| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6isolem1.1 | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 2 |  | aks6d1c6isolem1.2 | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 3 |  | aks6d1c6isolem1.3 | ⊢ 𝑈  =  { 𝑎  ∈  ( Base ‘ 𝑅 )  ∣  ∃ 𝑖  ∈  ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 )  =  ( 0g ‘ 𝑅 ) } | 
						
							| 4 |  | aks6d1c6isolem1.4 | ⊢ 𝐹  =  ( 𝑥  ∈  ℤ  ↦  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 5 |  | aks6d1c6isolem1.5 | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑅  PrimRoots  𝐾 ) ) | 
						
							| 6 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 ) )  =  ( Base ‘ ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 ) ) | 
						
							| 8 |  | zringplusg | ⊢  +   =  ( +g ‘ ℤring ) | 
						
							| 9 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 10 | 9 | mptex | ⊢ ( 𝑥  ∈  ℤ  ↦  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) )  ∈  V | 
						
							| 11 | 4 10 | eqeltri | ⊢ 𝐹  ∈  V | 
						
							| 12 | 11 | rnex | ⊢ ran  𝐹  ∈  V | 
						
							| 13 |  | eqid | ⊢ ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 )  =  ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ ( 𝑅  ↾s  𝑈 ) )  =  ( +g ‘ ( 𝑅  ↾s  𝑈 ) ) | 
						
							| 15 | 13 14 | ressplusg | ⊢ ( ran  𝐹  ∈  V  →  ( +g ‘ ( 𝑅  ↾s  𝑈 ) )  =  ( +g ‘ ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 ) ) ) | 
						
							| 16 | 12 15 | ax-mp | ⊢ ( +g ‘ ( 𝑅  ↾s  𝑈 ) )  =  ( +g ‘ ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 ) ) | 
						
							| 17 |  | zringring | ⊢ ℤring  ∈  Ring | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  ℤring  ∈  Ring ) | 
						
							| 19 |  | ringgrp | ⊢ ( ℤring  ∈  Ring  →  ℤring  ∈  Grp ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  ℤring  ∈  Grp ) | 
						
							| 21 | 1 2 3 4 5 | aks6d1c6isolem1 | ⊢ ( 𝜑  →  ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 )  ∈  Grp ) | 
						
							| 22 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  ∈  V ) | 
						
							| 23 | 22 4 | fmptd | ⊢ ( 𝜑  →  𝐹 : ℤ ⟶ V ) | 
						
							| 24 |  | ffn | ⊢ ( 𝐹 : ℤ ⟶ V  →  𝐹  Fn  ℤ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  𝐹  Fn  ℤ ) | 
						
							| 26 |  | dffn3 | ⊢ ( 𝐹  Fn  ℤ  ↔  𝐹 : ℤ ⟶ ran  𝐹 ) | 
						
							| 27 | 25 26 | sylib | ⊢ ( 𝜑  →  𝐹 : ℤ ⟶ ran  𝐹 ) | 
						
							| 28 |  | fvelrnb | ⊢ ( 𝐹  Fn  ℤ  →  ( 𝑤  ∈  ran  𝐹  ↔  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 29 | 25 28 | syl | ⊢ ( 𝜑  →  ( 𝑤  ∈  ran  𝐹  ↔  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 30 | 29 | biimpd | ⊢ ( 𝜑  →  ( 𝑤  ∈  ran  𝐹  →  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  𝐹 )  →  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 ) | 
						
							| 32 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 )  ∧  𝑧  ∈  ℤ )  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( 𝐹 ‘ 𝑧 )  =  𝑤 ) | 
						
							| 33 | 32 | eqcomd | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 )  ∧  𝑧  ∈  ℤ )  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  𝑤  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 34 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 )  ∧  𝑧  ∈  ℤ )  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  𝜑 ) | 
						
							| 35 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 )  ∧  𝑧  ∈  ℤ )  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  𝑧  ∈  ℤ ) | 
						
							| 36 | 34 35 | jca | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 )  ∧  𝑧  ∈  ℤ )  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( 𝜑  ∧  𝑧  ∈  ℤ ) ) | 
						
							| 37 | 4 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  𝐹  =  ( 𝑥  ∈  ℤ  ↦  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 38 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℤ )  ∧  𝑥  =  𝑧 )  →  𝑥  =  𝑧 ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℤ )  ∧  𝑥  =  𝑧 )  →  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  𝑧  ∈  ℤ ) | 
						
