| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6lem5.1 | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } | 
						
							| 2 |  | aks6d1c6lem5.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks6d1c6lem5.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks6d1c6lem5.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks6d1c6lem5.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks6d1c6lem5.6 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | aks6d1c6lem5.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks6d1c6lem5.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks6d1c6lem5.9 | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝑏  gcd  𝑁 )  =  1 ) | 
						
							| 10 |  | aks6d1c6lem5.10 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c6lem5.11 | ⊢ 𝐴  =  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 12 |  | aksaks6dlem5.12 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 13 |  | aks6d1c6lem5.13 | ⊢ 𝐿  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 14 |  | aks6d1c6lem5.14 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 15 |  | aks6d1c6lem5.15 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 16 |  | aks6d1c6lem5.16 | ⊢ ( 𝜑  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 17 |  | aks6d1c6lem5.17 | ⊢ 𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) | 
						
							| 18 |  | aks6d1c6lem5.18 | ⊢ 𝐷  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 19 |  | aks6d1c6lem5.19 | ⊢ 𝑆  =  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } | 
						
							| 20 |  | aks6d1c6lem5.20 | ⊢ 𝐽  =  ( 𝑗  ∈  ℤ  ↦  ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 21 |  | aks6d1c6lem5.22 | ⊢ 𝑈  =  { 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑛  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑛 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑚 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } | 
						
							| 22 |  | aks6d1c6lem5.23 | ⊢ 𝑋  =  ( 𝑏  ∈  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) )  ↦  ∪  ( 𝐽  “  𝑏 ) ) | 
						
							| 23 |  | eqid | ⊢ ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) )  =  ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) | 
						
							| 24 | 3 | fldcrngd | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 25 |  | eqid | ⊢ ( mulGrp ‘ 𝐾 )  =  ( mulGrp ‘ 𝐾 ) | 
						
							| 26 | 25 | crngmgp | ⊢ ( 𝐾  ∈  CRing  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 27 | 24 26 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 28 | 27 5 21 20 16 | aks6d1c6isolem2 | ⊢ ( 𝜑  →  𝐽  ∈  ( ℤring  GrpHom  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) ) | 
						
							| 29 |  | eqid | ⊢ ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } )  =  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) | 
						
							| 30 |  | eqid | ⊢ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) )  =  ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) | 
						
							| 31 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑐 [ 𝑑 ] ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) | 
						
							| 33 |  | nfcv | ⊢ Ⅎ 𝑑 [ 𝑐 ] ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) | 
						
							| 34 |  | eceq1 | ⊢ ( 𝑑  =  𝑐  →  [ 𝑑 ] ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) )  =  [ 𝑐 ] ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) | 
						
							| 35 | 32 33 34 | cbvmpt | ⊢ ( 𝑑  ∈  ℤ  ↦  [ 𝑑 ] ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) )  =  ( 𝑐  ∈  ℤ  ↦  [ 𝑐 ] ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) | 
						
							| 36 | 23 28 29 30 22 31 35 | ghmquskerco | ⊢ ( 𝜑  →  𝐽  =  ( 𝑋  ∘  ( 𝑑  ∈  ℤ  ↦  [ 𝑑 ] ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( RSpan ‘ ℤring )  =  ( RSpan ‘ ℤring ) | 
						
							| 38 | 27 5 21 20 16 37 | aks6d1c6isolem3 | ⊢ ( 𝜑  →  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } )  =  ( ◡ 𝐽  “  { ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) } ) ) | 
						
							| 39 | 27 5 21 | primrootsunit | ⊢ ( 𝜑  →  ( ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  =  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  PrimRoots  𝑅 )  ∧  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Abel ) ) | 
						
							| 40 | 39 | simprd | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Abel ) | 
						
							| 41 | 40 | ablgrpd | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Grp ) | 
						
							| 42 | 41 | grpmndd | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Mnd ) | 
						
							| 43 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 44 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  =  0 )  →  𝑤  =  0 ) | 
						
							| 45 | 44 | fveqeq2d | ⊢ ( ( 𝜑  ∧  𝑤  =  0 )  →  ( ( 𝐽 ‘ 𝑤 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ↔  ( 𝐽 ‘ 0 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) ) | 
						
