2 ≤ 3 ) |
| 73 |
44 15 16 72 20
|
letrd |
⊢ ( 𝜑 → 2 ≤ 𝑁 ) |
| 74 |
66 67 44 46 16 21 73
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 2 ) ≤ ( 2 logb 𝑁 ) ) |
| 75 |
64 74
|
eqbrtrd |
⊢ ( 𝜑 → 1 ≤ ( 2 logb 𝑁 ) ) |
| 76 |
13 57 51 59 75
|
letrd |
⊢ ( 𝜑 → 0 ≤ ( 2 logb 𝑁 ) ) |
| 77 |
52 53
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 78 |
51 54 76 77
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 79 |
|
flge |
⊢ ( ( ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 80 |
55 35 79
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 81 |
78 80
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 82 |
56 81
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 83 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 84 |
82 83
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℕ0 ) |
| 85 |
68
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 86 |
84 85
|
nn0addcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ∈ ℕ0 ) |
| 87 |
2
|
phicld |
⊢ ( 𝜑 → ( ϕ ‘ 𝑅 ) ∈ ℕ ) |
| 88 |
87
|
nnred |
⊢ ( 𝜑 → ( ϕ ‘ 𝑅 ) ∈ ℝ ) |
| 89 |
87
|
nnnn0d |
⊢ ( 𝜑 → ( ϕ ‘ 𝑅 ) ∈ ℕ0 ) |
| 90 |
89
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ϕ ‘ 𝑅 ) ) |
| 91 |
88 90
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ϕ ‘ 𝑅 ) ) ∈ ℝ ) |
| 92 |
91 51
|
remulcld |
⊢ ( 𝜑 → ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ) |
| 93 |
92
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ) |
| 94 |
88 90
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( ϕ ‘ 𝑅 ) ) ) |
| 95 |
91 51 94 76
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
| 96 |
|
flge |
⊢ ( ( ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 97 |
92 35 96
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 98 |
95 97
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) |
| 99 |
93 98
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 100 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 101 |
99 100
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℕ0 ) |
| 102 |
86 101
|
nn0addcld |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ∈ ℕ0 ) |
| 103 |
56
|
peano2zd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ∈ ℤ ) |
| 104 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 105 |
104
|
znegcld |
⊢ ( 𝜑 → - 1 ∈ ℤ ) |
| 106 |
103 105
|
zaddcld |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + - 1 ) ∈ ℤ ) |
| 107 |
|
bccl |
⊢ ( ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ∈ ℕ0 ∧ ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + - 1 ) ∈ ℤ ) → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + - 1 ) ) ∈ ℕ0 ) |
| 108 |
102 106 107
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + - 1 ) ) ∈ ℕ0 ) |
| 109 |
108
|
nn0red |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + - 1 ) ) ∈ ℝ ) |
| 110 |
28 101
|
nn0addcld |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ∈ ℕ0 ) |
| 111 |
28
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℤ ) |
| 112 |
111 105
|
zaddcld |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + - 1 ) ∈ ℤ ) |
| 113 |
|
bccl |
⊢ ( ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ∈ ℕ0 ∧ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + - 1 ) ∈ ℤ ) → ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + - 1 ) ) ∈ ℕ0 ) |
| 114 |
110 112 113
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + - 1 ) ) ∈ ℕ0 ) |
| 115 |
114
|
nn0red |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + - 1 ) ) ∈ ℝ ) |
| 116 |
54 51
|
remulcld |
⊢ ( 𝜑 → ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ) |
| 117 |
116
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ) |
| 118 |
54 51 77 76
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) |
| 119 |
|
flge |
⊢ ( ( ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 120 |
116 35 119
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 121 |
118 120
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) |
| 122 |
117 121
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 123 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 124 |
122 123
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℕ0 ) |
| 125 |
86 124
|
nn0addcld |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) ∈ ℕ0 ) |
| 126 |
|
bccl |
⊢ ( ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) ∈ ℕ0 ∧ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℤ ) → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ∈ ℕ0 ) |
| 127 |
125 56 126
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ∈ ℕ0 ) |
| 128 |
127
|
nn0red |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ∈ ℝ ) |
