| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6isolem1.1 |  |-  ( ph -> R e. CMnd ) | 
						
							| 2 |  | aks6d1c6isolem1.2 |  |-  ( ph -> K e. NN ) | 
						
							| 3 |  | aks6d1c6isolem1.3 |  |-  U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } | 
						
							| 4 |  | aks6d1c6isolem1.4 |  |-  F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 5 |  | aks6d1c6isolem1.5 |  |-  ( ph -> M e. ( R PrimRoots K ) ) | 
						
							| 6 |  | aks6d1c6isolem3.1 |  |-  S = ( RSpan ` ZZring ) | 
						
							| 7 |  | zringring |  |-  ZZring e. Ring | 
						
							| 8 | 7 | a1i |  |-  ( ph -> ZZring e. Ring ) | 
						
							| 9 | 2 | nnzd |  |-  ( ph -> K e. ZZ ) | 
						
							| 10 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 11 |  | dvdsrzring |  |-  || = ( ||r ` ZZring ) | 
						
							| 12 | 10 6 11 | rspsn |  |-  ( ( ZZring e. Ring /\ K e. ZZ ) -> ( S ` { K } ) = { z | K || z } ) | 
						
							| 13 | 8 9 12 | syl2anc |  |-  ( ph -> ( S ` { K } ) = { z | K || z } ) | 
						
							| 14 |  | ovexd |  |-  ( ( ph /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 15 | 14 4 | fmptd |  |-  ( ph -> F : ZZ --> _V ) | 
						
							| 16 | 15 | ffnd |  |-  ( ph -> F Fn ZZ ) | 
						
							| 17 |  | fniniseg2 |  |-  ( F Fn ZZ -> ( `' F " { ( 0g ` ( R |`s U ) ) } ) = { z e. ZZ | ( F ` z ) = ( 0g ` ( R |`s U ) ) } ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( `' F " { ( 0g ` ( R |`s U ) ) } ) = { z e. ZZ | ( F ` z ) = ( 0g ` ( R |`s U ) ) } ) | 
						
							| 19 | 4 | a1i |  |-  ( ( ph /\ z e. ZZ ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ( ph /\ z e. ZZ ) /\ x = z ) -> x = z ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ( ( ph /\ z e. ZZ ) /\ x = z ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( z ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ z e. ZZ ) -> z e. ZZ ) | 
						
							| 23 |  | ovexd |  |-  ( ( ph /\ z e. ZZ ) -> ( z ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 24 | 19 21 22 23 | fvmptd |  |-  ( ( ph /\ z e. ZZ ) -> ( F ` z ) = ( z ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 25 | 24 | eqeq1d |  |-  ( ( ph /\ z e. ZZ ) -> ( ( F ` z ) = ( 0g ` ( R |`s U ) ) <-> ( z ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) ) | 
						
							| 26 | 1 | adantr |  |-  ( ( ph /\ z e. ZZ ) -> R e. CMnd ) | 
						
							| 27 | 2 | adantr |  |-  ( ( ph /\ z e. ZZ ) -> K e. NN ) | 
						
							| 28 | 5 | adantr |  |-  ( ( ph /\ z e. ZZ ) -> M e. ( R PrimRoots K ) ) | 
						
							| 29 | 26 27 28 3 22 | primrootspoweq0 |  |-  ( ( ph /\ z e. ZZ ) -> ( ( z ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) <-> K || z ) ) | 
						
							| 30 | 25 29 | bitrd |  |-  ( ( ph /\ z e. ZZ ) -> ( ( F ` z ) = ( 0g ` ( R |`s U ) ) <-> K || z ) ) | 
						
							| 31 | 30 | rabbidva |  |-  ( ph -> { z e. ZZ | ( F ` z ) = ( 0g ` ( R |`s U ) ) } = { z e. ZZ | K || z } ) | 
						
							| 32 |  | df-rab |  |-  { z e. ZZ | K || z } = { z | ( z e. ZZ /\ K || z ) } | 
						
							| 33 | 32 | a1i |  |-  ( ph -> { z e. ZZ | K || z } = { z | ( z e. ZZ /\ K || z ) } ) | 
						
							| 34 |  | simpr |  |-  ( ( z e. ZZ /\ K || z ) -> K || z ) | 
						
							| 35 |  | dvdszrcl |  |-  ( K || z -> ( K e. ZZ /\ z e. ZZ ) ) | 
						
							| 36 | 35 | simprd |  |-  ( K || z -> z e. ZZ ) | 
						
							| 37 | 36 | ancri |  |-  ( K || z -> ( z e. ZZ /\ K || z ) ) | 
						
							| 38 | 34 37 | impbii |  |-  ( ( z e. ZZ /\ K || z ) <-> K || z ) | 
						
							| 39 | 38 | a1i |  |-  ( ph -> ( ( z e. ZZ /\ K || z ) <-> K || z ) ) | 
						
							| 40 | 39 | abbidv |  |-  ( ph -> { z | ( z e. ZZ /\ K || z ) } = { z | K || z } ) | 
						
							| 41 | 33 40 | eqtrd |  |-  ( ph -> { z e. ZZ | K || z } = { z | K || z } ) | 
						
							| 42 | 31 41 | eqtrd |  |-  ( ph -> { z e. ZZ | ( F ` z ) = ( 0g ` ( R |`s U ) ) } = { z | K || z } ) | 
						
							| 43 | 18 42 | eqtr2d |  |-  ( ph -> { z | K || z } = ( `' F " { ( 0g ` ( R |`s U ) ) } ) ) | 
						
							| 44 | 13 43 | eqtrd |  |-  ( ph -> ( S ` { K } ) = ( `' F " { ( 0g ` ( R |`s U ) ) } ) ) |