							| 46 | 20 | a1i | ⊢ ( 𝜑  →  𝐽  =  ( 𝑗  ∈  ℤ  ↦  ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 47 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  =  0 )  →  𝑗  =  0 ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑗  =  0 )  →  ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 49 | 39 | simpld | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  =  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  PrimRoots  𝑅 ) ) | 
						
							| 50 | 16 49 | eleqtrd | ⊢ ( 𝜑  →  𝑀  ∈  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  PrimRoots  𝑅 ) ) | 
						
							| 51 | 40 | ablcmnd | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  CMnd ) | 
						
							| 52 | 5 | nnnn0d | ⊢ ( 𝜑  →  𝑅  ∈  ℕ0 ) | 
						
							| 53 |  | eqid | ⊢ ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  =  ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) | 
						
							| 54 | 51 52 53 | isprimroot | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  PrimRoots  𝑅 )  ↔  ( 𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ∀ 𝑙  ∈  ℕ0 ( ( 𝑙 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  →  𝑅  ∥  𝑙 ) ) ) ) | 
						
							| 55 | 54 | biimpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  PrimRoots  𝑅 )  →  ( 𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ∀ 𝑙  ∈  ℕ0 ( ( 𝑙 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  →  𝑅  ∥  𝑙 ) ) ) ) | 
						
							| 56 | 50 55 | mpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ∀ 𝑙  ∈  ℕ0 ( ( 𝑙 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  →  𝑅  ∥  𝑙 ) ) ) | 
						
							| 57 | 56 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 58 |  | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) | 
						
							| 59 |  | eqid | ⊢ ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) | 
						
							| 60 | 58 59 53 | mulg0 | ⊢ ( 𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  →  ( 0 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 61 | 57 60 | syl | ⊢ ( 𝜑  →  ( 0 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  =  0 )  →  ( 0 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 63 | 48 62 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  =  0 )  →  ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 64 |  | fvexd | ⊢ ( 𝜑  →  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∈  V ) | 
						
							| 65 | 46 63 43 64 | fvmptd | ⊢ ( 𝜑  →  ( 𝐽 ‘ 0 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 66 | 43 45 65 | rspcedvd | ⊢ ( 𝜑  →  ∃ 𝑤  ∈  ℤ ( 𝐽 ‘ 𝑤 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 67 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Grp ) | 
						
							| 68 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  𝑗  ∈  ℤ ) | 
						
							| 69 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 70 | 58 53 67 68 69 | mulgcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 71 | 70 20 | fmptd | ⊢ ( 𝜑  →  𝐽 : ℤ ⟶ ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 72 | 71 | ffnd | ⊢ ( 𝜑  →  𝐽  Fn  ℤ ) | 
						
							| 73 |  | fvelrnb | ⊢ ( 𝐽  Fn  ℤ  →  ( ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∈  ran  𝐽  ↔  ∃ 𝑤  ∈  ℤ ( 𝐽 ‘ 𝑤 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) ) | 
						
							| 74 | 72 73 | syl | ⊢ ( 𝜑  →  ( ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∈  ran  𝐽  ↔  ∃ 𝑤  ∈  ℤ ( 𝐽 ‘ 𝑤 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) ) | 
						
							| 75 | 66 74 | mpbird | ⊢ ( 𝜑  →  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∈  ran  𝐽 ) | 
						
							| 76 | 71 | frnd | ⊢ ( 𝜑  →  ran  𝐽  ⊆  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 77 |  | eqid | ⊢ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 )  =  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) | 
						
							| 78 | 77 58 59 | ress0g | ⊢ ( ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Mnd  ∧  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∈  ran  𝐽  ∧  ran  𝐽  ⊆  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) )  →  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  =  ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) ) | 
						
							| 79 | 42 75 76 78 | syl3anc | ⊢ ( 𝜑  →  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  =  ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) ) | 
						
							| 80 | 79 | sneqd | ⊢ ( 𝜑  →  { ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) }  =  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) | 
						
							| 81 | 80 | imaeq2d | ⊢ ( 𝜑  →  ( ◡ 𝐽  “  { ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) } )  =  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) | 
						
							| 82 | 38 81 | eqtr2d | ⊢ ( 𝜑  →  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } )  =  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) | 
						
							| 83 | 82 | oveq2d | ⊢ ( 𝜑  →  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) )  =  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) | 
						
