| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c7lem2.1 | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } | 
						
							| 2 |  | aks6d1c7lem2.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks6d1c7lem2.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks6d1c7lem2.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks6d1c7lem2.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks6d1c7lem2.6 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 7 |  | aks6d1c7lem2.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks6d1c7lem2.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks6d1c7lem2.9 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 10 |  | aks6d1c7lem2.10 | ⊢ 𝐿  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 11 |  | aks6d1c7lem2.11 | ⊢ 𝐷  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 12 |  | aks6d1c7lem2.12 | ⊢ 𝐴  =  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 13 |  | aks6d1c7lem2.13 | ⊢ ( 𝜑  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) | 
						
							| 14 |  | aks6d1c7lem2.14 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 15 |  | aks6d1c7lem2.15 | ⊢ ( 𝜑  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 16 |  | aks6d1c7lem2.16 | ⊢ 𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) | 
						
							| 17 |  | aks6d1c7lem2.17 | ⊢ 𝐵  =  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 18 |  | aks6d1c7lem2.18 | ⊢ 𝐶  =  ( 𝐸  “  ( ( 0 ... 𝐵 )  ×  ( 0 ... 𝐵 ) ) ) | 
						
							| 19 |  | aks6d1c7lem2.19 | ⊢ ( 𝜑  →  ( 𝑄  ∈  ℙ  ∧  𝑄  ∥  𝑁 ) ) | 
						
							| 20 |  | aks6d1c7lem2.20 | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝑏  gcd  𝑁 )  =  1 ) | 
						
							| 21 |  | aks6d1c7lem2.21 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 22 |  | aks6d1c7lem2.22 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 23 |  | aks6d1c7lem2.23 | ⊢ 𝑆  =  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } | 
						
							| 24 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑃  =  𝑄 )  →  𝑃  =  𝑄 ) | 
						
							| 25 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝐾  ∈  Field ) | 
						
							| 26 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝑃  ∈  ℙ ) | 
						
							| 27 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝑅  ∈  ℕ ) | 
						
							| 28 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℤ ) | 
						
							| 29 | 6 28 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 30 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 31 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →  3  ∈  ℝ ) | 
						
							| 33 | 29 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 34 |  | 3pos | ⊢ 0  <  3 | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  0  <  3 ) | 
						
							| 36 |  | eluzle | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  3  ≤  𝑁 ) | 
						
							| 37 | 6 36 | syl | ⊢ ( 𝜑  →  3  ≤  𝑁 ) | 
						
							| 38 | 30 32 33 35 37 | ltletrd | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 39 | 29 38 | jca | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℤ  ∧  0  <  𝑁 ) ) | 
						
							| 40 |  | elnnz | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  ∈  ℤ  ∧  0  <  𝑁 ) ) | 
						
							| 41 | 39 40 | sylibr | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝑁  ∈  ℕ ) | 
						
							| 43 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝑃  ∥  𝑁 ) | 
						
							| 44 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 45 | 5 | phicld | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑅 )  ∈  ℕ ) | 
						
							| 46 | 45 | nnred | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑅 )  ∈  ℝ ) | 
						
							| 47 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 48 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 49 | 48 | a1i | ⊢ ( 𝜑  →  0  ≤  1 ) | 
						
							| 50 | 45 | nnge1d | ⊢ ( 𝜑  →  1  ≤  ( ϕ ‘ 𝑅 ) ) | 
						
							| 51 | 30 47 46 49 50 | letrd | ⊢ ( 𝜑  →  0  ≤  ( ϕ ‘ 𝑅 ) ) | 
						
							| 52 | 46 51 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ϕ ‘ 𝑅 ) )  ∈  ℝ ) | 
						
							| 53 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 54 | 53 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 55 |  | 2pos | ⊢ 0  <  2 | 
						
							| 56 | 55 | a1i | ⊢ ( 𝜑  →  0  <  2 ) | 
						
							| 57 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 58 | 57 | a1i | ⊢ ( 𝜑  →  1  <  2 ) | 
						
							| 59 | 47 58 | ltned | ⊢ ( 𝜑  →  1  ≠  2 ) | 
						
							| 60 | 59 | necomd | ⊢ ( 𝜑  →  2  ≠  1 ) | 
						
							| 61 | 54 56 33 38 60 | relogbcld | ⊢ ( 𝜑  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 62 | 52 61 | remulcld | ⊢ ( 𝜑  →  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ ) | 
						
							| 63 | 62 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ ) | 
						
							| 64 | 46 51 | sqrtge0d | ⊢ ( 𝜑  →  0  ≤  ( √ ‘ ( ϕ ‘ 𝑅 ) ) ) | 
						
							| 65 | 54 | recnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 66 | 30 56 | gtned | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 67 |  | logb1 | ⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0  ∧  2  ≠  1 )  →  ( 2  logb  1 )  =  0 ) | 
						
							| 68 | 65 66 60 67 | syl3anc | ⊢ ( 𝜑  →  ( 2  logb  1 )  =  0 ) | 
						
							| 69 | 68 | eqcomd | ⊢ ( 𝜑  →  0  =  ( 2  logb  1 ) ) | 
						
							| 70 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 71 | 70 | a1i | ⊢ ( 𝜑  →  2  ∈  ℤ ) | 
						
							| 72 | 54 | leidd | ⊢ ( 𝜑  →  2  ≤  2 ) | 
						
							| 73 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 74 | 73 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 75 | 41 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑁 ) | 
						
							| 76 | 71 72 47 74 33 38 75 | logblebd | ⊢ ( 𝜑  →  ( 2  logb  1 )  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 77 | 69 76 | eqbrtrd | ⊢ ( 𝜑  →  0  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 78 | 52 61 64 77 | mulge0d | ⊢ ( 𝜑  →  0  ≤  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 79 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 80 |  | flge | ⊢ ( ( ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ  ∧  0  ∈  ℤ )  →  ( 0  ≤  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ↔  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 81 | 62 79 80 | syl2anc | ⊢ ( 𝜑  →  ( 0  ≤  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ↔  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 82 | 78 81 | mpbid | ⊢ ( 𝜑  →  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) | 
						
							| 83 | 63 82 | jca | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 84 |  | elnn0z | ⊢ ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℕ0  ↔  ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 85 | 83 84 | sylibr | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℕ0 ) | 
						
							| 86 | 12 85 | eqeltrid | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝐴  ∈  ℕ0 ) | 
						
							| 88 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 89 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 90 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 91 | 19 | simpld | ⊢ ( 𝜑  →  𝑄  ∈  ℙ ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝑄  ∈  ℙ ) | 
						
							| 93 | 19 | simprd | ⊢ ( 𝜑  →  𝑄  ∥  𝑁 ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝑄  ∥  𝑁 ) | 
						
							| 95 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝑃  ≠  𝑄 ) | 
						
							| 96 | 92 94 95 | 3jca | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝑄  ∈  ℙ  ∧  𝑄  ∥  𝑁  ∧  𝑃  ≠  𝑄 ) ) | 
						
							| 97 | 1 2 25 26 27 42 43 44 21 87 9 10 88 89 90 16 17 18 96 | aks6d1c2 | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 98 | 41 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 99 |  | eqid | ⊢ ( ℤ/nℤ ‘ 𝑅 )  =  ( ℤ/nℤ ‘ 𝑅 ) | 
						
							| 100 | 41 4 7 5 8 9 10 99 | hashscontpowcl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ0 ) | 
						
							| 101 | 100 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℝ ) | 
						
							| 102 | 100 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 103 | 101 102 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ∈  ℝ ) | 
						
							| 104 | 103 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℤ ) | 
						
							| 105 | 101 102 | sqrtge0d | ⊢ ( 𝜑  →  0  ≤  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 106 |  | flge | ⊢ ( ( ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ∈  ℝ  ∧  0  ∈  ℤ )  →  ( 0  ≤  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ↔  0  ≤  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 107 | 103 79 106 | syl2anc | ⊢ ( 𝜑  →  ( 0  ≤  ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ↔  0  ≤  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 108 | 105 107 | mpbid | ⊢ ( 𝜑  →  0  ≤  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) | 
						
							| 109 | 104 108 | jca | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 110 |  | elnn0z | ⊢ ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℕ0  ↔  ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) ) ) | 
						
							| 111 | 109 110 | sylibr | ⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  ∈  ℕ0 ) | 
						
							| 112 | 17 111 | eqeltrid | ⊢ ( 𝜑  →  𝐵  ∈  ℕ0 ) | 
						
							| 113 | 98 112 | zexpcld | ⊢ ( 𝜑  →  ( 𝑁 ↑ 𝐵 )  ∈  ℤ ) | 
						
							| 114 | 113 | zred | ⊢ ( 𝜑  →  ( 𝑁 ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝑁 ↑ 𝐵 )  ∈  ℝ ) | 
						
							| 116 | 115 | rexrd | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝑁 ↑ 𝐵 )  ∈  ℝ* ) | 
						
							| 117 | 100 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ0 ) | 
						
							| 118 | 11 117 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝐷  ∈  ℕ0 ) | 
						
							| 119 | 118 87 | nn0addcld | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝐷  +  𝐴 )  ∈  ℕ0 ) | 
						
							| 120 | 118 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝐷  ∈  ℤ ) | 
						
							| 121 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  1  ∈  ℤ ) | 
						
							| 122 | 120 121 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝐷  −  1 )  ∈  ℤ ) | 
						
							| 123 |  | bccl | ⊢ ( ( ( 𝐷  +  𝐴 )  ∈  ℕ0  ∧  ( 𝐷  −  1 )  ∈  ℤ )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ∈  ℕ0 ) | 
						
							| 124 | 119 122 123 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ∈  ℕ0 ) | 
						
							| 125 | 124 | nn0red | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ∈  ℝ ) | 
						
							| 126 | 125 | rexrd | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ∈  ℝ* ) | 
						
							| 127 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∈  V ) | 
						
							| 128 | 127 | mptexd | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) )  ∈  V ) | 
						
							| 129 | 16 128 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝐻  ∈  V ) | 
						
							| 130 | 129 | imaexd | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∈  V ) | 
						
							| 131 |  | hashxrcl | ⊢ ( ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∈  V  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ∈  ℝ* ) | 
						
							| 132 | 130 131 | syl | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ∈  ℝ* ) | 
						
							| 133 |  | eqcom | ⊢ ( 𝐷  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ↔  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  =  𝐷 ) | 
						
							| 134 | 11 133 | mpbi | ⊢ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  =  𝐷 | 
						
							| 135 | 134 | fveq2i | ⊢ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  =  ( √ ‘ 𝐷 ) | 
						
							| 136 | 135 | fveq2i | ⊢ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) )  =  ( ⌊ ‘ ( √ ‘ 𝐷 ) ) | 
						
							| 137 | 17 136 | eqtri | ⊢ 𝐵  =  ( ⌊ ‘ ( √ ‘ 𝐷 ) ) | 
						
							| 138 | 137 | a1i | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝐵  =  ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) | 
						
							| 139 | 138 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝑁 ↑ 𝐵 )  =  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 140 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 141 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( ( 2  logb  𝑁 ) ↑ 2 )  <  ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) | 
						
							| 142 | 26 27 140 43 44 9 10 11 12 141 | aks6d1c7lem1 | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) )  <  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) ) ) | 
						
							| 143 | 139 142 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝑁 ↑ 𝐵 )  <  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) ) ) | 
						
							| 144 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ∀ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝑏  gcd  𝑁 )  =  1 ) | 
						
							| 145 |  | eqid | ⊢ ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) )  =  ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) | 
						
							| 146 |  | eqid | ⊢ { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) }  =  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } | 
						
							| 147 |  | nfcv | ⊢ Ⅎ 𝑏 ∪  ( ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) )  “  ℎ ) | 
						
							| 148 |  | nfcv | ⊢ Ⅎ ℎ ∪  ( ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) )  “  𝑏 ) | 
						
							| 149 |  | imaeq2 | ⊢ ( ℎ  =  𝑏  →  ( ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) )  “  ℎ )  =  ( ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) )  “  𝑏 ) ) | 
						
							| 150 | 149 | unieqd | ⊢ ( ℎ  =  𝑏  →  ∪  ( ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) )  “  ℎ )  =  ∪  ( ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) )  “  𝑏 ) ) | 
						
							| 151 | 147 148 150 | cbvmpt | ⊢ ( ℎ  ∈  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) )  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } )  ↾s  ran  ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) ) ) } ) ) ) )  ↦  ∪  ( ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) )  “  ℎ ) )  =  ( 𝑏  ∈  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) )  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } )  ↾s  ran  ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) ) ) } ) ) ) )  ↦  ∪  ( ( 𝑐  ∈  ℤ  ↦  ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  { 𝑗  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) )  “  𝑏 ) ) | 
						
							| 152 | 1 2 25 26 27 42 43 44 144 21 12 9 10 88 89 90 16 11 23 145 146 151 | aks6d1c6lem5 | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) ) | 
						
							| 153 | 116 126 132 143 152 | xrltletrd | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( 𝑁 ↑ 𝐵 )  <  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) ) | 
						
							| 154 |  | xrltnle | ⊢ ( ( ( 𝑁 ↑ 𝐵 )  ∈  ℝ*  ∧  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ∈  ℝ* )  →  ( ( 𝑁 ↑ 𝐵 )  <  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ↔  ¬  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ≤  ( 𝑁 ↑ 𝐵 ) ) ) | 
						
							| 155 | 116 132 154 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝑁 ↑ 𝐵 )  <  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ↔  ¬  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ≤  ( 𝑁 ↑ 𝐵 ) ) ) | 
						
							| 156 | 153 155 | mpbid | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  ¬  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ≤  ( 𝑁 ↑ 𝐵 ) ) | 
						
							| 157 | 97 156 | pm2.21dd | ⊢ ( ( 𝜑  ∧  𝑃  ≠  𝑄 )  →  𝑃  =  𝑄 ) | 
						
							| 158 | 24 157 | pm2.61dane | ⊢ ( 𝜑  →  𝑃  =  𝑄 ) |