Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6lem5.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
2 |
|
aks6d1c6lem5.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks6d1c6lem5.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks6d1c6lem5.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks6d1c6lem5.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks6d1c6lem5.6 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
7 |
|
aks6d1c6lem5.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks6d1c6lem5.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks6d1c6lem5.9 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
10 |
|
aks6d1c6lem5.10 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
11 |
|
aks6d1c6lem5.11 |
⊢ 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
12 |
|
aksaks6dlem5.12 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
13 |
|
aks6d1c6lem5.13 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
14 |
|
aks6d1c6lem5.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
15 |
|
aks6d1c6lem5.15 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
16 |
|
aks6d1c6lem5.16 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
17 |
|
aks6d1c6lem5.17 |
⊢ 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) |
18 |
|
aks6d1c6lem5.18 |
⊢ 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
19 |
|
aks6d1c6lem5.19 |
⊢ 𝑆 = { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } |
20 |
|
aks6d1c6lem5.20 |
⊢ 𝐽 = ( 𝑗 ∈ ℤ ↦ ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
21 |
|
aks6d1c6lem5.22 |
⊢ 𝑈 = { 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑛 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑛 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑚 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } |
22 |
|
aks6d1c6lem5.23 |
⊢ 𝑋 = ( 𝑏 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ↦ ∪ ( 𝐽 “ 𝑏 ) ) |
23 |
|
eqid |
⊢ ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) = ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) |
24 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
25 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
26 |
25
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
27 |
24 26
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
28 |
27 5 21 20 16
|
aks6d1c6isolem2 |
⊢ ( 𝜑 → 𝐽 ∈ ( ℤring GrpHom ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) ) |
29 |
|
eqid |
⊢ ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) = ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) |
30 |
|
eqid |
⊢ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) = ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) |
31 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
32 |
|
nfcv |
⊢ Ⅎ 𝑐 [ 𝑑 ] ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) |
33 |
|
nfcv |
⊢ Ⅎ 𝑑 [ 𝑐 ] ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) |
34 |
|
eceq1 |
⊢ ( 𝑑 = 𝑐 → [ 𝑑 ] ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) = [ 𝑐 ] ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) |
35 |
32 33 34
|
cbvmpt |
⊢ ( 𝑑 ∈ ℤ ↦ [ 𝑑 ] ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) = ( 𝑐 ∈ ℤ ↦ [ 𝑐 ] ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) |
36 |
23 28 29 30 22 31 35
|
ghmquskerco |
⊢ ( 𝜑 → 𝐽 = ( 𝑋 ∘ ( 𝑑 ∈ ℤ ↦ [ 𝑑 ] ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ) |
37 |
|
eqid |
⊢ ( RSpan ‘ ℤring ) = ( RSpan ‘ ℤring ) |
38 |
27 5 21 20 16 37
|
aks6d1c6isolem3 |
⊢ ( 𝜑 → ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) = ( ◡ 𝐽 “ { ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) } ) ) |
39 |
27 5 21
|
primrootsunit |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) = ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) ∧ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Abel ) ) |
40 |
39
|
simprd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Abel ) |
41 |
40
|
ablgrpd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Grp ) |
42 |
41
|
grpmndd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Mnd ) |
43 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 = 0 ) → 𝑤 = 0 ) |
45 |
44
|
fveqeq2d |
⊢ ( ( 𝜑 ∧ 𝑤 = 0 ) → ( ( 𝐽 ‘ 𝑤 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ↔ ( 𝐽 ‘ 0 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) ) |
46 |
20
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( 𝑗 ∈ ℤ ↦ ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → 𝑗 = 0 ) |
48 |
47
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
49 |
39
|
simpld |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) = ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) ) |
50 |
16 49
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) ) |
51 |
40
|
ablcmnd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ CMnd ) |
52 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
53 |