							| 84 | 83 | eceq2d | ⊢ ( 𝜑  →  [ 𝑑 ] ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) )  =  [ 𝑑 ] ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) | 
						
							| 85 | 84 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑑  ∈  ℤ  ↦  [ 𝑑 ] ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) )  =  ( 𝑑  ∈  ℤ  ↦  [ 𝑑 ] ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) | 
						
							| 86 |  | eqid | ⊢ ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) )  =  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) | 
						
							| 87 |  | eqid | ⊢ ( ℤ/nℤ ‘ 𝑅 )  =  ( ℤ/nℤ ‘ 𝑅 ) | 
						
							| 88 | 37 86 87 13 | znzrh2 | ⊢ ( 𝑅  ∈  ℕ0  →  𝐿  =  ( 𝑑  ∈  ℤ  ↦  [ 𝑑 ] ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) | 
						
							| 89 | 52 88 | syl | ⊢ ( 𝜑  →  𝐿  =  ( 𝑑  ∈  ℤ  ↦  [ 𝑑 ] ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) | 
						
							| 90 | 89 | eqcomd | ⊢ ( 𝜑  →  ( 𝑑  ∈  ℤ  ↦  [ 𝑑 ] ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) )  =  𝐿 ) | 
						
							| 91 | 85 90 | eqtrd | ⊢ ( 𝜑  →  ( 𝑑  ∈  ℤ  ↦  [ 𝑑 ] ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) )  =  𝐿 ) | 
						
							| 92 | 91 | coeq2d | ⊢ ( 𝜑  →  ( 𝑋  ∘  ( 𝑑  ∈  ℤ  ↦  [ 𝑑 ] ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) )  =  ( 𝑋  ∘  𝐿 ) ) | 
						
							| 93 | 36 92 | eqtrd | ⊢ ( 𝜑  →  𝐽  =  ( 𝑋  ∘  𝐿 ) ) | 
						
							| 94 | 93 | coeq2d | ⊢ ( 𝜑  →  ( ◡ 𝑋  ∘  𝐽 )  =  ( ◡ 𝑋  ∘  ( 𝑋  ∘  𝐿 ) ) ) | 
						
							| 95 |  | coass | ⊢ ( ( ◡ 𝑋  ∘  𝑋 )  ∘  𝐿 )  =  ( ◡ 𝑋  ∘  ( 𝑋  ∘  𝐿 ) ) | 
						
							| 96 | 95 | eqcomi | ⊢ ( ◡ 𝑋  ∘  ( 𝑋  ∘  𝐿 ) )  =  ( ( ◡ 𝑋  ∘  𝑋 )  ∘  𝐿 ) | 
						
							| 97 | 94 96 | eqtrdi | ⊢ ( 𝜑  →  ( ◡ 𝑋  ∘  𝐽 )  =  ( ( ◡ 𝑋  ∘  𝑋 )  ∘  𝐿 ) ) | 
						
							| 98 | 77 58 | ressbas2 | ⊢ ( ran  𝐽  ⊆  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  →  ran  𝐽  =  ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) ) | 
						
							| 99 | 76 98 | syl | ⊢ ( 𝜑  →  ran  𝐽  =  ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) ) | 
						
							| 100 | 23 28 29 30 22 99 | ghmqusker | ⊢ ( 𝜑  →  𝑋  ∈  ( ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) )  GrpIso  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) ) | 
						
							| 101 |  | eqid | ⊢ ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) )  =  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) | 
						
							| 102 |  | eqid | ⊢ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) )  =  ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) | 
						
							| 103 | 101 102 | gimf1o | ⊢ ( 𝑋  ∈  ( ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) )  GrpIso  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) )  →  𝑋 : ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) ) | 
						
							| 104 | 100 103 | syl | ⊢ ( 𝜑  →  𝑋 : ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) ) | 
						
							| 105 |  | f1ococnv1 | ⊢ ( 𝑋 : ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) )  →  ( ◡ 𝑋  ∘  𝑋 )  =  (  I   ↾  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) ) ) | 
						
							| 106 | 104 105 | syl | ⊢ ( 𝜑  →  ( ◡ 𝑋  ∘  𝑋 )  =  (  I   ↾  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) ) ) | 
						
