Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6isolem1.1 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
2 |
|
aks6d1c6isolem1.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
aks6d1c6isolem1.3 |
⊢ 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
4 |
|
aks6d1c6isolem1.4 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
5 |
|
aks6d1c6isolem1.5 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) ) |
6 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
7 |
|
eqid |
⊢ ( Base ‘ ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ) = ( Base ‘ ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ) |
8 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
9 |
|
zex |
⊢ ℤ ∈ V |
10 |
9
|
mptex |
⊢ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ∈ V |
11 |
4 10
|
eqeltri |
⊢ 𝐹 ∈ V |
12 |
11
|
rnex |
⊢ ran 𝐹 ∈ V |
13 |
|
eqid |
⊢ ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) = ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) |
14 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) |
15 |
13 14
|
ressplusg |
⊢ ( ran 𝐹 ∈ V → ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ) ) |
16 |
12 15
|
ax-mp |
⊢ ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ) |
17 |
|
zringring |
⊢ ℤring ∈ Ring |
18 |
17
|
a1i |
⊢ ( 𝜑 → ℤring ∈ Ring ) |
19 |
|
ringgrp |
⊢ ( ℤring ∈ Ring → ℤring ∈ Grp ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ℤring ∈ Grp ) |
21 |
1 2 3 4 5
|
aks6d1c6isolem1 |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ∈ Grp ) |
22 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
23 |
22 4
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℤ ⟶ V ) |
24 |
|
ffn |
⊢ ( 𝐹 : ℤ ⟶ V → 𝐹 Fn ℤ ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → 𝐹 Fn ℤ ) |
26 |
|
dffn3 |
⊢ ( 𝐹 Fn ℤ ↔ 𝐹 : ℤ ⟶ ran 𝐹 ) |
27 |
25 26
|
sylib |
⊢ ( 𝜑 → 𝐹 : ℤ ⟶ ran 𝐹 ) |
28 |
|
fvelrnb |
⊢ ( 𝐹 Fn ℤ → ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) ) |
29 |
25 28
|
syl |
⊢ ( 𝜑 → ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) ) |
30 |
29
|
biimpd |
⊢ ( 𝜑 → ( 𝑤 ∈ ran 𝐹 → ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) ) |
31 |
30
|
imp |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐹 ) → ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) |
32 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) ∧ 𝑧 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = 𝑤 ) |
33 |
32
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) ∧ 𝑧 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → 𝑤 = ( 𝐹 ‘ 𝑧 ) ) |
34 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) ∧ 𝑧 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → 𝜑 ) |
35 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) ∧ 𝑧 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → 𝑧 ∈ ℤ ) |
36 |
34 35
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) ∧ 𝑧 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝜑 ∧ 𝑧 ∈ ℤ ) ) |
37 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
38 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) ∧ 𝑥 = 𝑧 ) → 𝑥 = 𝑧 ) |
39 |
38
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) ∧ 𝑥 = 𝑧 ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → 𝑧 ∈ ℤ ) |
41 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
42 |
37 39 40 41
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
43 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) |
44 |
|
eqid |
⊢ ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) |
45 |
1 2 3
|
primrootsunit |
⊢ ( 𝜑 → ( ( 𝑅 PrimRoots 𝐾 ) = ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ∧ ( 𝑅 ↾s 𝑈 ) ∈ Abel ) ) |
46 |
45
|
simprd |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Abel ) |
47 |
46
|
ablgrpd |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Grp ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → ( 𝑅 ↾s 𝑈 ) ∈ Grp ) |
49 |
45
|
simpld |
⊢ ( 𝜑 → ( 𝑅 PrimRoots 𝐾 ) = ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) |
50 |
5 49
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) |
51 |
46
|
ablcmnd |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ CMnd ) |
52 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
53 |
51 52 44
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ↔ ( 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
54 |
53
|
biimpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) → ( 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
55 |
50 54
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) |
56 |
55
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
58 |
43 44 48 40 57
|
mulgcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
59 |
42 58
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
60 |
36 59
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) ∧ 𝑧 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
61 |
33 60
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) ∧ 𝑧 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
62 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝐹 ‘ 𝑣 ) = 𝑤 |
63 |
|
nfv |
⊢ Ⅎ 𝑣 ( 𝐹 ‘ 𝑧 ) = 𝑤 |
64 |
|
fveqeq2 |
⊢ ( 𝑣 = 𝑧 → ( ( 𝐹 ‘ 𝑣 ) = 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) |
65 |
62 63 64
|
cbvrexw |
⊢ ( ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ↔ ∃ 𝑧 ∈ ℤ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) |
66 |
65
|
biimpi |
⊢ ( ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 → ∃ 𝑧 ∈ ℤ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) |
67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) → ∃ 𝑧 ∈ ℤ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) |
68 |
61 67
|
r19.29a |
⊢ ( ( 𝜑 ∧ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) → 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
69 |
68
|
ex |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 → 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐹 ) → ( ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 → 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
71 |
70
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐹 ) ∧ ∃ 𝑣 ∈ ℤ ( 𝐹 ‘ 𝑣 ) = 𝑤 ) → 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
72 |
31 71
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐹 ) → 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
73 |
72
|
ex |
⊢ ( 𝜑 → ( 𝑤 ∈ ran 𝐹 → 𝑤 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
74 |
73
|
ssrdv |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
75 |
13 43
|
ressbas2 |
⊢ ( ran 𝐹 ⊆ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → ran 𝐹 = ( Base ‘ ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ) ) |
76 |
74 75
|
syl |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ) ) |
77 |
76
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : ℤ ⟶ ran 𝐹 ↔ 𝐹 : ℤ ⟶ ( Base ‘ ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ) ) ) |
78 |
27 77
|
mpbid |
⊢ ( 𝜑 → 𝐹 : ℤ ⟶ ( Base ‘ ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ) ) |
79 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
80 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ 𝑥 = ( 𝑦 + 𝑧 ) ) → 𝑥 = ( 𝑦 + 𝑧 ) ) |
81 |
80
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ 𝑥 = ( 𝑦 + 𝑧 ) ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( ( 𝑦 + 𝑧 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
82 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → 𝑦 ∈ ℤ ) |
83 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → 𝑧 ∈ ℤ ) |
84 |
82 83
|
zaddcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑦 + 𝑧 ) ∈ ℤ ) |
85 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑦 + 𝑧 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
86 |
79 81 84 85
|
fvmptd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝑦 + 𝑧 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
87 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑅 ↾s 𝑈 ) ∈ Grp ) |
88 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
89 |
82 83 88
|
3jca |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
90 |
43 44 14
|
mulgdir |
⊢ ( ( ( 𝑅 ↾s 𝑈 ) ∈ Grp ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) → ( ( 𝑦 + 𝑧 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( ( 𝑦 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
91 |
87 89 90
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑦 + 𝑧 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( ( 𝑦 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
92 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) |
93 |
92
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ 𝑥 = 𝑦 ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 𝑦 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
94 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑦 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
95 |
79 93 82 94
|
fvmptd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
96 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ 𝑥 = 𝑧 ) → 𝑥 = 𝑧 ) |
97 |
96
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ 𝑥 = 𝑧 ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
98 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
99 |
79 97 83 98
|
fvmptd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
100 |
95 99
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑦 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
101 |
100
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑦 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑧 ) ) ) |
102 |
91 101
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑦 + 𝑧 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑧 ) ) ) |
103 |
86 102
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑧 ) ) ) |
104 |
6 7 8 16 20 21 78 103
|
isghmd |
⊢ ( 𝜑 → 𝐹 ∈ ( ℤring GrpHom ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ) ) |