|
eqid |
⊢ ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) = ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) |
54 |
51 52 53
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) → 𝑅 ∥ 𝑙 ) ) ) ) |
55 |
54
|
biimpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) → ( 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) → 𝑅 ∥ 𝑙 ) ) ) ) |
56 |
50 55
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) → 𝑅 ∥ 𝑙 ) ) ) |
57 |
56
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
58 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) |
59 |
|
eqid |
⊢ ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) |
60 |
58 59 53
|
mulg0 |
⊢ ( 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) → ( 0 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
61 |
57 60
|
syl |
⊢ ( 𝜑 → ( 0 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → ( 0 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
63 |
48 62
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 = 0 ) → ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
64 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∈ V ) |
65 |
46 63 43 64
|
fvmptd |
⊢ ( 𝜑 → ( 𝐽 ‘ 0 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
66 |
43 45 65
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑤 ∈ ℤ ( 𝐽 ‘ 𝑤 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
67 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Grp ) |
68 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℤ ) |
69 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
70 |
58 53 67 68 69
|
mulgcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
71 |
70 20
|
fmptd |
⊢ ( 𝜑 → 𝐽 : ℤ ⟶ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
72 |
71
|
ffnd |
⊢ ( 𝜑 → 𝐽 Fn ℤ ) |
73 |
|
fvelrnb |
⊢ ( 𝐽 Fn ℤ → ( ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∈ ran 𝐽 ↔ ∃ 𝑤 ∈ ℤ ( 𝐽 ‘ 𝑤 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) ) |
74 |
72 73
|
syl |
⊢ ( 𝜑 → ( ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∈ ran 𝐽 ↔ ∃ 𝑤 ∈ ℤ ( 𝐽 ‘ 𝑤 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) ) |
75 |
66 74
|
mpbird |
⊢ ( 𝜑 → ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∈ ran 𝐽 ) |
76 |
71
|
frnd |
⊢ ( 𝜑 → ran 𝐽 ⊆ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
77 |
|
eqid |
⊢ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) = ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) |
78 |
77 58 59
|
ress0g |
⊢ ( ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Mnd ∧ ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∈ ran 𝐽 ∧ ran 𝐽 ⊆ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) → ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) = ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) ) |
79 |
42 75 76 78
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) = ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) ) |
80 |
79
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) } = { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) |
81 |
80
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐽 “ { ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) } ) = ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) |
82 |
38 81
|
eqtr2d |
⊢ ( 𝜑 → ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) = ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) |
83 |
82
|
oveq2d |
⊢ ( 𝜑 → ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) = ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) |
84 |
83
|
eceq2d |
⊢ ( 𝜑 → [ 𝑑 ] ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) = [ 𝑑 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) |
85 |
84
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑑 ∈ ℤ ↦ [ 𝑑 ] ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) = ( 𝑑 ∈ ℤ ↦ [ 𝑑 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) |
86 |
|
eqid |
⊢ ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) = ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) |
87 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑅 ) = ( ℤ/nℤ ‘ 𝑅 ) |
88 |
37 86 87 13
|
znzrh2 |
⊢ ( 𝑅 ∈ ℕ0 → 𝐿 = ( 𝑑 ∈ ℤ ↦ [ 𝑑 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) |
89 |
52 88
|
syl |
⊢ ( 𝜑 → 𝐿 = ( 𝑑 ∈ ℤ ↦ [ 𝑑 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) |
90 |
89
|
eqcomd |
⊢ ( 𝜑 → ( 𝑑 ∈ ℤ ↦ [ 𝑑 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) = 𝐿 ) |
91 |
85 90
|
eqtrd |
⊢ ( 𝜑 → ( 𝑑 ∈ ℤ ↦ [ 𝑑 ] ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) = 𝐿 ) |
92 |
91
|
coeq2d |
⊢ ( 𝜑 → ( 𝑋 ∘ ( 𝑑 ∈ ℤ ↦ [ 𝑑 ] ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) = ( 𝑋 ∘ 𝐿 ) ) |
93 |
36 92
|
eqtrd |
⊢ ( 𝜑 → 𝐽 = ( 𝑋 ∘ 𝐿 ) ) |
94 |
93
|
coeq2d |
⊢ ( 𝜑 → ( ◡ 𝑋 ∘ 𝐽 ) = ( ◡ 𝑋 ∘ ( 𝑋 ∘ 𝐿 ) ) ) |
95 |
|
coass |
⊢ ( ( ◡ 𝑋 ∘ 𝑋 ) ∘ 𝐿 ) = ( ◡ 𝑋 ∘ ( 𝑋 ∘ 𝐿 ) ) |
96 |
95
|
eqcomi |
⊢ ( ◡ 𝑋 ∘ ( 𝑋 ∘ 𝐿 ) ) = ( ( ◡ 𝑋 ∘ 𝑋 ) ∘ 𝐿 ) |
97 |
94 96
|
