Metamath Proof Explorer


Theorem aks6d1c6isolem3

Description: The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide R . (Contributed by metakunt, 15-May-2025)

Ref Expression
Hypotheses aks6d1c6isolem1.1 ( 𝜑𝑅 ∈ CMnd )
aks6d1c6isolem1.2 ( 𝜑𝐾 ∈ ℕ )
aks6d1c6isolem1.3 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g𝑅 ) 𝑎 ) = ( 0g𝑅 ) }
aks6d1c6isolem1.4 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
aks6d1c6isolem1.5 ( 𝜑𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) )
aks6d1c6isolem3.1 𝑆 = ( RSpan ‘ ℤring )
Assertion aks6d1c6isolem3 ( 𝜑 → ( 𝑆 ‘ { 𝐾 } ) = ( 𝐹 “ { ( 0g ‘ ( 𝑅s 𝑈 ) ) } ) )

Proof

Step Hyp Ref Expression
1 aks6d1c6isolem1.1 ( 𝜑𝑅 ∈ CMnd )
2 aks6d1c6isolem1.2 ( 𝜑𝐾 ∈ ℕ )
3 aks6d1c6isolem1.3 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g𝑅 ) 𝑎 ) = ( 0g𝑅 ) }
4 aks6d1c6isolem1.4 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
5 aks6d1c6isolem1.5 ( 𝜑𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) )
6 aks6d1c6isolem3.1 𝑆 = ( RSpan ‘ ℤring )
7 zringring ring ∈ Ring
8 7 a1i ( 𝜑 → ℤring ∈ Ring )
9 2 nnzd ( 𝜑𝐾 ∈ ℤ )
10 zringbas ℤ = ( Base ‘ ℤring )
11 dvdsrzring ∥ = ( ∥r ‘ ℤring )
12 10 6 11 rspsn ( ( ℤring ∈ Ring ∧ 𝐾 ∈ ℤ ) → ( 𝑆 ‘ { 𝐾 } ) = { 𝑧𝐾𝑧 } )
13 8 9 12 syl2anc ( 𝜑 → ( 𝑆 ‘ { 𝐾 } ) = { 𝑧𝐾𝑧 } )
14 ovexd ( ( 𝜑𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ V )
15 14 4 fmptd ( 𝜑𝐹 : ℤ ⟶ V )
16 15 ffnd ( 𝜑𝐹 Fn ℤ )
17 fniniseg2 ( 𝐹 Fn ℤ → ( 𝐹 “ { ( 0g ‘ ( 𝑅s 𝑈 ) ) } ) = { 𝑧 ∈ ℤ ∣ ( 𝐹𝑧 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) } )
18 16 17 syl ( 𝜑 → ( 𝐹 “ { ( 0g ‘ ( 𝑅s 𝑈 ) ) } ) = { 𝑧 ∈ ℤ ∣ ( 𝐹𝑧 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) } )
19 4 a1i ( ( 𝜑𝑧 ∈ ℤ ) → 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
20 simpr ( ( ( 𝜑𝑧 ∈ ℤ ) ∧ 𝑥 = 𝑧 ) → 𝑥 = 𝑧 )
21 20 oveq1d ( ( ( 𝜑𝑧 ∈ ℤ ) ∧ 𝑥 = 𝑧 ) → ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 𝑧 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
22 simpr ( ( 𝜑𝑧 ∈ ℤ ) → 𝑧 ∈ ℤ )
23 ovexd ( ( 𝜑𝑧 ∈ ℤ ) → ( 𝑧 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ V )
24 19 21 22 23 fvmptd ( ( 𝜑𝑧 ∈ ℤ ) → ( 𝐹𝑧 ) = ( 𝑧 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
25 24 eqeq1d ( ( 𝜑𝑧 ∈ ℤ ) → ( ( 𝐹𝑧 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) ↔ ( 𝑧 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) ) )
26 1 adantr ( ( 𝜑𝑧 ∈ ℤ ) → 𝑅 ∈ CMnd )
27 2 adantr ( ( 𝜑𝑧 ∈ ℤ ) → 𝐾 ∈ ℕ )
28 5 adantr ( ( 𝜑𝑧 ∈ ℤ ) → 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) )
29 26 27 28 3 22 primrootspoweq0 ( ( 𝜑𝑧 ∈ ℤ ) → ( ( 𝑧 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) ↔ 𝐾𝑧 ) )
30 25 29 bitrd ( ( 𝜑𝑧 ∈ ℤ ) → ( ( 𝐹𝑧 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) ↔ 𝐾𝑧 ) )
31 30 rabbidva ( 𝜑 → { 𝑧 ∈ ℤ ∣ ( 𝐹𝑧 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) } = { 𝑧 ∈ ℤ ∣ 𝐾𝑧 } )
32 df-rab { 𝑧 ∈ ℤ ∣ 𝐾𝑧 } = { 𝑧 ∣ ( 𝑧 ∈ ℤ ∧ 𝐾𝑧 ) }
33 32 a1i ( 𝜑 → { 𝑧 ∈ ℤ ∣ 𝐾𝑧 } = { 𝑧 ∣ ( 𝑧 ∈ ℤ ∧ 𝐾𝑧 ) } )
34 simpr ( ( 𝑧 ∈ ℤ ∧ 𝐾𝑧 ) → 𝐾𝑧 )
35 dvdszrcl ( 𝐾𝑧 → ( 𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ ) )
36 35 simprd ( 𝐾𝑧𝑧 ∈ ℤ )
37 36 ancri ( 𝐾𝑧 → ( 𝑧 ∈ ℤ ∧ 𝐾𝑧 ) )
38 34 37 impbii ( ( 𝑧 ∈ ℤ ∧ 𝐾𝑧 ) ↔ 𝐾𝑧 )
39 38 a1i ( 𝜑 → ( ( 𝑧 ∈ ℤ ∧ 𝐾𝑧 ) ↔ 𝐾𝑧 ) )
40 39 abbidv ( 𝜑 → { 𝑧 ∣ ( 𝑧 ∈ ℤ ∧ 𝐾𝑧 ) } = { 𝑧𝐾𝑧 } )
41 33 40 eqtrd ( 𝜑 → { 𝑧 ∈ ℤ ∣ 𝐾𝑧 } = { 𝑧𝐾𝑧 } )
42 31 41 eqtrd ( 𝜑 → { 𝑧 ∈ ℤ ∣ ( 𝐹𝑧 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) } = { 𝑧𝐾𝑧 } )
43 18 42 eqtr2d ( 𝜑 → { 𝑧𝐾𝑧 } = ( 𝐹 “ { ( 0g ‘ ( 𝑅s 𝑈 ) ) } ) )
44 13 43 eqtrd ( 𝜑 → ( 𝑆 ‘ { 𝐾 } ) = ( 𝐹 “ { ( 0g ‘ ( 𝑅s 𝑈 ) ) } ) )