Description: Square root theorem. Theorem I.35 of Apostol p. 29. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| Assertion | msqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | 1 | sqrtcld | ⊢ ( 𝜑 → ( √ ‘ 𝐴 ) ∈ ℂ ) |
| 3 | 2 | sqvald | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) ) |
| 4 | 1 | sqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 5 | 3 4 | eqtr3d | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) = 𝐴 ) |