							| 41 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  ∈  V ) | 
						
							| 42 | 37 39 40 41 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 43 |  | eqid | ⊢ ( Base ‘ ( 𝑅  ↾s  𝑈 ) )  =  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) | 
						
							| 44 |  | eqid | ⊢ ( .g ‘ ( 𝑅  ↾s  𝑈 ) )  =  ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) | 
						
							| 45 | 1 2 3 | primrootsunit | ⊢ ( 𝜑  →  ( ( 𝑅  PrimRoots  𝐾 )  =  ( ( 𝑅  ↾s  𝑈 )  PrimRoots  𝐾 )  ∧  ( 𝑅  ↾s  𝑈 )  ∈  Abel ) ) | 
						
							| 46 | 45 | simprd | ⊢ ( 𝜑  →  ( 𝑅  ↾s  𝑈 )  ∈  Abel ) | 
						
							| 47 | 46 | ablgrpd | ⊢ ( 𝜑  →  ( 𝑅  ↾s  𝑈 )  ∈  Grp ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  ( 𝑅  ↾s  𝑈 )  ∈  Grp ) | 
						
							| 49 | 45 | simpld | ⊢ ( 𝜑  →  ( 𝑅  PrimRoots  𝐾 )  =  ( ( 𝑅  ↾s  𝑈 )  PrimRoots  𝐾 ) ) | 
						
							| 50 | 5 49 | eleqtrd | ⊢ ( 𝜑  →  𝑀  ∈  ( ( 𝑅  ↾s  𝑈 )  PrimRoots  𝐾 ) ) | 
						
							| 51 | 46 | ablcmnd | ⊢ ( 𝜑  →  ( 𝑅  ↾s  𝑈 )  ∈  CMnd ) | 
						
							| 52 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 53 | 51 52 44 | isprimroot | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( 𝑅  ↾s  𝑈 )  PrimRoots  𝐾 )  ↔  ( 𝑀  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) )  ∧  ( 𝐾 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) )  ∧  ∀ 𝑙  ∈  ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) )  →  𝐾  ∥  𝑙 ) ) ) ) | 
						
							| 54 | 53 | biimpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( 𝑅  ↾s  𝑈 )  PrimRoots  𝐾 )  →  ( 𝑀  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) )  ∧  ( 𝐾 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) )  ∧  ∀ 𝑙  ∈  ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) )  →  𝐾  ∥  𝑙 ) ) ) ) | 
						
							| 55 | 50 54 | mpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) )  ∧  ( 𝐾 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) )  ∧  ∀ 𝑙  ∈  ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) )  →  𝐾  ∥  𝑙 ) ) ) | 
						
							| 56 | 55 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  𝑀  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) | 
						
							| 58 | 43 44 48 40 57 | mulgcld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) | 
						
							| 59 | 42 58 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) | 
						
							| 60 | 36 59 | syl | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 )  ∧  𝑧  ∈  ℤ )  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) | 
						
							| 61 | 33 60 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 )  ∧  𝑧  ∈  ℤ )  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  𝑤  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) | 
						
							| 62 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝐹 ‘ 𝑣 )  =  𝑤 | 
						
							| 63 |  | nfv | ⊢ Ⅎ 𝑣 ( 𝐹 ‘ 𝑧 )  =  𝑤 | 
						
							| 64 |  | fveqeq2 | ⊢ ( 𝑣  =  𝑧  →  ( ( 𝐹 ‘ 𝑣 )  =  𝑤  ↔  ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) | 
						
							| 65 | 62 63 64 | cbvrexw | ⊢ ( ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤  ↔  ∃ 𝑧  ∈  ℤ ( 𝐹 ‘ 𝑧 )  =  𝑤 ) | 
						
							| 66 | 65 | biimpi | ⊢ ( ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤  →  ∃ 𝑧  ∈  ℤ ( 𝐹 ‘ 𝑧 )  =  𝑤 ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝜑  ∧  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 )  →  ∃ 𝑧  ∈  ℤ ( 𝐹 ‘ 𝑧 )  =  𝑤 ) | 
						
							| 68 | 61 67 | r19.29a | ⊢ ( ( 𝜑  ∧  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 )  →  𝑤  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) | 
						