							| 107 | 106 | coeq1d | ⊢ ( 𝜑  →  ( ( ◡ 𝑋  ∘  𝑋 )  ∘  𝐿 )  =  ( (  I   ↾  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) )  ∘  𝐿 ) ) | 
						
							| 108 | 87 | zncrng | ⊢ ( 𝑅  ∈  ℕ0  →  ( ℤ/nℤ ‘ 𝑅 )  ∈  CRing ) | 
						
							| 109 | 52 108 | syl | ⊢ ( 𝜑  →  ( ℤ/nℤ ‘ 𝑅 )  ∈  CRing ) | 
						
							| 110 |  | crngring | ⊢ ( ( ℤ/nℤ ‘ 𝑅 )  ∈  CRing  →  ( ℤ/nℤ ‘ 𝑅 )  ∈  Ring ) | 
						
							| 111 | 13 | zrhrhm | ⊢ ( ( ℤ/nℤ ‘ 𝑅 )  ∈  Ring  →  𝐿  ∈  ( ℤring  RingHom  ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 112 |  | eqid | ⊢ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) )  =  ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 113 | 31 112 | rhmf | ⊢ ( 𝐿  ∈  ( ℤring  RingHom  ( ℤ/nℤ ‘ 𝑅 ) )  →  𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 114 | 109 110 111 113 | 4syl | ⊢ ( 𝜑  →  𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 115 |  | eqid | ⊢ ( ℤring  /s  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) )  =  ( ℤring  /s  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) | 
						
							| 116 | 37 115 87 | znbas2 | ⊢ ( 𝑅  ∈  ℕ0  →  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) )  =  ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 117 | 52 116 | syl | ⊢ ( 𝜑  →  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) )  =  ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 118 | 117 | feq3d | ⊢ ( 𝜑  →  ( 𝐿 : ℤ ⟶ ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) )  ↔  𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) ) | 
						
							| 119 | 114 118 | mpbird | ⊢ ( 𝜑  →  𝐿 : ℤ ⟶ ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) ) ) | 
						
							| 120 | 82 | eqcomd | ⊢ ( 𝜑  →  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } )  =  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) | 
						
							| 121 | 120 | oveq2d | ⊢ ( 𝜑  →  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) )  =  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) | 
						
							| 122 | 121 | oveq2d | ⊢ ( 𝜑  →  ( ℤring  /s  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) )  =  ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) | 
						
							| 123 | 122 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) )  =  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) ) | 
						
							| 124 | 123 | feq3d | ⊢ ( 𝜑  →  ( 𝐿 : ℤ ⟶ ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ( RSpan ‘ ℤring ) ‘ { 𝑅 } ) ) ) )  ↔  𝐿 : ℤ ⟶ ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) ) ) | 
						
							| 125 | 119 124 | mpbid | ⊢ ( 𝜑  →  𝐿 : ℤ ⟶ ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) ) | 
						
							| 126 |  | fcoi2 | ⊢ ( 𝐿 : ℤ ⟶ ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) )  →  ( (  I   ↾  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) )  ∘  𝐿 )  =  𝐿 ) | 
						
							| 127 | 125 126 | syl | ⊢ ( 𝜑  →  ( (  I   ↾  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) )  ∘  𝐿 )  =  𝐿 ) | 
						
							| 128 | 107 127 | eqtrd | ⊢ ( 𝜑  →  ( ( ◡ 𝑋  ∘  𝑋 )  ∘  𝐿 )  =  𝐿 ) | 
						
							| 129 | 97 128 | eqtr2d | ⊢ ( 𝜑  →  𝐿  =  ( ◡ 𝑋  ∘  𝐽 ) ) | 
						
							| 130 | 129 | imaeq1d | ⊢ ( 𝜑  →  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  =  ( ( ◡ 𝑋  ∘  𝐽 )  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 131 |  | imaco | ⊢ ( ( ◡ 𝑋  ∘  𝐽 )  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  =  ( ◡ 𝑋  “  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 132 | 131 | a1i | ⊢ ( 𝜑  →  ( ( ◡ 𝑋  ∘  𝐽 )  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  =  ( ◡ 𝑋  “  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 133 | 130 132 | eqtrd | ⊢ ( 𝜑  →  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  =  ( ◡ 𝑋  “  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 134 | 133 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  =  ( ♯ ‘ ( ◡ 𝑋  “  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) ) | 
						
