| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6isolem1.1 | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 2 |  | aks6d1c6isolem1.2 | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 3 |  | aks6d1c6isolem1.3 | ⊢ 𝑈  =  { 𝑎  ∈  ( Base ‘ 𝑅 )  ∣  ∃ 𝑖  ∈  ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 )  =  ( 0g ‘ 𝑅 ) } | 
						
							| 4 |  | aks6d1c6isolem1.4 | ⊢ 𝐹  =  ( 𝑥  ∈  ℤ  ↦  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 5 |  | aks6d1c6isolem1.5 | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑅  PrimRoots  𝐾 ) ) | 
						
							| 6 |  | aks6d1c6isolem3.1 | ⊢ 𝑆  =  ( RSpan ‘ ℤring ) | 
						
							| 7 |  | zringring | ⊢ ℤring  ∈  Ring | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ℤring  ∈  Ring ) | 
						
							| 9 | 2 | nnzd | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 10 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 11 |  | dvdsrzring | ⊢  ∥   =  ( ∥r ‘ ℤring ) | 
						
							| 12 | 10 6 11 | rspsn | ⊢ ( ( ℤring  ∈  Ring  ∧  𝐾  ∈  ℤ )  →  ( 𝑆 ‘ { 𝐾 } )  =  { 𝑧  ∣  𝐾  ∥  𝑧 } ) | 
						
							| 13 | 8 9 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆 ‘ { 𝐾 } )  =  { 𝑧  ∣  𝐾  ∥  𝑧 } ) | 
						
							| 14 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  ∈  V ) | 
						
							| 15 | 14 4 | fmptd | ⊢ ( 𝜑  →  𝐹 : ℤ ⟶ V ) | 
						
							| 16 | 15 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ℤ ) | 
						
							| 17 |  | fniniseg2 | ⊢ ( 𝐹  Fn  ℤ  →  ( ◡ 𝐹  “  { ( 0g ‘ ( 𝑅  ↾s  𝑈 ) ) } )  =  { 𝑧  ∈  ℤ  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) ) } ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  { ( 0g ‘ ( 𝑅  ↾s  𝑈 ) ) } )  =  { 𝑧  ∈  ℤ  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) ) } ) | 
						
							| 19 | 4 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  𝐹  =  ( 𝑥  ∈  ℤ  ↦  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℤ )  ∧  𝑥  =  𝑧 )  →  𝑥  =  𝑧 ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℤ )  ∧  𝑥  =  𝑧 )  →  ( 𝑥 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  𝑧  ∈  ℤ ) | 
						
							| 23 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  ∈  V ) | 
						
							| 24 | 19 21 22 23 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) )  ↔  ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) ) ) ) | 
						
							| 26 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  𝑅  ∈  CMnd ) | 
						
							| 27 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  𝐾  ∈  ℕ ) | 
						
							| 28 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  𝑀  ∈  ( 𝑅  PrimRoots  𝐾 ) ) | 
						
							| 29 | 26 27 28 3 22 | primrootspoweq0 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  ( ( 𝑧 ( .g ‘ ( 𝑅  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) )  ↔  𝐾  ∥  𝑧 ) ) | 
						
							| 30 | 25 29 | bitrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℤ )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) )  ↔  𝐾  ∥  𝑧 ) ) | 
						
							| 31 | 30 | rabbidva | ⊢ ( 𝜑  →  { 𝑧  ∈  ℤ  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) ) }  =  { 𝑧  ∈  ℤ  ∣  𝐾  ∥  𝑧 } ) | 
						
							| 32 |  | df-rab | ⊢ { 𝑧  ∈  ℤ  ∣  𝐾  ∥  𝑧 }  =  { 𝑧  ∣  ( 𝑧  ∈  ℤ  ∧  𝐾  ∥  𝑧 ) } | 
						
							| 33 | 32 | a1i | ⊢ ( 𝜑  →  { 𝑧  ∈  ℤ  ∣  𝐾  ∥  𝑧 }  =  { 𝑧  ∣  ( 𝑧  ∈  ℤ  ∧  𝐾  ∥  𝑧 ) } ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝐾  ∥  𝑧 )  →  𝐾  ∥  𝑧 ) | 
						
							| 35 |  | dvdszrcl | ⊢ ( 𝐾  ∥  𝑧  →  ( 𝐾  ∈  ℤ  ∧  𝑧  ∈  ℤ ) ) | 
						
							| 36 | 35 | simprd | ⊢ ( 𝐾  ∥  𝑧  →  𝑧  ∈  ℤ ) | 
						
							| 37 | 36 | ancri | ⊢ ( 𝐾  ∥  𝑧  →  ( 𝑧  ∈  ℤ  ∧  𝐾  ∥  𝑧 ) ) | 
						
							| 38 | 34 37 | impbii | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝐾  ∥  𝑧 )  ↔  𝐾  ∥  𝑧 ) | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  ( ( 𝑧  ∈  ℤ  ∧  𝐾  ∥  𝑧 )  ↔  𝐾  ∥  𝑧 ) ) | 
						
							| 40 | 39 | abbidv | ⊢ ( 𝜑  →  { 𝑧  ∣  ( 𝑧  ∈  ℤ  ∧  𝐾  ∥  𝑧 ) }  =  { 𝑧  ∣  𝐾  ∥  𝑧 } ) | 
						
							| 41 | 33 40 | eqtrd | ⊢ ( 𝜑  →  { 𝑧  ∈  ℤ  ∣  𝐾  ∥  𝑧 }  =  { 𝑧  ∣  𝐾  ∥  𝑧 } ) | 
						
							| 42 | 31 41 | eqtrd | ⊢ ( 𝜑  →  { 𝑧  ∈  ℤ  ∣  ( 𝐹 ‘ 𝑧 )  =  ( 0g ‘ ( 𝑅  ↾s  𝑈 ) ) }  =  { 𝑧  ∣  𝐾  ∥  𝑧 } ) | 
						
							| 43 | 18 42 | eqtr2d | ⊢ ( 𝜑  →  { 𝑧  ∣  𝐾  ∥  𝑧 }  =  ( ◡ 𝐹  “  { ( 0g ‘ ( 𝑅  ↾s  𝑈 ) ) } ) ) | 
						
							| 44 | 13 43 | eqtrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ { 𝐾 } )  =  ( ◡ 𝐹  “  { ( 0g ‘ ( 𝑅  ↾s  𝑈 ) ) } ) ) |