| 129 |
|
bccl |
⊢ ( ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ∈ ℕ0 ∧ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℤ ) → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ∈ ℕ0 ) |
| 130 |
102 56 129
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ∈ ℕ0 ) |
| 131 |
130
|
nn0red |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ∈ ℝ ) |
| 132 |
44 86
|
reexpcld |
⊢ ( 𝜑 → ( 2 ↑ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) ∈ ℝ ) |
| 133 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 134 |
133
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 135 |
134 84
|
nn0mulcld |
⊢ ( 𝜑 → ( 2 · ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ∈ ℕ0 ) |
| 136 |
135 85
|
nn0addcld |
⊢ ( 𝜑 → ( ( 2 · ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) ∈ ℕ0 ) |
| 137 |
|
bccl |
⊢ ( ( ( ( 2 · ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) ∈ ℕ0 ∧ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℤ ) → ( ( ( 2 · ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ∈ ℕ0 ) |
| 138 |
136 56 137
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 2 · ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ∈ ℕ0 ) |
| 139 |
138
|
nn0red |
⊢ ( 𝜑 → ( ( ( 2 · ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ∈ ℝ ) |
| 140 |
13 44 46
|
ltled |
⊢ ( 𝜑 → 0 ≤ 2 ) |
| 141 |
44 140 55
|
recxpcld |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℝ ) |
| 142 |
|
reflcl |
⊢ ( ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℝ → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℝ ) |
| 143 |
55 142
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℝ ) |
| 144 |
143 57
|
readdcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ∈ ℝ ) |
| 145 |
44 140 144
|
recxpcld |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) ∈ ℝ ) |
| 146 |
|
1le2 |
⊢ 1 ≤ 2 |
| 147 |
146
|
a1i |
⊢ ( 𝜑 → 1 ≤ 2 ) |
| 148 |
57 44 16 147 73
|
letrd |
⊢ ( 𝜑 → 1 ≤ 𝑁 ) |
| 149 |
|
reflcl |
⊢ ( ( √ ‘ 𝐷 ) ∈ ℝ → ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ∈ ℝ ) |
| 150 |
32 149
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ∈ ℝ ) |
| 151 |
26
|
fveq2d |
⊢ ( 𝜑 → ( √ ‘ 𝐷 ) = ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 152 |
151
|
fveq2d |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝐷 ) ) = ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 153 |
|
flle |
⊢ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 154 |
54 153
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 155 |
152 154
|
eqbrtrd |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 156 |
16 148 150 54 155
|
cxplead |
⊢ ( 𝜑 → ( 𝑁 ↑𝑐 ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ≤ ( 𝑁 ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 157 |
16
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 158 |
13 21
|
gtned |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 159 |
157 158 33
|
cxpexpzd |
⊢ ( 𝜑 → ( 𝑁 ↑𝑐 ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) = ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) |
| 160 |
61 50
|
nelprd |
⊢ ( 𝜑 → ¬ 2 ∈ { 0 , 1 } ) |
| 161 |
60 160
|
eldifd |
⊢ ( 𝜑 → 2 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
| 162 |
158
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑁 = 0 ) |
| 163 |
|
elsng |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ { 0 } ↔ 𝑁 = 0 ) ) |
| 164 |
24 163
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ { 0 } ↔ 𝑁 = 0 ) ) |
| 165 |
162 164
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑁 ∈ { 0 } ) |
| 166 |
157 165
|
eldifd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℂ ∖ { 0 } ) ) |
| 167 |
|
cxplogb |
⊢ ( ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑁 ∈ ( ℂ ∖ { 0 } ) ) → ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) = 𝑁 ) |
| 168 |
161 166 167
|
syl2anc |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) = 𝑁 ) |
| 169 |
168
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) ) |
| 170 |
169
|
oveq1d |
⊢ ( 𝜑 → ( 𝑁 ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 171 |
156 159 170
|
3brtr3d |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ≤ ( ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 172 |
44 46
|
elrpd |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 173 |
54
|
recnd |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℂ ) |
| 174 |
|
cxpmul |
⊢ ( ( 2 ∈ ℝ+ ∧ ( 2 logb 𝑁 ) ∈ ℝ ∧ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℂ ) → ( 2 ↑𝑐 ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) = ( ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 175 |