							| 135 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  ∧  𝑢  ∈  ℤ )  ∧  ( 𝐽 ‘ 𝑢 )  =  𝑤 )  →  𝜑 ) | 
						
							| 136 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  ∧  𝑢  ∈  ℤ )  ∧  ( 𝐽 ‘ 𝑢 )  =  𝑤 )  →  𝑢  ∈  ℤ ) | 
						
							| 137 | 135 136 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  ∧  𝑢  ∈  ℤ )  ∧  ( 𝐽 ‘ 𝑢 )  =  𝑤 )  →  ( 𝜑  ∧  𝑢  ∈  ℤ ) ) | 
						
							| 138 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) ) | 
						
							| 139 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  ∧  𝑣  =  𝑧 )  →  𝑣  =  𝑧 ) | 
						
							| 140 | 139 | fveqeq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  ∧  𝑣  =  𝑧 )  →  ( ( 𝐽 ‘ 𝑣 )  =  ( 𝐽 ‘ 𝑢 )  ↔  ( 𝐽 ‘ 𝑧 )  =  ( 𝐽 ‘ 𝑢 ) ) ) | 
						
							| 141 | 20 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  𝐽  =  ( 𝑗  ∈  ℤ  ↦  ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 142 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  ∧  𝑗  =  𝑧 )  →  𝑗  =  𝑧 ) | 
						
							| 143 | 142 | oveq1d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  ∧  𝑗  =  𝑧 )  →  ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 144 |  | fzssz | ⊢ ( 0 ... ( 𝑅  −  1 ) )  ⊆  ℤ | 
						
							| 145 | 144 138 | sselid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  𝑧  ∈  ℤ ) | 
						
							| 146 |  | ovexd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  ∈  V ) | 
						
							| 147 | 141 143 145 146 | fvmptd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  ( 𝐽 ‘ 𝑧 )  =  ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 148 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  ∧  𝑗  =  𝑢 )  →  𝑗  =  𝑢 ) | 
						
							| 149 | 148 | oveq1d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  ∧  𝑗  =  𝑢 )  →  ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝑢 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 150 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ℤ )  →  𝑢  ∈  ℤ ) | 
						
							| 151 | 150 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  𝑢  ∈  ℤ ) | 
						
							| 152 |  | ovexd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  ( 𝑢 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  ∈  V ) | 
						
							| 153 | 141 149 151 152 | fvmptd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  ( 𝐽 ‘ 𝑢 )  =  ( 𝑢 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 154 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) ) | 
						
							| 155 | 154 | oveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  ( 𝑢 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( ( ( 𝑦  ·  𝑅 )  +  𝑧 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 156 | 41 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Grp ) | 
						
							| 157 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  𝑦  ∈  ℤ ) | 
						
							| 158 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ℤ )  →  𝑅  ∈  ℕ ) | 
						
							| 159 | 158 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  𝑅  ∈  ℕ ) | 
						
							| 160 | 159 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  𝑅  ∈  ℤ ) | 
						
							| 161 | 157 160 | zmulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( 𝑦  ·  𝑅 )  ∈  ℤ ) | 
						
							| 162 | 144 | sseli | ⊢ ( 𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) )  →  𝑧  ∈  ℤ ) | 
						
							| 163 | 162 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  𝑧  ∈  ℤ ) | 
						
							| 164 | 57 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 165 | 161 163 164 | 3jca | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( ( 𝑦  ·  𝑅 )  ∈  ℤ  ∧  𝑧  ∈  ℤ  ∧  𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) ) | 
						
							| 166 |  | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) | 
						
							| 167 | 58 53 166 | mulgdir | ⊢ ( ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Grp  ∧  ( ( 𝑦  ·  𝑅 )  ∈  ℤ  ∧  𝑧  ∈  ℤ  ∧  𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) )  →  ( ( ( 𝑦  ·  𝑅 )  +  𝑧 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( ( ( 𝑦  ·  𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 168 | 156 165 167 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( ( ( 𝑦  ·  𝑅 )  +  𝑧 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( ( ( 𝑦  ·  𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 169 | 157 160 164 | 3jca | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( 𝑦  ∈  ℤ  ∧  𝑅  ∈  ℤ  ∧  𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) ) | 
						