eqtrdi |
⊢ ( 𝜑 → ( ◡ 𝑋 ∘ 𝐽 ) = ( ( ◡ 𝑋 ∘ 𝑋 ) ∘ 𝐿 ) ) |
98 |
77 58
|
ressbas2 |
⊢ ( ran 𝐽 ⊆ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) → ran 𝐽 = ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) ) |
99 |
76 98
|
syl |
⊢ ( 𝜑 → ran 𝐽 = ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) ) |
100 |
23 28 29 30 22 99
|
ghmqusker |
⊢ ( 𝜑 → 𝑋 ∈ ( ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) GrpIso ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) ) |
101 |
|
eqid |
⊢ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) = ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) |
102 |
|
eqid |
⊢ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) = ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) |
103 |
101 102
|
gimf1o |
⊢ ( 𝑋 ∈ ( ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) GrpIso ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) → 𝑋 : ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) ) |
104 |
100 103
|
syl |
⊢ ( 𝜑 → 𝑋 : ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) ) |
105 |
|
f1ococnv1 |
⊢ ( 𝑋 : ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) → ( ◡ 𝑋 ∘ 𝑋 ) = ( I ↾ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ) ) |
106 |
104 105
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑋 ∘ 𝑋 ) = ( I ↾ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ) ) |
107 |
106
|
coeq1d |
⊢ ( 𝜑 → ( ( ◡ 𝑋 ∘ 𝑋 ) ∘ 𝐿 ) = ( ( I ↾ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ) ∘ 𝐿 ) ) |
108 |
87
|
zncrng |
⊢ ( 𝑅 ∈ ℕ0 → ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing ) |
109 |
52 108
|
syl |
⊢ ( 𝜑 → ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing ) |
110 |
|
crngring |
⊢ ( ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing → ( ℤ/nℤ ‘ 𝑅 ) ∈ Ring ) |
111 |
13
|
zrhrhm |
⊢ ( ( ℤ/nℤ ‘ 𝑅 ) ∈ Ring → 𝐿 ∈ ( ℤring RingHom ( ℤ/nℤ ‘ 𝑅 ) ) ) |
112 |
|
eqid |
⊢ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) = ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
113 |
31 112
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom ( ℤ/nℤ ‘ 𝑅 ) ) → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
114 |
109 110 111 113
|
4syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
115 |
|
eqid |
⊢ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) = ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) |
116 |
37 115 87
|
znbas2 |
⊢ ( 𝑅 ∈ ℕ0 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) = ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
117 |
52 116
|
syl |
⊢ ( 𝜑 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) = ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
118 |
117
|
feq3d |
⊢ ( 𝜑 → ( 𝐿 : ℤ ⟶ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) ↔ 𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) ) |
119 |
114 118
|
mpbird |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) ) |
120 |
82
|
eqcomd |
⊢ ( 𝜑 → ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) = ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) |
121 |
120
|
oveq2d |
⊢ ( 𝜑 → ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) = ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) |
122 |
121
|
oveq2d |
⊢ ( 𝜑 → ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) = ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) |
123 |
122
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) = ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ) |
124 |
123
|
feq3d |
⊢ ( 𝜑 → ( 𝐿 : ℤ ⟶ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) ↔ 𝐿 : ℤ ⟶ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ) ) |
125 |
119 124
|
mpbid |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ) |
126 |
|
fcoi2 |
⊢ ( 𝐿 : ℤ ⟶ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) → ( ( I ↾ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ) ∘ 𝐿 ) = 𝐿 ) |
127 |
125 126
|
syl |
⊢ ( 𝜑 → ( ( I ↾ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ) ∘ 𝐿 ) = 𝐿 ) |
128 |
107 127
|
eqtrd |
⊢ ( 𝜑 → ( ( ◡ 𝑋 ∘ 𝑋 ) ∘ 𝐿 ) = 𝐿 ) |
129 |
97 128
|
eqtr2d |
⊢ ( 𝜑 → 𝐿 = ( ◡ 𝑋 ∘ 𝐽 ) ) |
130 |
129
|
imaeq1d |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ( ( ◡ 𝑋 ∘ 𝐽 ) “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
131 |
|
imaco |
⊢ ( ( ◡ 𝑋 ∘ 𝐽 ) “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ( ◡ 𝑋 “ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
132 |
131
|
a1i |
⊢ ( 𝜑 → ( ( ◡ 𝑋 ∘ 𝐽 ) “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ( ◡ 𝑋 “ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
133 |
130 132
|
eqtrd |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ( ◡ 𝑋 “ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
134 |
133
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = ( ♯ ‘ ( ◡ 𝑋 “ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ) |
135 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) ∧ 𝑢 ∈ ℤ ) ∧ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) → 𝜑 ) |