172 51 173 174
|
syl3anc |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) = ( ( 2 ↑𝑐 ( 2 logb 𝑁 ) ) ↑𝑐 ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 176 |
171 175
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ≤ ( 2 ↑𝑐 ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 177 |
|
fllep1 |
⊢ ( ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℝ → ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ≤ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) |
| 178 |
55 177
|
syl |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ≤ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) |
| 179 |
57 44 147 50
|
leneltd |
⊢ ( 𝜑 → 1 < 2 ) |
| 180 |
86
|
nn0red |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ∈ ℝ ) |
| 181 |
44 179 55 180
|
cxpled |
⊢ ( 𝜑 → ( ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ≤ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ↔ ( 2 ↑𝑐 ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ≤ ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) ) ) |
| 182 |
178 181
|
mpbid |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ≤ ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) ) |
| 183 |
42 141 145 176 182
|
letrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ≤ ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) ) |
| 184 |
|
cxpexpz |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ∈ ℤ ) → ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) = ( 2 ↑ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) ) |
| 185 |
60 61 103 184
|
syl3anc |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) = ( 2 ↑ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) ) |
| 186 |
183 185
|
breqtrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ≤ ( 2 ↑ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) ) |
| 187 |
51 51
|
jca |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ∈ ℝ ∧ ( 2 logb 𝑁 ) ∈ ℝ ) ) |
| 188 |
|
remulcl |
⊢ ( ( ( 2 logb 𝑁 ) ∈ ℝ ∧ ( 2 logb 𝑁 ) ∈ ℝ ) → ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ∈ ℝ ) |
| 189 |
187 188
|
syl |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ∈ ℝ ) |
| 190 |
|
reflcl |
⊢ ( ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ) ∈ ℝ ) |
| 191 |
189 190
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ) ∈ ℝ ) |
| 192 |
84
|
nn0red |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℝ ) |
| 193 |
44 46 15 18 50
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 3 ) ∈ ℝ ) |
| 194 |
193
|
resqcld |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 2 ) ∈ ℝ ) |
| 195 |
51
|
recnd |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℂ ) |
| 196 |
195
|
sqvald |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) = ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ) |
| 197 |
196 189
|
eqeltrd |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) ∈ ℝ ) |
| 198 |
|
3lexlogpow2ineq2 |
⊢ ( 2 < ( ( 2 logb 3 ) ↑ 2 ) ∧ ( ( 2 logb 3 ) ↑ 2 ) < 3 ) |
| 199 |
198
|
simpli |
⊢ 2 < ( ( 2 logb 3 ) ↑ 2 ) |
| 200 |
199
|
a1i |
⊢ ( 𝜑 → 2 < ( ( 2 logb 3 ) ↑ 2 ) ) |
| 201 |
44 194 200
|
ltled |
⊢ ( 𝜑 → 2 ≤ ( ( 2 logb 3 ) ↑ 2 ) ) |
| 202 |
15 44 61
|
redivcld |
⊢ ( 𝜑 → ( 3 / 2 ) ∈ ℝ ) |
| 203 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 204 |
203
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 205 |
13 15 18
|
ltled |
⊢ ( 𝜑 → 0 ≤ 3 ) |
| 206 |
15 204 205
|
divge0d |
⊢ ( 𝜑 → 0 ≤ ( 3 / 2 ) ) |
| 207 |
|
3lexlogpow2ineq1 |
⊢ ( ( 3 / 2 ) < ( 2 logb 3 ) ∧ ( 2 logb 3 ) < ( 5 / 3 ) ) |
| 208 |
207
|
simpli |
⊢ ( 3 / 2 ) < ( 2 logb 3 ) |
| 209 |
208
|
a1i |
⊢ ( 𝜑 → ( 3 / 2 ) < ( 2 logb 3 ) ) |
| 210 |
202 193 209
|
ltled |
⊢ ( 𝜑 → ( 3 / 2 ) ≤ ( 2 logb 3 ) ) |
| 211 |
13 202 193 206 210
|
letrd |
⊢ ( 𝜑 → 0 ≤ ( 2 logb 3 ) ) |
| 212 |
66 67 15 18 16 21 20
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 3 ) ≤ ( 2 logb 𝑁 ) ) |
| 213 |
193 51 134 211 212
|
leexp1ad |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 2 ) ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) ) |
| 214 |
44 194 197 201 213
|
letrd |
⊢ ( 𝜑 → 2 ≤ ( ( 2 logb 𝑁 ) ↑ 2 ) ) |
| 215 |
214 196
|
breqtrd |
⊢ ( 𝜑 → 2 ≤ ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ) |
| 216 |
|
flge |
⊢ ( ( ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ∈ ℝ ∧ 2 ∈ ℤ ) → ( 2 ≤ ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ↔ 2 ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 217 |
189 66 216
|
syl2anc |
⊢ ( 𝜑 → ( 2 ≤ ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ↔ 2 ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 218 |