							| 170 | 58 53 | mulgass | ⊢ ( ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Grp  ∧  ( 𝑦  ∈  ℤ  ∧  𝑅  ∈  ℤ  ∧  𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) )  →  ( ( 𝑦  ·  𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 171 | 156 169 170 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( ( 𝑦  ·  𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 172 | 56 | simp2d | ⊢ ( 𝜑  →  ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 173 | 172 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ℤ )  →  ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 174 | 173 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  →  ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 175 | 174 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 176 | 175 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  =  ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) ) | 
						
							| 177 | 58 53 59 | mulgz | ⊢ ( ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Grp  ∧  𝑦  ∈  ℤ )  →  ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 178 | 156 157 177 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 179 | 176 178 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( 𝑦 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 180 | 171 179 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( ( 𝑦  ·  𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 181 | 180 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( ( ( 𝑦  ·  𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  =  ( ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 182 | 58 53 156 163 164 | mulgcld | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 183 | 58 166 59 156 182 | grplidd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  =  ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 184 | 181 183 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( ( ( 𝑦  ·  𝑅 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  =  ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 185 | 168 184 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  ( ( ( 𝑦  ·  𝑅 )  +  𝑧 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 186 | 185 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  ( ( ( 𝑦  ·  𝑅 )  +  𝑧 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 187 | 155 186 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  ( 𝑢 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 188 | 153 187 | eqtr2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  ( 𝑧 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝐽 ‘ 𝑢 ) ) | 
						
							| 189 | 147 188 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  ( 𝐽 ‘ 𝑧 )  =  ( 𝐽 ‘ 𝑢 ) ) | 
						
							| 190 | 138 140 189 | rspcedvd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑢  ∈  ℤ )  ∧  𝑦  ∈  ℤ )  ∧  𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  ∧  𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) )  →  ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  ( 𝐽 ‘ 𝑢 ) ) | 
						
							| 191 | 150 158 | remexz | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ℤ )  →  ∃ 𝑦  ∈  ℤ ∃ 𝑧  ∈  ( 0 ... ( 𝑅  −  1 ) ) 𝑢  =  ( ( 𝑦  ·  𝑅 )  +  𝑧 ) ) | 
						
							| 192 | 190 191 | r19.29vva | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ℤ )  →  ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  ( 𝐽 ‘ 𝑢 ) ) | 
						
							| 193 | 137 192 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  ∧  𝑢  ∈  ℤ )  ∧  ( 𝐽 ‘ 𝑢 )  =  𝑤 )  →  ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  ( 𝐽 ‘ 𝑢 ) ) | 
						
							| 194 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  ∧  𝑢  ∈  ℤ )  ∧  ( 𝐽 ‘ 𝑢 )  =  𝑤 )  →  ( 𝐽 ‘ 𝑢 )  =  𝑤 ) | 
						
							| 195 | 194 | eqcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  ∧  𝑢  ∈  ℤ )  ∧  ( 𝐽 ‘ 𝑢 )  =  𝑤 )  →  𝑤  =  ( 𝐽 ‘ 𝑢 ) ) | 
						
							| 196 | 195 | eqeq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  ∧  𝑢  ∈  ℤ )  ∧  ( 𝐽 ‘ 𝑢 )  =  𝑤 )  →  ( ( 𝐽 ‘ 𝑣 )  =  𝑤  ↔  ( 𝐽 ‘ 𝑣 )  =  ( 𝐽 ‘ 𝑢 ) ) ) | 
						
							| 197 | 196 | rexbidv | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  ∧  𝑢  ∈  ℤ )  ∧  ( 𝐽 ‘ 𝑢 )  =  𝑤 )  →  ( ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  𝑤  ↔  ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  ( 𝐽 ‘ 𝑢 ) ) ) | 
						
							| 198 | 193 197 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  ∧  𝑢  ∈  ℤ )  ∧  ( 𝐽 ‘ 𝑢 )  =  𝑤 )  →  ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  𝑤 ) | 
						
							| 199 |  | ssidd | ⊢ ( 𝜑  →  ℤ  ⊆  ℤ ) | 
						
							| 200 |  | fvelimab | ⊢ ( ( 𝐽  Fn  ℤ  ∧  ℤ  ⊆  ℤ )  →  ( 𝑤  ∈  ( 𝐽  “  ℤ )  ↔  ∃ 𝑢  ∈  ℤ ( 𝐽 ‘ 𝑢 )  =  𝑤 ) ) | 
						
