Metamath Proof Explorer


Theorem aks6d1c6isolem2

Description: Lemma to construct the group homomorphism for the AKS Theorem. (Contributed by metakunt, 14-May-2025)

Ref Expression
Hypotheses aks6d1c6isolem1.1 φ R CMnd
aks6d1c6isolem1.2 φ K
aks6d1c6isolem1.3 U = a Base R | i Base R i + R a = 0 R
aks6d1c6isolem1.4 F = x x R 𝑠 U M
aks6d1c6isolem1.5 φ M R PrimRoots K
Assertion aks6d1c6isolem2 φ F ring GrpHom R 𝑠 U 𝑠 ran F

Proof

Step Hyp Ref Expression
1 aks6d1c6isolem1.1 φ R CMnd
2 aks6d1c6isolem1.2 φ K
3 aks6d1c6isolem1.3 U = a Base R | i Base R i + R a = 0 R
4 aks6d1c6isolem1.4 F = x x R 𝑠 U M
5 aks6d1c6isolem1.5 φ M R PrimRoots K
6 zringbas = Base ring
7 eqid Base R 𝑠 U 𝑠 ran F = Base R 𝑠 U 𝑠 ran F
8 zringplusg + = + ring
9 zex V
10 9 mptex x x R 𝑠 U M V
11 4 10 eqeltri F V
12 11 rnex ran F V
13 eqid R 𝑠 U 𝑠 ran F = R 𝑠 U 𝑠 ran F
14 eqid + R 𝑠 U = + R 𝑠 U
15 13 14 ressplusg ran F V + R 𝑠 U = + R 𝑠 U 𝑠 ran F
16 12 15 ax-mp + R 𝑠 U = + R 𝑠 U 𝑠 ran F
17 zringring ring Ring
18 17 a1i φ ring Ring
19 ringgrp ring Ring ring Grp
20 18 19 syl φ ring Grp
21 1 2 3 4 5 aks6d1c6isolem1 φ R 𝑠 U 𝑠 ran F Grp
22 ovexd φ x x R 𝑠 U M V
23 22 4 fmptd φ F : V
24 ffn F : V F Fn
25 23 24 syl φ F Fn
26 dffn3 F Fn F : ran F
27 25 26 sylib φ F : ran F
28 fvelrnb F Fn w ran F v F v = w
29 25 28 syl φ w ran F v F v = w
30 29 biimpd φ w ran F v F v = w
31 30 imp φ w ran F v F v = w
32 simpr φ v F v = w z F z = w F z = w
33 32 eqcomd φ v F v = w z F z = w w = F z
34 simplll φ v F v = w z F z = w φ
35 simplr φ v F v = w z F z = w z
36 34 35 jca φ v F v = w z F z = w φ z
37 4 a1i φ z F = x x R 𝑠 U M
38 simpr φ z x = z x = z
39 38 oveq1d φ z x = z x R 𝑠 U M = z R 𝑠 U M
40 simpr φ z z
41 ovexd φ z z R 𝑠 U M V
42 37 39 40 41 fvmptd φ z F z = z R 𝑠 U M
43 eqid Base R 𝑠 U = Base R 𝑠 U
44 eqid R 𝑠 U = R 𝑠 U
45 1 2 3 primrootsunit φ R PrimRoots K = R 𝑠 U PrimRoots K R 𝑠 U Abel
46 45 simprd φ R 𝑠 U Abel
47 46 ablgrpd φ R 𝑠 U Grp
48 47 adantr φ z R 𝑠 U Grp
49 45 simpld φ R PrimRoots K = R 𝑠 U PrimRoots K
50 5 49 eleqtrd φ M R 𝑠 U PrimRoots K
51 46 ablcmnd φ R 𝑠 U CMnd
52 2 nnnn0d φ K 0
53 51 52 44 isprimroot φ M R 𝑠 U PrimRoots K M Base R 𝑠 U K R 𝑠 U M = 0 R 𝑠 U l 0 l R 𝑠 U M = 0 R 𝑠 U K l