215 217
|
mpbid |
⊢ ( 𝜑 → 2 ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ) ) |
| 219 |
51 51
|
remulcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ∈ ℝ ) |
| 220 |
24 1 4 2 5 6 7 27 10
|
aks6d1c3 |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 221 |
173
|
sqvald |
⊢ ( 𝜑 → ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↑ 2 ) = ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 222 |
28
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℂ ) |
| 223 |
222
|
msqsqrtd |
⊢ ( 𝜑 → ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 224 |
221 223
|
eqtr2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↑ 2 ) ) |
| 225 |
220 224
|
breqtrd |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↑ 2 ) ) |
| 226 |
51 54 76 77
|
lt2sqd |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) < ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↔ ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↑ 2 ) ) ) |
| 227 |
225 226
|
mpbird |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) < ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 228 |
51 54 227
|
ltled |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 229 |
51 54 51 76 228
|
lemul2ad |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ≤ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 230 |
|
flwordi |
⊢ ( ( ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ∈ ℝ ∧ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℝ ∧ ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ≤ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 231 |
219 55 229 230
|
syl3anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( 2 logb 𝑁 ) ) ) ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 232 |
44 191 192 218 231
|
letrd |
⊢ ( 𝜑 → 2 ≤ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 233 |
56 232
|
2ap1caineq |
⊢ ( 𝜑 → ( 2 ↑ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) < ( ( ( 2 · ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 234 |
42 132 139 186 233
|
lelttrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) < ( ( ( 2 · ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 235 |
84
|
nn0cnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ∈ ℂ ) |
| 236 |
235
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) = ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 237 |
236
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) = ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) ) |
| 238 |
237
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) = ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 239 |
234 238
|
breqtrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) < ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 240 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 241 |
235 235 240
|
addassd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) = ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) ) |
| 242 |
86
|
nn0cnd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ∈ ℂ ) |
| 243 |
235 242
|
addcomd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ) = ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 244 |
241 243
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) = ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 245 |
244
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) + 1 ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) = ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 246 |
239 245
|
breqtrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) < ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 247 |
195 173
|
mulcomd |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) |
| 248 |
247
|
fveq2d |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) = ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) |
| 249 |
248
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) = ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 250 |
249
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) = ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 251 |
246 250
|
breqtrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) < ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 252 |
124
|
nn0red |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℝ ) |
| 253 |
101
|
nn0red |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℝ ) |
| 254 |
8 29
|
eqeltrrid |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
| 255 |
254
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ) |
| 256 |
254