							| 201 | 72 199 200 | syl2anc | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐽  “  ℤ )  ↔  ∃ 𝑢  ∈  ℤ ( 𝐽 ‘ 𝑢 )  =  𝑤 ) ) | 
						
							| 202 | 201 | biimpd | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐽  “  ℤ )  →  ∃ 𝑢  ∈  ℤ ( 𝐽 ‘ 𝑢 )  =  𝑤 ) ) | 
						
							| 203 | 202 | imp | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  →  ∃ 𝑢  ∈  ℤ ( 𝐽 ‘ 𝑢 )  =  𝑤 ) | 
						
							| 204 | 198 203 | r19.29a | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  →  ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  𝑤 ) | 
						
							| 205 | 144 | a1i | ⊢ ( 𝜑  →  ( 0 ... ( 𝑅  −  1 ) )  ⊆  ℤ ) | 
						
							| 206 |  | fvelimab | ⊢ ( ( 𝐽  Fn  ℤ  ∧  ( 0 ... ( 𝑅  −  1 ) )  ⊆  ℤ )  →  ( 𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) )  ↔  ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 207 | 72 205 206 | syl2anc | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) )  ↔  ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 208 | 207 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  →  ( 𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) )  ↔  ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 209 | 204 208 | mpbird | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ℤ ) )  →  𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) ) | 
						
							| 210 | 209 | ex | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐽  “  ℤ )  →  𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) ) ) | 
						
							| 211 | 210 | ssrdv | ⊢ ( 𝜑  →  ( 𝐽  “  ℤ )  ⊆  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) ) | 
						
							| 212 | 207 | biimpd | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) )  →  ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 213 | 212 | imp | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) )  →  ∃ 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝐽 ‘ 𝑣 )  =  𝑤 ) | 
						
							| 214 | 144 | sseli | ⊢ ( 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) )  →  𝑣  ∈  ℤ ) | 
						
							| 215 | 214 | adantr | ⊢ ( ( 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) )  ∧  ( 𝐽 ‘ 𝑣 )  =  𝑤 )  →  𝑣  ∈  ℤ ) | 
						
							| 216 | 215 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) )  ∧  ( 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) )  ∧  ( 𝐽 ‘ 𝑣 )  =  𝑤 ) )  →  𝑣  ∈  ℤ ) | 
						
							| 217 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) )  ∧  ( 𝑣  ∈  ( 0 ... ( 𝑅  −  1 ) )  ∧  ( 𝐽 ‘ 𝑣 )  =  𝑤 ) )  →  ( 𝐽 ‘ 𝑣 )  =  𝑤 ) | 
						
							| 218 | 213 216 217 | reximssdv | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) )  →  ∃ 𝑣  ∈  ℤ ( 𝐽 ‘ 𝑣 )  =  𝑤 ) | 
						
							| 219 | 72 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) )  →  𝐽  Fn  ℤ ) | 
						
							| 220 |  | ssidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) )  →  ℤ  ⊆  ℤ ) | 
						
							| 221 |  | fvelimab | ⊢ ( ( 𝐽  Fn  ℤ  ∧  ℤ  ⊆  ℤ )  →  ( 𝑤  ∈  ( 𝐽  “  ℤ )  ↔  ∃ 𝑣  ∈  ℤ ( 𝐽 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 222 | 219 220 221 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) )  →  ( 𝑤  ∈  ( 𝐽  “  ℤ )  ↔  ∃ 𝑣  ∈  ℤ ( 𝐽 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 223 | 218 222 | mpbird | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) )  →  𝑤  ∈  ( 𝐽  “  ℤ ) ) | 
						
							| 224 | 223 | ex | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) )  →  𝑤  ∈  ( 𝐽  “  ℤ ) ) ) | 
						
							| 225 | 224 | ssrdv | ⊢ ( 𝜑  →  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) )  ⊆  ( 𝐽  “  ℤ ) ) | 
						
							| 226 | 211 225 | eqssd | ⊢ ( 𝜑  →  ( 𝐽  “  ℤ )  =  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) ) ) | 
						