136 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) ∧ 𝑢 ∈ ℤ ) ∧ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) → 𝑢 ∈ ℤ ) |
137 |
135 136
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) ∧ 𝑢 ∈ ℤ ) ∧ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) → ( 𝜑 ∧ 𝑢 ∈ ℤ ) ) |
138 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) |
139 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) ∧ 𝑣 = 𝑧 ) → 𝑣 = 𝑧 ) |
140 |
139
|
fveqeq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) ∧ 𝑣 = 𝑧 ) → ( ( 𝐽 ‘ 𝑣 ) = ( 𝐽 ‘ 𝑢 ) ↔ ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 𝑢 ) ) ) |
141 |
20
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → 𝐽 = ( 𝑗 ∈ ℤ ↦ ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
142 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) ∧ 𝑗 = 𝑧 ) → 𝑗 = 𝑧 ) |
143 |
142
|
oveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) ∧ 𝑗 = 𝑧 ) → ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
144 |
|
fzssz |
⊢ ( 0 ... ( 𝑅 − 1 ) ) ⊆ ℤ |
145 |
144 138
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → 𝑧 ∈ ℤ ) |
146 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
147 |
141 143 145 146
|
fvmptd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → ( 𝐽 ‘ 𝑧 ) = ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
148 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) ∧ 𝑗 = 𝑢 ) → 𝑗 = 𝑢 ) |
149 |
148
|
oveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) ∧ 𝑗 = 𝑢 ) → ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 𝑢 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
150 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) → 𝑢 ∈ ℤ ) |
151 |
150
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → 𝑢 ∈ ℤ ) |
152 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → ( 𝑢 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
153 |
141 149 151 152
|
fvmptd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → ( 𝐽 ‘ 𝑢 ) = ( 𝑢 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
154 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) |
155 |
154
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → ( 𝑢 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( ( ( 𝑦 · 𝑅 ) + 𝑧 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
156 |
41
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Grp ) |
157 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → 𝑦 ∈ ℤ ) |
158 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) → 𝑅 ∈ ℕ ) |
159 |
158
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → 𝑅 ∈ ℕ ) |
160 |
159
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → 𝑅 ∈ ℤ ) |
161 |
157 160
|
zmulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( 𝑦 · 𝑅 ) ∈ ℤ ) |
162 |
144
|
sseli |
⊢ ( 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) → 𝑧 ∈ ℤ ) |
163 |
162
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → 𝑧 ∈ ℤ ) |
164 |
57
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
165 |
161 163 164
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( ( 𝑦 · 𝑅 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) ) |
166 |
|
eqid |
⊢ ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) |
167 |
58 53 166
|
mulgdir |
⊢ ( ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Grp ∧ ( ( 𝑦 · 𝑅 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) ) → ( ( ( 𝑦 · 𝑅 ) + 𝑧 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( ( ( 𝑦 · 𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
168 |
156 165 167
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( ( ( 𝑦 · 𝑅 ) + 𝑧 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( ( ( 𝑦 · 𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
169 |
157 160 164
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( 𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) ) |
170 |
58 53
|
mulgass |
⊢ ( ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Grp ∧ ( 𝑦 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) ) → ( ( 𝑦 · 𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
171 |
156 169 170
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( ( 𝑦 · 𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
172 |
56
|
simp2d |
⊢ ( 𝜑 → ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) → ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
174 |
173
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) → ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
175 |
174
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
176 |
175
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) ) |
177 |
58 53 59
|
mulgz |
⊢ ( ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Grp ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
178 |
156 157 177
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
179 |
176 178