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 257 |
255 256
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ ) |
| 258 |
257 51
|
remulcld |
⊢ ( 𝜑 → ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ) |
| 259 |
24 1 4 2 5 6 7
|
aks6d1c4 |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ϕ ‘ 𝑅 ) ) |
| 260 |
52 53 88 90
|
sqrtled |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ϕ ‘ 𝑅 ) ↔ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ≤ ( √ ‘ ( ϕ ‘ 𝑅 ) ) ) ) |
| 261 |
259 260
|
mpbid |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ≤ ( √ ‘ ( ϕ ‘ 𝑅 ) ) ) |
| 262 |
257 91 51 76 261
|
lemul1ad |
⊢ ( 𝜑 → ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
| 263 |
|
flwordi |
⊢ ( ( ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ∧ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ∧ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) → ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) |
| 264 |
258 92 262 263
|
syl3anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) |
| 265 |
252 253 144 264
|
leadd2dd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) ≤ ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 266 |
125 102 56 265
|
bcled |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ≤ ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 267 |
42 128 131 251 266
|
ltletrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) < ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) ) |
| 268 |
235 240
|
pncand |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) − 1 ) = ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 269 |
268
|
eqcomd |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) = ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) − 1 ) ) |
| 270 |
242 240
|
negsubd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + - 1 ) = ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) − 1 ) ) |
| 271 |
270
|
eqcomd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) − 1 ) = ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + - 1 ) ) |
| 272 |
269 271
|
eqtrd |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) = ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + - 1 ) ) |
| 273 |
272
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) = ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + - 1 ) ) ) |
| 274 |
267 273
|
breqtrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) < ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + - 1 ) ) ) |
| 275 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
| 276 |
27
|
zncrng |
⊢ ( 𝑅 ∈ ℕ0 → ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing ) |
| 277 |
275 276
|
syl |
⊢ ( 𝜑 → ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing ) |
| 278 |
|
crngring |
⊢ ( ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing → ( ℤ/nℤ ‘ 𝑅 ) ∈ Ring ) |
| 279 |
7
|
zrhrhm |
⊢ ( ( ℤ/nℤ ‘ 𝑅 ) ∈ Ring → 𝐿 ∈ ( ℤring RingHom ( ℤ/nℤ ‘ 𝑅 ) ) ) |
| 280 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 281 |
|
eqid |
⊢ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) = ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
| 282 |
280 281
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom ( ℤ/nℤ ‘ 𝑅 ) ) → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
| 283 |
277 278 279 282
|
4syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
| 284 |
283
|
ffnd |
⊢ ( 𝜑 → 𝐿 Fn ℤ ) |
| 285 |
24 1 4 6
|
aks6d1c2p1 |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ) |
| 286 |
|
nnssz |
⊢ ℕ ⊆ ℤ |
| 287 |
286
|
a1i |
⊢ ( 𝜑 → ℕ ⊆ ℤ ) |
| 288 |
285 287
|
fssd |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ ) |
| 289 |
|
frn |
⊢ ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ → ran 𝐸 ⊆ ℤ ) |
| 290 |
288 289
|
syl |
⊢ ( 𝜑 → ran 𝐸 ⊆ ℤ ) |
| 291 |
285
|
ffnd |
⊢ ( 𝜑 → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
| 292 |
|
fnima |
⊢ ( 𝐸 Fn ( ℕ0 × ℕ0 ) → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ran 𝐸 ) |
| 293 |
291 292
|
syl |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ran 𝐸 ) |
| 294 |
293
|
sseq1d |
⊢ ( 𝜑 → ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ ) ) |
| 295 |
290 294
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ) |
| 296 |
|
vex |
⊢ 𝑘 ∈ V |
| 297 |
|
vex |
⊢ 𝑙 ∈ V |
| 298 |
296 297
|
op1std |
⊢ ( 𝑣 = 〈 𝑘 , 𝑙 〉 → ( 1st ‘ 𝑣 ) = 𝑘 ) |
| 299 |
298
|
oveq2d |
⊢ ( 𝑣 = 〈 𝑘 , 𝑙 〉 → ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) = ( 𝑃 ↑ 𝑘 ) ) |
| 300 |
296 297
|
op2ndd |
⊢ ( 𝑣 = 〈 𝑘 , 𝑙 〉 → ( 2nd ‘ 𝑣 ) = 𝑙 ) |
| 301 |
300
|
oveq2d |
⊢ ( 𝑣 = 〈 𝑘 , 𝑙 〉 → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) |