54 53 biimpd φ M R 𝑠 U PrimRoots K M Base R 𝑠 U K R 𝑠 U M = 0 R 𝑠 U l 0 l R 𝑠 U M = 0 R 𝑠 U K l
55 50 54 mpd φ M Base R 𝑠 U K R 𝑠 U M = 0 R 𝑠 U l 0 l R 𝑠 U M = 0 R 𝑠 U K l
56 55 simp1d φ M Base R 𝑠 U
57 56 adantr φ z M Base R 𝑠 U
58 43 44 48 40 57 mulgcld φ z z R 𝑠 U M Base R 𝑠 U
59 42 58 eqeltrd φ z F z Base R 𝑠 U
60 36 59 syl φ v F v = w z F z = w F z Base R 𝑠 U
61 33 60 eqeltrd φ v F v = w z F z = w w Base R 𝑠 U
62 nfv z F v = w
63 nfv v F z = w
64 fveqeq2 v = z F v = w F z = w
65 62 63 64 cbvrexw v F v = w z F z = w
66 65 biimpi v F v = w z F z = w
67 66 adantl φ v F v = w z F z = w
68 61 67 r19.29a φ v F v = w w Base R 𝑠 U
69 68 ex φ v F v = w w Base R 𝑠 U
70 69 adantr φ w ran F v F v = w w Base R 𝑠 U
71 70 imp φ w ran F v F v = w w Base R 𝑠 U
72 31 71 mpdan φ w ran F w Base R 𝑠 U
73 72 ex φ w ran F w Base R 𝑠 U
74 73 ssrdv φ ran F Base R 𝑠 U
75 13 43 ressbas2 ran F Base R 𝑠 U ran F = Base R 𝑠 U 𝑠 ran F
76 74 75 syl φ ran F = Base R 𝑠 U 𝑠 ran F
77 76 feq3d φ F : ran F F : Base R 𝑠 U 𝑠 ran F
78 27 77 mpbid φ F : Base R 𝑠 U 𝑠 ran F
79 4 a1i φ y z F = x x R 𝑠 U M
80 simpr φ y z x = y + z x = y + z
81 80 oveq1d φ y z x = y + z x R 𝑠 U M = y + z R 𝑠 U M
82 simprl φ y z y
83 simprr φ y z z
84 82 83 zaddcld φ y z y + z
85 ovexd φ y z y + z R 𝑠 U M V
86 79 81 84 85 fvmptd φ y z F y + z = y + z R 𝑠 U M
87 47 adantr φ y z R 𝑠 U Grp
88 56 adantr φ y z M Base R 𝑠 U
89 82 83 88 3jca φ y z y z M Base R 𝑠 U
90 43 44 14 mulgdir R 𝑠 U Grp y z M Base R 𝑠 U y + z R 𝑠 U M = y R 𝑠 U M + R 𝑠 U z R 𝑠 U M
91 87 89 90 syl2anc φ y z y + z R 𝑠 U M = y R 𝑠 U M + R 𝑠 U z R 𝑠 U M
92 simpr φ y z x = y x = y
93 92 oveq1d φ y z x = y x R 𝑠 U M = y R 𝑠 U M
94 ovexd φ y z y R 𝑠 U M V
95 79 93 82 94 fvmptd φ y z F y = y R 𝑠 U M
96 simpr φ y z x = z x = z
97 96 oveq1d φ y z x = z x R 𝑠 U M = z R 𝑠 U M
98 ovexd φ y z z R 𝑠 U M V
99 79 97 83 98 fvmptd φ y z F z = z R 𝑠 U M
100 95 99 oveq12d φ y z F y + R 𝑠 U F z = y R 𝑠 U M + R 𝑠 U z R 𝑠 U M
101 100 eqcomd φ y z y R 𝑠 U M + R 𝑠 U z R 𝑠 U M = F y + R 𝑠 U F z
102 91 101 eqtrd φ y z y + z R 𝑠 U M = F y + R 𝑠 U F z
103 86 102 eqtrd φ y z F y + z = F y + R 𝑠 U F z
104 6 7 8 16 20 21 78 103 isghmd φ F ring GrpHom R 𝑠 U 𝑠 ran F