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
180 |
171 179
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( ( 𝑦 · 𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
181 |
180
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( ( ( 𝑦 · 𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
182 |
58 53 156 163 164
|
mulgcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
183 |
58 166 59 156 182
|
grplidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
184 |
181 183
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( ( ( 𝑦 · 𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
185 |
168 184
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) → ( ( ( 𝑦 · 𝑅 ) + 𝑧 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
186 |
185
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → ( ( ( 𝑦 · 𝑅 ) + 𝑧 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
187 |
155 186
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → ( 𝑢 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
188 |
153 187
|
eqtr2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 𝐽 ‘ 𝑢 ) ) |
189 |
147 188
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 𝑢 ) ) |
190 |
138 140 189
|
rspcedvd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) ∧ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) ) ∧ 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) → ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = ( 𝐽 ‘ 𝑢 ) ) |
191 |
150 158
|
remexz |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) → ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ( 0 ... ( 𝑅 − 1 ) ) 𝑢 = ( ( 𝑦 · 𝑅 ) + 𝑧 ) ) |
192 |
190 191
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ℤ ) → ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = ( 𝐽 ‘ 𝑢 ) ) |
193 |
137 192
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) ∧ 𝑢 ∈ ℤ ) ∧ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) → ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = ( 𝐽 ‘ 𝑢 ) ) |
194 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) ∧ 𝑢 ∈ ℤ ) ∧ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) → ( 𝐽 ‘ 𝑢 ) = 𝑤 ) |
195 |
194
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) ∧ 𝑢 ∈ ℤ ) ∧ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) → 𝑤 = ( 𝐽 ‘ 𝑢 ) ) |
196 |
195
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) ∧ 𝑢 ∈ ℤ ) ∧ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) → ( ( 𝐽 ‘ 𝑣 ) = 𝑤 ↔ ( 𝐽 ‘ 𝑣 ) = ( 𝐽 ‘ 𝑢 ) ) ) |
197 |
196
|
rexbidv |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) ∧ 𝑢 ∈ ℤ ) ∧ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) → ( ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = 𝑤 ↔ ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = ( 𝐽 ‘ 𝑢 ) ) ) |
198 |
193 197
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) ∧ 𝑢 ∈ ℤ ) ∧ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) → ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = 𝑤 ) |
199 |
|
ssidd |
⊢ ( 𝜑 → ℤ ⊆ ℤ ) |
200 |
|
fvelimab |
⊢ ( ( 𝐽 Fn ℤ ∧ ℤ ⊆ ℤ ) → ( 𝑤 ∈ ( 𝐽 “ ℤ ) ↔ ∃ 𝑢 ∈ ℤ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) ) |
201 |
72 199 200
|
syl2anc |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐽 “ ℤ ) ↔ ∃ 𝑢 ∈ ℤ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) ) |
202 |
201
|
biimpd |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐽 “ ℤ ) → ∃ 𝑢 ∈ ℤ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) ) |
203 |
202
|
imp |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) → ∃ 𝑢 ∈ ℤ ( 𝐽 ‘ 𝑢 ) = 𝑤 ) |
204 |
198 203
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) → ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = 𝑤 ) |
205 |
144
|
a1i |
⊢ ( 𝜑 → ( 0 ... ( 𝑅 − 1 ) ) ⊆ ℤ ) |
206 |
|
fvelimab |
⊢ ( ( 𝐽 Fn ℤ ∧ ( 0 ... ( 𝑅 − 1 ) ) ⊆ ℤ ) → ( 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ↔ ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = 𝑤 ) ) |
207 |
72 205 206
|
syl2anc |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ↔ ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = 𝑤 ) ) |
208 |
207
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) → ( 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ↔ ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = 𝑤 ) ) |
209 |
204 208
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ℤ ) ) → 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) |
210 |
209
|
ex |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐽 “ ℤ ) → 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) ) |
211 |
210
|
ssrdv |
⊢ ( 𝜑 → ( 𝐽 “ ℤ ) ⊆ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) |
212 |
207
|
biimpd |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) → ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = 𝑤 ) ) |
213 |
212
|
imp |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) → ∃ 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ( 𝐽 ‘ 𝑣 ) = 𝑤 ) |