| 302 |
299 301
|
oveq12d |
⊢ ( 𝑣 = 〈 𝑘 , 𝑙 〉 → ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) = ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
| 303 |
302
|
mpompt |
⊢ ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ) = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
| 304 |
303
|
eqcomi |
⊢ ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ) |
| 305 |
6 304
|
eqtri |
⊢ 𝐸 = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ) |
| 306 |
305
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ) ) |
| 307 |
|
c0ex |
⊢ 0 ∈ V |
| 308 |
307 307
|
op1std |
⊢ ( 𝑣 = 〈 0 , 0 〉 → ( 1st ‘ 𝑣 ) = 0 ) |
| 309 |
308
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 = 〈 0 , 0 〉 ) → ( 1st ‘ 𝑣 ) = 0 ) |
| 310 |
309
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑣 = 〈 0 , 0 〉 ) → ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) = ( 𝑃 ↑ 0 ) ) |
| 311 |
307 307
|
op2ndd |
⊢ ( 𝑣 = 〈 0 , 0 〉 → ( 2nd ‘ 𝑣 ) = 0 ) |
| 312 |
311
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 = 〈 0 , 0 〉 ) → ( 2nd ‘ 𝑣 ) = 0 ) |
| 313 |
312
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑣 = 〈 0 , 0 〉 ) → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) = ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) |
| 314 |
310 313
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑣 = 〈 0 , 0 〉 ) → ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) = ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) ) |
| 315 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 316 |
1 315
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 317 |
316
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 318 |
317
|
exp0d |
⊢ ( 𝜑 → ( 𝑃 ↑ 0 ) = 1 ) |
| 319 |
316
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 320 |
157 317 319
|
divcld |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℂ ) |
| 321 |
320
|
exp0d |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ↑ 0 ) = 1 ) |
| 322 |
318 321
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) = ( 1 · 1 ) ) |
| 323 |
240
|
mulridd |
⊢ ( 𝜑 → ( 1 · 1 ) = 1 ) |
| 324 |
322 323
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) = 1 ) |
| 325 |
324
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 = 〈 0 , 0 〉 ) → ( ( 𝑃 ↑ 0 ) · ( ( 𝑁 / 𝑃 ) ↑ 0 ) ) = 1 ) |
| 326 |
314 325
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑣 = 〈 0 , 0 〉 ) → ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) = 1 ) |
| 327 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 328 |
327
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 329 |
328 328
|
opelxpd |
⊢ ( 𝜑 → 〈 0 , 0 〉 ∈ ( ℕ0 × ℕ0 ) ) |
| 330 |
|
1nn |
⊢ 1 ∈ ℕ |
| 331 |
330
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 332 |
306 326 329 331
|
fvmptd |
⊢ ( 𝜑 → ( 𝐸 ‘ 〈 0 , 0 〉 ) = 1 ) |
| 333 |
|
ssidd |
⊢ ( 𝜑 → ( ℕ0 × ℕ0 ) ⊆ ( ℕ0 × ℕ0 ) ) |
| 334 |
|
fnfvima |
⊢ ( ( 𝐸 Fn ( ℕ0 × ℕ0 ) ∧ ( ℕ0 × ℕ0 ) ⊆ ( ℕ0 × ℕ0 ) ∧ 〈 0 , 0 〉 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸 ‘ 〈 0 , 0 〉 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
| 335 |
291 333 329 334
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 ‘ 〈 0 , 0 〉 ) ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
| 336 |
332 335
|
eqeltrrd |
⊢ ( 𝜑 → 1 ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
| 337 |
|
fnfvima |
⊢ ( ( 𝐿 Fn ℤ ∧ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ∧ 1 ∈ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) → ( 𝐿 ‘ 1 ) ∈ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 338 |
284 295 336 337
|
syl3anc |
⊢ ( 𝜑 → ( 𝐿 ‘ 1 ) ∈ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 339 |
7
|
a1i |
⊢ ( 𝜑 → 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
| 340 |
|
fvexd |
⊢ ( 𝜑 → ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ∈ V ) |
| 341 |
339 340
|
eqeltrd |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
| 342 |
341
|
imaexd |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V ) |
| 343 |
338 342
|
hashelne0d |
⊢ ( 𝜑 → ¬ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = 0 ) |
| 344 |
343
|
neqned |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≠ 0 ) |
| 345 |
28 344
|
jca |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≠ 0 ) ) |
| 346 |
|
elnnne0 |
⊢ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ ↔ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≠ 0 ) ) |
| 347 |
345 346
|
sylibr |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ ) |
| 348 |
347
|
nnrpd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ+ ) |
