Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6isolem1.1 |
|
2 |
|
aks6d1c6isolem1.2 |
|
3 |
|
aks6d1c6isolem1.3 |
|
4 |
|
aks6d1c6isolem1.4 |
|
5 |
|
aks6d1c6isolem1.5 |
|
6 |
|
zringbas |
|
7 |
|
eqid |
|
8 |
|
zringplusg |
|
9 |
|
zex |
|
10 |
9
|
mptex |
|
11 |
4 10
|
eqeltri |
|
12 |
11
|
rnex |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14
|
ressplusg |
|
16 |
12 15
|
ax-mp |
|
17 |
|
zringring |
|
18 |
17
|
a1i |
|
19 |
|
ringgrp |
|
20 |
18 19
|
syl |
|
21 |
1 2 3 4 5
|
aks6d1c6isolem1 |
|
22 |
|
ovexd |
|
23 |
22 4
|
fmptd |
|
24 |
|
ffn |
|
25 |
23 24
|
syl |
|
26 |
|
dffn3 |
|
27 |
25 26
|
sylib |
|
28 |
|
fvelrnb |
|
29 |
25 28
|
syl |
|
30 |
29
|
biimpd |
|
31 |
30
|
imp |
|
32 |
|
simpr |
|
33 |
32
|
eqcomd |
|
34 |
|
simplll |
|
35 |
|
simplr |
|
36 |
34 35
|
jca |
|
37 |
4
|
a1i |
|
38 |
|
simpr |
|
39 |
38
|
oveq1d |
|
40 |
|
simpr |
|
41 |
|
ovexd |
|
42 |
37 39 40 41
|
fvmptd |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
1 2 3
|
primrootsunit |
|
46 |
45
|
simprd |
|
47 |
46
|
ablgrpd |
|
48 |
47
|
adantr |
|
49 |
45
|
simpld |
|
50 |
5 49
|
eleqtrd |
|
51 |
46
|
ablcmnd |
|
52 |
2
|
nnnn0d |
|
53 |
51 52 44
|
isprimroot |
|
54 |
53
|
biimpd |
|
55 |
50 54
|
mpd |
|
56 |
55
|
simp1d |
|
57 |
56
|
adantr |
|
58 |
43 44 48 40 57
|
mulgcld |
|
59 |
42 58
|
eqeltrd |
|
60 |
36 59
|
syl |
|
61 |
33 60
|
eqeltrd |
|
62 |
|
nfv |
|
63 |
|
nfv |
|
64 |
|
fveqeq2 |
|
65 |
62 63 64
|
cbvrexw |
|
66 |
65
|
biimpi |
|
67 |
66
|
adantl |
|
68 |
61 67
|
r19.29a |
|
69 |
68
|
ex |
|
70 |
69
|
adantr |
|
71 |
70
|
imp |
|
72 |
31 71
|
mpdan |
|
73 |
72
|
ex |
|
74 |
73
|
ssrdv |
|
75 |
13 43
|
ressbas2 |
|
76 |
74 75
|
syl |
|
77 |
76
|
feq3d |
|
78 |
27 77
|
mpbid |
|
79 |
4
|
a1i |
|
80 |
|
simpr |
|
81 |
80
|
oveq1d |
|
82 |
|
simprl |
|
83 |
|
simprr |
|
84 |
82 83
|
zaddcld |
|
85 |
|
ovexd |
|
86 |
79 81 84 85
|
fvmptd |
|
87 |
47
|
adantr |
|
88 |
56
|
adantr |
|
89 |
82 83 88
|
3jca |
|
90 |
43 44 14
|
mulgdir |
|
91 |
87 89 90
|
syl2anc |
|
92 |
|
simpr |
|
93 |
92
|
oveq1d |
|
94 |
|
ovexd |
|
95 |
79 93 82 94
|
fvmptd |
|
96 |
|
simpr |
|
97 |
96
|
oveq1d |
|
98 |
|
ovexd |
|
99 |
79 97 83 98
|
fvmptd |
|
100 |
95 99
|
oveq12d |
|
101 |
100
|
eqcomd |
|
102 |
91 101
|
eqtrd |
|
103 |
86 102
|
eqtrd |
|
104 |
6 7 8 16 20 21 78 103
|
isghmd |
|