| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c6isolem1.1 |
|- ( ph -> R e. CMnd ) |
| 2 |
|
aks6d1c6isolem1.2 |
|- ( ph -> K e. NN ) |
| 3 |
|
aks6d1c6isolem1.3 |
|- U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } |
| 4 |
|
aks6d1c6isolem1.4 |
|- F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) |
| 5 |
|
aks6d1c6isolem1.5 |
|- ( ph -> M e. ( R PrimRoots K ) ) |
| 6 |
|
aks6d1c6isolem3.1 |
|- S = ( RSpan ` ZZring ) |
| 7 |
|
zringring |
|- ZZring e. Ring |
| 8 |
7
|
a1i |
|- ( ph -> ZZring e. Ring ) |
| 9 |
2
|
nnzd |
|- ( ph -> K e. ZZ ) |
| 10 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 11 |
|
dvdsrzring |
|- || = ( ||r ` ZZring ) |
| 12 |
10 6 11
|
rspsn |
|- ( ( ZZring e. Ring /\ K e. ZZ ) -> ( S ` { K } ) = { z | K || z } ) |
| 13 |
8 9 12
|
syl2anc |
|- ( ph -> ( S ` { K } ) = { z | K || z } ) |
| 14 |
|
ovexd |
|- ( ( ph /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) M ) e. _V ) |
| 15 |
14 4
|
fmptd |
|- ( ph -> F : ZZ --> _V ) |
| 16 |
15
|
ffnd |
|- ( ph -> F Fn ZZ ) |
| 17 |
|
fniniseg2 |
|- ( F Fn ZZ -> ( `' F " { ( 0g ` ( R |`s U ) ) } ) = { z e. ZZ | ( F ` z ) = ( 0g ` ( R |`s U ) ) } ) |
| 18 |
16 17
|
syl |
|- ( ph -> ( `' F " { ( 0g ` ( R |`s U ) ) } ) = { z e. ZZ | ( F ` z ) = ( 0g ` ( R |`s U ) ) } ) |
| 19 |
4
|
a1i |
|- ( ( ph /\ z e. ZZ ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) |
| 20 |
|
simpr |
|- ( ( ( ph /\ z e. ZZ ) /\ x = z ) -> x = z ) |
| 21 |
20
|
oveq1d |
|- ( ( ( ph /\ z e. ZZ ) /\ x = z ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( z ( .g ` ( R |`s U ) ) M ) ) |
| 22 |
|
simpr |
|- ( ( ph /\ z e. ZZ ) -> z e. ZZ ) |
| 23 |
|
ovexd |
|- ( ( ph /\ z e. ZZ ) -> ( z ( .g ` ( R |`s U ) ) M ) e. _V ) |
| 24 |
19 21 22 23
|
fvmptd |
|- ( ( ph /\ z e. ZZ ) -> ( F ` z ) = ( z ( .g ` ( R |`s U ) ) M ) ) |
| 25 |
24
|
eqeq1d |
|- ( ( ph /\ z e. ZZ ) -> ( ( F ` z ) = ( 0g ` ( R |`s U ) ) <-> ( z ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) ) |
| 26 |
1
|
adantr |
|- ( ( ph /\ z e. ZZ ) -> R e. CMnd ) |
| 27 |
2
|
adantr |
|- ( ( ph /\ z e. ZZ ) -> K e. NN ) |
| 28 |
5
|
adantr |
|- ( ( ph /\ z e. ZZ ) -> M e. ( R PrimRoots K ) ) |
| 29 |
26 27 28 3 22
|
primrootspoweq0 |
|- ( ( ph /\ z e. ZZ ) -> ( ( z ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) <-> K || z ) ) |
| 30 |
25 29
|
bitrd |
|- ( ( ph /\ z e. ZZ ) -> ( ( F ` z ) = ( 0g ` ( R |`s U ) ) <-> K || z ) ) |
| 31 |
30
|
rabbidva |
|- ( ph -> { z e. ZZ | ( F ` z ) = ( 0g ` ( R |`s U ) ) } = { z e. ZZ | K || z } ) |
| 32 |
|
df-rab |
|- { z e. ZZ | K || z } = { z | ( z e. ZZ /\ K || z ) } |
| 33 |
32
|
a1i |
|- ( ph -> { z e. ZZ | K || z } = { z | ( z e. ZZ /\ K || z ) } ) |
| 34 |
|
simpr |
|- ( ( z e. ZZ /\ K || z ) -> K || z ) |
| 35 |
|
dvdszrcl |
|- ( K || z -> ( K e. ZZ /\ z e. ZZ ) ) |
| 36 |
35
|
simprd |
|- ( K || z -> z e. ZZ ) |
| 37 |
36
|
ancri |
|- ( K || z -> ( z e. ZZ /\ K || z ) ) |
| 38 |
34 37
|
impbii |
|- ( ( z e. ZZ /\ K || z ) <-> K || z ) |
| 39 |
38
|
a1i |
|- ( ph -> ( ( z e. ZZ /\ K || z ) <-> K || z ) ) |
| 40 |
39
|
abbidv |
|- ( ph -> { z | ( z e. ZZ /\ K || z ) } = { z | K || z } ) |
| 41 |
33 40
|
eqtrd |
|- ( ph -> { z e. ZZ | K || z } = { z | K || z } ) |
| 42 |
31 41
|
eqtrd |
|- ( ph -> { z e. ZZ | ( F ` z ) = ( 0g ` ( R |`s U ) ) } = { z | K || z } ) |
| 43 |
18 42
|
eqtr2d |
|- ( ph -> { z | K || z } = ( `' F " { ( 0g ` ( R |`s U ) ) } ) ) |
| 44 |
13 43
|
eqtrd |
|- ( ph -> ( S ` { K } ) = ( `' F " { ( 0g ` ( R |`s U ) ) } ) ) |