Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6isolem1.1 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
2 |
|
aks6d1c6isolem1.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
aks6d1c6isolem1.3 |
⊢ 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
4 |
|
aks6d1c6isolem1.4 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
5 |
|
aks6d1c6isolem1.5 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) ) |
6 |
|
aks6d1c6isolem3.1 |
⊢ 𝑆 = ( RSpan ‘ ℤring ) |
7 |
|
zringring |
⊢ ℤring ∈ Ring |
8 |
7
|
a1i |
⊢ ( 𝜑 → ℤring ∈ Ring ) |
9 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
10 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
11 |
|
dvdsrzring |
⊢ ∥ = ( ∥r ‘ ℤring ) |
12 |
10 6 11
|
rspsn |
⊢ ( ( ℤring ∈ Ring ∧ 𝐾 ∈ ℤ ) → ( 𝑆 ‘ { 𝐾 } ) = { 𝑧 ∣ 𝐾 ∥ 𝑧 } ) |
13 |
8 9 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ { 𝐾 } ) = { 𝑧 ∣ 𝐾 ∥ 𝑧 } ) |
14 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
15 |
14 4
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℤ ⟶ V ) |
16 |
15
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℤ ) |
17 |
|
fniniseg2 |
⊢ ( 𝐹 Fn ℤ → ( ◡ 𝐹 “ { ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) } ) = { 𝑧 ∈ ℤ ∣ ( 𝐹 ‘ 𝑧 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) } ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) } ) = { 𝑧 ∈ ℤ ∣ ( 𝐹 ‘ 𝑧 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) } ) |
19 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) ∧ 𝑥 = 𝑧 ) → 𝑥 = 𝑧 ) |
21 |
20
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) ∧ 𝑥 = 𝑧 ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → 𝑧 ∈ ℤ ) |
23 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
24 |
19 21 22 23
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
25 |
24
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑧 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
26 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → 𝑅 ∈ CMnd ) |
27 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → 𝐾 ∈ ℕ ) |
28 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) ) |
29 |
26 27 28 3 22
|
primrootspoweq0 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → ( ( 𝑧 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ 𝐾 ∥ 𝑧 ) ) |
30 |
25 29
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑧 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ 𝐾 ∥ 𝑧 ) ) |
31 |
30
|
rabbidva |
⊢ ( 𝜑 → { 𝑧 ∈ ℤ ∣ ( 𝐹 ‘ 𝑧 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) } = { 𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧 } ) |
32 |
|
df-rab |
⊢ { 𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧 } = { 𝑧 ∣ ( 𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧 ) } |
33 |
32
|
a1i |
⊢ ( 𝜑 → { 𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧 } = { 𝑧 ∣ ( 𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧 ) } ) |
34 |
|
simpr |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧 ) → 𝐾 ∥ 𝑧 ) |
35 |
|
dvdszrcl |
⊢ ( 𝐾 ∥ 𝑧 → ( 𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
36 |
35
|
simprd |
⊢ ( 𝐾 ∥ 𝑧 → 𝑧 ∈ ℤ ) |
37 |
36
|
ancri |
⊢ ( 𝐾 ∥ 𝑧 → ( 𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧 ) ) |
38 |
34 37
|
impbii |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧 ) ↔ 𝐾 ∥ 𝑧 ) |
39 |
38
|
a1i |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧 ) ↔ 𝐾 ∥ 𝑧 ) ) |
40 |
39
|
abbidv |
⊢ ( 𝜑 → { 𝑧 ∣ ( 𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧 ) } = { 𝑧 ∣ 𝐾 ∥ 𝑧 } ) |
41 |
33 40
|
eqtrd |
⊢ ( 𝜑 → { 𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧 } = { 𝑧 ∣ 𝐾 ∥ 𝑧 } ) |
42 |
31 41
|
eqtrd |
⊢ ( 𝜑 → { 𝑧 ∈ ℤ ∣ ( 𝐹 ‘ 𝑧 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) } = { 𝑧 ∣ 𝐾 ∥ 𝑧 } ) |
43 |
18 42
|
eqtr2d |
⊢ ( 𝜑 → { 𝑧 ∣ 𝐾 ∥ 𝑧 } = ( ◡ 𝐹 “ { ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) } ) ) |
44 |
13 43
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ { 𝐾 } ) = ( ◡ 𝐹 “ { ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) } ) ) |