							| 69 | 68 | ex | ⊢ ( 𝜑  →  ( ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤  →  𝑤  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  𝐹 )  →  ( ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤  →  𝑤  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ran  𝐹 )  ∧  ∃ 𝑣  ∈  ℤ ( 𝐹 ‘ 𝑣 )  =  𝑤 )  →  𝑤  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) | 
						
							| 72 | 31 71 | mpdan | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  𝐹 )  →  𝑤  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) | 
						
							| 73 | 72 | ex | ⊢ ( 𝜑  →  ( 𝑤  ∈  ran  𝐹  →  𝑤  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) ) | 
						
							| 74 | 73 | ssrdv | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) | 
						
							| 75 | 13 43 | ressbas2 | ⊢ ( ran  𝐹  ⊆  ( Base ‘ ( 𝑅  ↾s  𝑈 ) )  →  ran  𝐹  =  ( Base ‘ ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 ) ) ) | 
						
							| 76 | 74 75 | syl | ⊢ ( 𝜑  →  ran  𝐹  =  ( Base ‘ ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 ) ) ) | 
						
							| 77 | 76 | feq3d | ⊢ ( 𝜑  →  ( 𝐹 : ℤ ⟶ ran  𝐹  ↔  𝐹 : ℤ ⟶ ( Base ‘ ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 ) ) ) ) | 
						
							| 78 | 27 77 | mpbid | ⊢ ( 𝜑  →  𝐹 : ℤ ⟶ ( Base ‘ ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 ) ) ) | 
						
							| 79 | 4 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  𝐹  =  ( 𝑥  ∈  ℤ  ↦  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 80 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  𝑥  =  ( 𝑦  +  𝑧 ) )  →  𝑥  =  ( 𝑦  +  𝑧 ) ) | 
						
							| 81 | 80 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  𝑥  =  ( 𝑦  +  𝑧 ) )  →  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( ( 𝑦  +  𝑧 ) ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 82 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  𝑦  ∈  ℤ ) | 
						
							| 83 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  𝑧  ∈  ℤ ) | 
						
							| 84 | 82 83 | zaddcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( 𝑦  +  𝑧 )  ∈  ℤ ) | 
						
							| 85 |  | ovexd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( ( 𝑦  +  𝑧 ) ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  ∈  V ) | 
						
							| 86 | 79 81 84 85 | fvmptd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝑦  +  𝑧 ) ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 87 | 47 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( 𝑅  ↾s  𝑈 )  ∈  Grp ) | 
						
							| 88 | 56 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  𝑀  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) | 
						
							| 89 | 82 83 88 | 3jca | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ  ∧  𝑀  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) ) | 
						
							| 90 | 43 44 14 | mulgdir | ⊢ ( ( ( 𝑅  ↾s  𝑈 )  ∈  Grp  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ  ∧  𝑀  ∈  ( Base ‘ ( 𝑅  ↾s  𝑈 ) ) ) )  →  ( ( 𝑦  +  𝑧 ) ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( ( 𝑦 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅  ↾s  𝑈 ) ) ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 91 | 87 89 90 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( ( 𝑦  +  𝑧 ) ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( ( 𝑦 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅  ↾s  𝑈 ) ) ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 92 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  𝑥  =  𝑦 )  →  𝑥  =  𝑦 ) | 
						
							| 93 | 92 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  𝑥  =  𝑦 )  →  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝑦 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 94 |  | ovexd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( 𝑦 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  ∈  V ) | 
						
							| 95 | 79 93 82 94 | fvmptd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 96 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  𝑥  =  𝑧 )  →  𝑥  =  𝑧 ) | 
						
							| 97 | 96 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  𝑥  =  𝑧 )  →  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 98 |  | ovexd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  ∈  V ) | 
						
							| 99 | 79 97 83 98 | fvmptd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 100 | 95 99 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ ( 𝑅  ↾s  𝑈 ) ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝑦 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅  ↾s  𝑈 ) ) ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 101 | 100 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( ( 𝑦 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅  ↾s  𝑈 ) ) ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ ( 𝑅  ↾s  𝑈 ) ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 102 | 91 101 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( ( 𝑦  +  𝑧 ) ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ ( 𝑅  ↾s  𝑈 ) ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 103 | 86 102 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ ( 𝑅  ↾s  𝑈 ) ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 104 | 6 7 8 16 20 21 78 103 | isghmd | ⊢ ( 𝜑  →  𝐹  ∈  ( ℤring  GrpHom  ( ( 𝑅  ↾s  𝑈 )  ↾s  ran  𝐹 ) ) ) |