| 349 |
348
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ+ ) |
| 350 |
51 54 349 227
|
ltmul1dd |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) < ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 351 |
52 53 52 53
|
sqrtmuld |
⊢ ( 𝜑 → ( √ ‘ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) · ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 352 |
351
|
eqcomd |
⊢ ( 𝜑 → ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( √ ‘ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) · ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 353 |
350 352
|
breqtrd |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) < ( √ ‘ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) · ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 354 |
351 223
|
eqtrd |
⊢ ( 𝜑 → ( √ ‘ ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) · ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 355 |
353 354
|
breqtrd |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) < ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 356 |
|
fllt |
⊢ ( ( ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℝ ∧ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℤ ) → ( ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) < ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ↔ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) < ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 357 |
55 111 356
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) < ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ↔ ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) < ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 358 |
355 357
|
mpbid |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) < ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 359 |
56 111
|
zltp1led |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) < ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ↔ ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 360 |
358 359
|
mpbid |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 361 |
57
|
renegcld |
⊢ ( 𝜑 → - 1 ∈ ℝ ) |
| 362 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
| 363 |
362
|
a1i |
⊢ ( 𝜑 → - 1 = ( 0 − 1 ) ) |
| 364 |
13
|
lem1d |
⊢ ( 𝜑 → ( 0 − 1 ) ≤ 0 ) |
| 365 |
363 364
|
eqbrtrd |
⊢ ( 𝜑 → - 1 ≤ 0 ) |
| 366 |
361 13 253 365 98
|
letrd |
⊢ ( 𝜑 → - 1 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) |
| 367 |
86 28 101 105 360 366
|
bcle2d |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ( ⌊ ‘ ( ( 2 logb 𝑁 ) · ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) + 1 ) + - 1 ) ) ≤ ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + - 1 ) ) ) |
| 368 |
42 109 115 274 367
|
ltletrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) < ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + - 1 ) ) ) |
| 369 |
222 240
|
negsubd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + - 1 ) = ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) ) |
| 370 |
369
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + - 1 ) ) = ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) ) ) |
| 371 |
368 370
|
breqtrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) < ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) ) ) |
| 372 |
9
|
eqcomi |
⊢ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) = 𝐴 |
| 373 |
372
|
a1i |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) = 𝐴 ) |
| 374 |
373
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) = ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + 𝐴 ) ) |
| 375 |
374
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) ) = ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + 𝐴 ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) ) ) |
| 376 |
371 375
|
breqtrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) < ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + 𝐴 ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) ) ) |
| 377 |
26
|
eqcomd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = 𝐷 ) |
| 378 |
377
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + 𝐴 ) = ( 𝐷 + 𝐴 ) ) |
| 379 |
377
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) = ( 𝐷 − 1 ) ) |
| 380 |
378 379
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) + 𝐴 ) C ( ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) − 1 ) ) = ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ) |
| 381 |
376 380
|
breqtrd |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) < ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ) |