							| 227 | 72 | fnfund | ⊢ ( 𝜑  →  Fun  𝐽 ) | 
						
							| 228 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... ( 𝑅  −  1 ) )  ∈  Fin ) | 
						
							| 229 |  | imafi | ⊢ ( ( Fun  𝐽  ∧  ( 0 ... ( 𝑅  −  1 ) )  ∈  Fin )  →  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) )  ∈  Fin ) | 
						
							| 230 | 227 228 229 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  “  ( 0 ... ( 𝑅  −  1 ) ) )  ∈  Fin ) | 
						
							| 231 | 226 230 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐽  “  ℤ )  ∈  Fin ) | 
						
							| 232 | 6 4 7 12 | aks6d1c2p1 | ⊢ ( 𝜑  →  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℕ ) | 
						
							| 233 |  | nnssz | ⊢ ℕ  ⊆  ℤ | 
						
							| 234 | 233 | a1i | ⊢ ( 𝜑  →  ℕ  ⊆  ℤ ) | 
						
							| 235 | 232 234 | jca | ⊢ ( 𝜑  →  ( 𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℕ  ∧  ℕ  ⊆  ℤ ) ) | 
						
							| 236 |  | fss | ⊢ ( ( 𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℕ  ∧  ℕ  ⊆  ℤ )  →  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℤ ) | 
						
							| 237 | 235 236 | syl | ⊢ ( 𝜑  →  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℤ ) | 
						
							| 238 | 237 | frnd | ⊢ ( 𝜑  →  ran  𝐸  ⊆  ℤ ) | 
						
							| 239 | 232 | ffnd | ⊢ ( 𝜑  →  𝐸  Fn  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 240 |  | fnima | ⊢ ( 𝐸  Fn  ( ℕ0  ×  ℕ0 )  →  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  =  ran  𝐸 ) | 
						
							| 241 | 239 240 | syl | ⊢ ( 𝜑  →  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  =  ran  𝐸 ) | 
						
							| 242 | 241 | sseq1d | ⊢ ( 𝜑  →  ( ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ℤ  ↔  ran  𝐸  ⊆  ℤ ) ) | 
						
							| 243 | 238 242 | mpbird | ⊢ ( 𝜑  →  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ℤ ) | 
						
							| 244 |  | imass2 | ⊢ ( ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ℤ  →  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ⊆  ( 𝐽  “  ℤ ) ) | 
						
							| 245 | 243 244 | syl | ⊢ ( 𝜑  →  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ⊆  ( 𝐽  “  ℤ ) ) | 
						
							| 246 | 231 245 | ssfid | ⊢ ( 𝜑  →  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  Fin ) | 
						
							| 247 |  | dff1o2 | ⊢ ( 𝑋 : ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) )  ↔  ( 𝑋  Fn  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) )  ∧  Fun  ◡ 𝑋  ∧  ran  𝑋  =  ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) ) ) | 
						
							| 248 | 247 | biimpi | ⊢ ( 𝑋 : ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) )  →  ( 𝑋  Fn  ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) )  ∧  Fun  ◡ 𝑋  ∧  ran  𝑋  =  ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) ) ) | 
						
							| 249 | 248 | simp2d | ⊢ ( 𝑋 : ( Base ‘ ( ℤring  /s  ( ℤring  ~QG  ( ◡ 𝐽  “  { ( 0g ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) ) } ) ) ) ) –1-1-onto→ ( Base ‘ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ↾s  ran  𝐽 ) )  →  Fun  ◡ 𝑋 ) | 
						
							| 250 | 104 249 | syl | ⊢ ( 𝜑  →  Fun  ◡ 𝑋 ) | 
						
							| 251 |  | imadomfi | ⊢ ( ( ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  Fin  ∧  Fun  ◡ 𝑋 )  →  ( ◡ 𝑋  “  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≼  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 252 | 246 250 251 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝑋  “  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≼  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 253 |  | hashdomi | ⊢ ( ( ◡ 𝑋  “  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≼  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  →  ( ♯ ‘ ( ◡ 𝑋  “  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ≤  ( ♯ ‘ ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 254 | 252 253 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( ◡ 𝑋  “  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) )  ≤  ( ♯ ‘ ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 255 | 134 254 | eqbrtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≤  ( ♯ ‘ ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 256 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 255 21 | aks6d1c6lem4 | ⊢ ( 𝜑  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) ) |