214 |
144
|
sseli |
⊢ ( 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) → 𝑣 ∈ ℤ ) |
215 |
214
|
adantr |
⊢ ( ( 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ∧ ( 𝐽 ‘ 𝑣 ) = 𝑤 ) → 𝑣 ∈ ℤ ) |
216 |
215
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) ∧ ( 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ∧ ( 𝐽 ‘ 𝑣 ) = 𝑤 ) ) → 𝑣 ∈ ℤ ) |
217 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) ∧ ( 𝑣 ∈ ( 0 ... ( 𝑅 − 1 ) ) ∧ ( 𝐽 ‘ 𝑣 ) = 𝑤 ) ) → ( 𝐽 ‘ 𝑣 ) = 𝑤 ) |
218 |
213 216 217
|
reximssdv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) → ∃ 𝑣 ∈ ℤ ( 𝐽 ‘ 𝑣 ) = 𝑤 ) |
219 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) → 𝐽 Fn ℤ ) |
220 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) → ℤ ⊆ ℤ ) |
221 |
|
fvelimab |
⊢ ( ( 𝐽 Fn ℤ ∧ ℤ ⊆ ℤ ) → ( 𝑤 ∈ ( 𝐽 “ ℤ ) ↔ ∃ 𝑣 ∈ ℤ ( 𝐽 ‘ 𝑣 ) = 𝑤 ) ) |
222 |
219 220 221
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) → ( 𝑤 ∈ ( 𝐽 “ ℤ ) ↔ ∃ 𝑣 ∈ ℤ ( 𝐽 ‘ 𝑣 ) = 𝑤 ) ) |
223 |
218 222
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) → 𝑤 ∈ ( 𝐽 “ ℤ ) ) |
224 |
223
|
ex |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) → 𝑤 ∈ ( 𝐽 “ ℤ ) ) ) |
225 |
224
|
ssrdv |
⊢ ( 𝜑 → ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ⊆ ( 𝐽 “ ℤ ) ) |
226 |
211 225
|
eqssd |
⊢ ( 𝜑 → ( 𝐽 “ ℤ ) = ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ) |
227 |
72
|
fnfund |
⊢ ( 𝜑 → Fun 𝐽 ) |
228 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( 𝑅 − 1 ) ) ∈ Fin ) |
229 |
|
imafi |
⊢ ( ( Fun 𝐽 ∧ ( 0 ... ( 𝑅 − 1 ) ) ∈ Fin ) → ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ∈ Fin ) |
230 |
227 228 229
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 “ ( 0 ... ( 𝑅 − 1 ) ) ) ∈ Fin ) |
231 |
226 230
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐽 “ ℤ ) ∈ Fin ) |
232 |
6 4 7 12
|
aks6d1c2p1 |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ) |
233 |
|
nnssz |
⊢ ℕ ⊆ ℤ |
234 |
233
|
a1i |
⊢ ( 𝜑 → ℕ ⊆ ℤ ) |
235 |
232 234
|
jca |
⊢ ( 𝜑 → ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ∧ ℕ ⊆ ℤ ) ) |
236 |
|
fss |
⊢ ( ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ∧ ℕ ⊆ ℤ ) → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ ) |
237 |
235 236
|
syl |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ ) |
238 |
237
|
frnd |
⊢ ( 𝜑 → ran 𝐸 ⊆ ℤ ) |
239 |
232
|
ffnd |
⊢ ( 𝜑 → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
240 |
|
fnima |
⊢ ( 𝐸 Fn ( ℕ0 × ℕ0 ) → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ran 𝐸 ) |
241 |
239 240
|
syl |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ran 𝐸 ) |
242 |
241
|
sseq1d |
⊢ ( 𝜑 → ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ ) ) |
243 |
238 242
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ) |
244 |
|
imass2 |
⊢ ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ → ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ⊆ ( 𝐽 “ ℤ ) ) |
245 |
243 244
|
syl |
⊢ ( 𝜑 → ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ⊆ ( 𝐽 “ ℤ ) ) |
246 |
231 245
|
ssfid |
⊢ ( 𝜑 → ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ Fin ) |
247 |
|
dff1o2 |
⊢ ( 𝑋 : ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) ↔ ( 𝑋 Fn ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ∧ Fun ◡ 𝑋 ∧ ran 𝑋 = ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) ) ) |
248 |
247
|
biimpi |
⊢ ( 𝑋 : ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) → ( 𝑋 Fn ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) ∧ Fun ◡ 𝑋 ∧ ran 𝑋 = ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) ) ) |
249 |
248
|
simp2d |
⊢ ( 𝑋 : ( Base ‘ ( ℤring /s ( ℤring ~QG ( ◡ 𝐽 “ { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ↾s ran 𝐽 ) ) → Fun ◡ 𝑋 ) |
250 |
104 249
|
syl |
⊢ ( 𝜑 → Fun ◡ 𝑋 ) |
251 |
|
imadomfi |
⊢ ( ( ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ Fin ∧ Fun ◡ 𝑋 ) → ( ◡ 𝑋 “ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≼ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
252 |
246 250 251
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝑋 “ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≼ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
253 |
|
hashdomi |
⊢ ( ( ◡ 𝑋 “ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≼ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) → ( ♯ ‘ ( ◡ 𝑋 “ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ≤ ( ♯ ‘ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
254 |
252 253
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ 𝑋 “ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) ≤ ( ♯ ‘ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
255 |
134 254
|
eqbrtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ♯ ‘ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
256 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 255 21
|
aks6d1c6lem4 |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |