| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c7lem2.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
| 2 |
|
aks6d1c7lem2.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
| 3 |
|
aks6d1c7lem2.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 4 |
|
aks6d1c7lem2.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 5 |
|
aks6d1c7lem2.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 6 |
|
aks6d1c7lem2.6 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 7 |
|
aks6d1c7lem2.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| 8 |
|
aks6d1c7lem2.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 9 |
|
aks6d1c7lem2.9 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
| 10 |
|
aks6d1c7lem2.10 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
| 11 |
|
aks6d1c7lem2.11 |
⊢ 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 12 |
|
aks6d1c7lem2.12 |
⊢ 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
| 13 |
|
aks6d1c7lem2.13 |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
| 14 |
|
aks6d1c7lem2.14 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 15 |
|
aks6d1c7lem2.15 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
| 16 |
|
aks6d1c7lem2.16 |
⊢ 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) |
| 17 |
|
aks6d1c7lem2.17 |
⊢ 𝐵 = ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 18 |
|
aks6d1c7lem2.18 |
⊢ 𝐶 = ( 𝐸 “ ( ( 0 ... 𝐵 ) × ( 0 ... 𝐵 ) ) ) |
| 19 |
|
aks6d1c7lem2.19 |
⊢ ( 𝜑 → ( 𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁 ) ) |
| 20 |
|
aks6d1c7lem2.20 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
| 21 |
|
aks6d1c7lem2.21 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 22 |
|
aks6d1c7lem2.22 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 23 |
|
aks6d1c7lem2.23 |
⊢ 𝑆 = { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑄 ) → 𝑃 = 𝑄 ) |
| 25 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝐾 ∈ Field ) |
| 26 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ ℙ ) |
| 27 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝑅 ∈ ℕ ) |
| 28 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
| 29 |
6 28
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 30 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 31 |
|
3re |
⊢ 3 ∈ ℝ |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 33 |
29
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 34 |
|
3pos |
⊢ 0 < 3 |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
| 36 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
| 37 |
6 36
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
| 38 |
30 32 33 35 37
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 39 |
29 38
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 40 |
|
elnnz |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 41 |
39 40
|
sylibr |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝑁 ∈ ℕ ) |
| 43 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∥ 𝑁 ) |
| 44 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 45 |
5
|
phicld |
⊢ ( 𝜑 → ( ϕ ‘ 𝑅 ) ∈ ℕ ) |
| 46 |
45
|
nnred |
⊢ ( 𝜑 → ( ϕ ‘ 𝑅 ) ∈ ℝ ) |
| 47 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 48 |
|
0le1 |
⊢ 0 ≤ 1 |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 50 |
45
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ ( ϕ ‘ 𝑅 ) ) |
| 51 |
30 47 46 49 50
|
letrd |
⊢ ( 𝜑 → 0 ≤ ( ϕ ‘ 𝑅 ) ) |
| 52 |
46 51
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ϕ ‘ 𝑅 ) ) ∈ ℝ ) |
| 53 |
|
2re |
⊢ 2 ∈ ℝ |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 55 |
|
2pos |
⊢ 0 < 2 |
| 56 |
55
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 57 |
|
1lt2 |
⊢ 1 < 2 |
| 58 |
57
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 59 |
47 58
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
| 60 |
59
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
| 61 |
54 56 33 38 60
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
| 62 |
52 61
|
remulcld |
⊢ ( 𝜑 → ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ) |
| 63 |
62
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ) |
| 64 |
46 51
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( ϕ ‘ 𝑅 ) ) ) |
| 65 |
54
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 66 |
30 56
|
gtned |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 67 |
|
logb1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 1 ) = 0 ) |
| 68 |
65 66 60 67
|
syl3anc |
⊢ ( 𝜑 → ( 2 logb 1 ) = 0 ) |
| 69 |
68
|
eqcomd |
⊢ ( 𝜑 → 0 = ( 2 logb 1 ) ) |
| 70 |
|
2z |
⊢ 2 ∈ ℤ |
| 71 |
70
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 72 |
54
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
| 73 |
|
0lt1 |
⊢ 0 < 1 |
| 74 |
73
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 75 |
41
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑁 ) |
| 76 |
71 72 47 74 33 38 75
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 1 ) ≤ ( 2 logb 𝑁 ) ) |
| 77 |
69 76
|
eqbrtrd |
⊢ ( 𝜑 → 0 ≤ ( 2 logb 𝑁 ) ) |
| 78 |
52 61 64 77
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
| 79 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 80 |
|
flge |
⊢ ( ( ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 81 |
62 79 80
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 82 |
78 81
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) |
| 83 |
63 82
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 84 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
| 85 |
83 84
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℕ0 ) |
| 86 |
12 85
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝐴 ∈ ℕ0 ) |
| 88 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 89 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 90 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
| 91 |
19
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ℙ ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝑄 ∈ ℙ ) |
| 93 |
19
|
simprd |
⊢ ( 𝜑 → 𝑄 ∥ 𝑁 ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝑄 ∥ 𝑁 ) |
| 95 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ≠ 𝑄 ) |
| 96 |
92 94 95
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁 ∧ 𝑃 ≠ 𝑄 ) ) |
| 97 |
1 2 25 26 27 42 43 44 21 87 9 10 88 89 90 16 17 18 96
|
aks6d1c2 |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 98 |
41
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 99 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑅 ) = ( ℤ/nℤ ‘ 𝑅 ) |
| 100 |
41 4 7 5 8 9 10 99
|
hashscontpowcl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
| 101 |
100
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ ) |
| 102 |
100
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 103 |
101 102
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ ) |
| 104 |
103
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ) |
| 105 |
101 102
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
| 106 |
|
flge |
⊢ ( ( ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↔ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 107 |
103 79 106
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ↔ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 108 |
105 107
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) |
| 109 |
104 108
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 110 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ) ) |
| 111 |
109 110
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) ∈ ℕ0 ) |
| 112 |
17 111
|
eqeltrid |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
| 113 |
98 112
|
zexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐵 ) ∈ ℤ ) |
| 114 |
113
|
zred |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐵 ) ∈ ℝ ) |
| 115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝑁 ↑ 𝐵 ) ∈ ℝ ) |
| 116 |
115
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝑁 ↑ 𝐵 ) ∈ ℝ* ) |
| 117 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
| 118 |
11 117
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝐷 ∈ ℕ0 ) |
| 119 |
118 87
|
nn0addcld |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝐷 + 𝐴 ) ∈ ℕ0 ) |
| 120 |
118
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝐷 ∈ ℤ ) |
| 121 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 1 ∈ ℤ ) |
| 122 |
120 121
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝐷 − 1 ) ∈ ℤ ) |
| 123 |
|
bccl |
⊢ ( ( ( 𝐷 + 𝐴 ) ∈ ℕ0 ∧ ( 𝐷 − 1 ) ∈ ℤ ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℕ0 ) |
| 124 |
119 122 123
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℕ0 ) |
| 125 |
124
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℝ ) |
| 126 |
125
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℝ* ) |
| 127 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∈ V ) |
| 128 |
127
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ∈ V ) |
| 129 |
16 128
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝐻 ∈ V ) |
| 130 |
129
|
imaexd |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V ) |
| 131 |
|
hashxrcl |
⊢ ( ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℝ* ) |
| 132 |
130 131
|
syl |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℝ* ) |
| 133 |
|
eqcom |
⊢ ( 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ↔ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = 𝐷 ) |
| 134 |
11 133
|
mpbi |
⊢ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = 𝐷 |
| 135 |
134
|
fveq2i |
⊢ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) = ( √ ‘ 𝐷 ) |
| 136 |
135
|
fveq2i |
⊢ ( ⌊ ‘ ( √ ‘ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) = ( ⌊ ‘ ( √ ‘ 𝐷 ) ) |
| 137 |
17 136
|
eqtri |
⊢ 𝐵 = ( ⌊ ‘ ( √ ‘ 𝐷 ) ) |
| 138 |
137
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝐵 = ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) |
| 139 |
138
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝑁 ↑ 𝐵 ) = ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) ) |
| 140 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 141 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( ( 2 logb 𝑁 ) ↑ 2 ) < ( ( odℤ ‘ 𝑅 ) ‘ 𝑁 ) ) |
| 142 |
26 27 140 43 44 9 10 11 12 141
|
aks6d1c7lem1 |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝑁 ↑ ( ⌊ ‘ ( √ ‘ 𝐷 ) ) ) < ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ) |
| 143 |
139 142
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝑁 ↑ 𝐵 ) < ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ) |
| 144 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
| 145 |
|
eqid |
⊢ ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) = ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) |
| 146 |
|
eqid |
⊢ { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } = { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } |
| 147 |
|
nfcv |
⊢ Ⅎ 𝑏 ∪ ( ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) “ ℎ ) |
| 148 |
|
nfcv |
⊢ Ⅎ ℎ ∪ ( ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) “ 𝑏 ) |
| 149 |
|
imaeq2 |
⊢ ( ℎ = 𝑏 → ( ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) “ ℎ ) = ( ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) “ 𝑏 ) ) |
| 150 |
149
|
unieqd |
⊢ ( ℎ = 𝑏 → ∪ ( ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) “ ℎ ) = ∪ ( ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) “ 𝑏 ) ) |
| 151 |
147 148 150
|
cbvmpt |
⊢ ( ℎ ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ↾s ran ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) ) ) } ) ) ) ) ↦ ∪ ( ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) “ ℎ ) ) = ( 𝑏 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ↾s ran ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) ) ) } ) ) ) ) ↦ ∪ ( ( 𝑐 ∈ ℤ ↦ ( 𝑐 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s { 𝑗 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑚 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑗 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } ) ) 𝑀 ) ) “ 𝑏 ) ) |
| 152 |
1 2 25 26 27 42 43 44 144 21 12 9 10 88 89 90 16 11 23 145 146 151
|
aks6d1c6lem5 |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |
| 153 |
116 126 132 143 152
|
xrltletrd |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( 𝑁 ↑ 𝐵 ) < ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |
| 154 |
|
xrltnle |
⊢ ( ( ( 𝑁 ↑ 𝐵 ) ∈ ℝ* ∧ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℝ* ) → ( ( 𝑁 ↑ 𝐵 ) < ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ↔ ¬ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) ) |
| 155 |
116 132 154
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑁 ↑ 𝐵 ) < ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ↔ ¬ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) ) |
| 156 |
153 155
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → ¬ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ≤ ( 𝑁 ↑ 𝐵 ) ) |
| 157 |
97 156
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ 𝑃 ≠ 𝑄 ) → 𝑃 = 𝑄 ) |
| 158 |
24 157
|
pm2.61dane |
⊢ ( 𝜑 → 𝑃 = 𝑄 ) |