| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6isolem1.1 |  | 
						
							| 2 |  | aks6d1c6isolem1.2 |  | 
						
							| 3 |  | aks6d1c6isolem1.3 |  | 
						
							| 4 |  | aks6d1c6isolem1.4 |  | 
						
							| 5 |  | aks6d1c6isolem1.5 |  | 
						
							| 6 |  | zringbas |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | zringplusg |  | 
						
							| 9 |  | zex |  | 
						
							| 10 | 9 | mptex |  | 
						
							| 11 | 4 10 | eqeltri |  | 
						
							| 12 | 11 | rnex |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 13 14 | ressplusg |  | 
						
							| 16 | 12 15 | ax-mp |  | 
						
							| 17 |  | zringring |  | 
						
							| 18 | 17 | a1i |  | 
						
							| 19 |  | ringgrp |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 | 1 2 3 4 5 | aks6d1c6isolem1 |  | 
						
							| 22 |  | ovexd |  | 
						
							| 23 | 22 4 | fmptd |  | 
						
							| 24 |  | ffn |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 |  | dffn3 |  | 
						
							| 27 | 25 26 | sylib |  | 
						
							| 28 |  | fvelrnb |  | 
						
							| 29 | 25 28 | syl |  | 
						
							| 30 | 29 | biimpd |  | 
						
							| 31 | 30 | imp |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 32 | eqcomd |  | 
						
							| 34 |  | simplll |  | 
						
							| 35 |  | simplr |  | 
						
							| 36 | 34 35 | jca |  | 
						
							| 37 | 4 | a1i |  | 
						
							| 38 |  | simpr |  | 
						
							| 39 | 38 | oveq1d |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 |  | ovexd |  | 
						
							| 42 | 37 39 40 41 | fvmptd |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 1 2 3 | primrootsunit |  | 
						
							| 46 | 45 | simprd |  | 
						
							| 47 | 46 | ablgrpd |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 45 | simpld |  | 
						
							| 50 | 5 49 | eleqtrd |  | 
						
							| 51 | 46 | ablcmnd |  | 
						
							| 52 | 2 | nnnn0d |  | 
						
							| 53 | 51 52 44 | isprimroot |  | 
						
							| 54 | 53 | biimpd |  | 
						
							| 55 | 50 54 | mpd |  | 
						
							| 56 | 55 | simp1d |  | 
						
							| 57 | 56 | adantr |  | 
						
							| 58 | 43 44 48 40 57 | mulgcld |  | 
						
							| 59 | 42 58 | eqeltrd |  | 
						
							| 60 | 36 59 | syl |  | 
						
							| 61 | 33 60 | eqeltrd |  | 
						
							| 62 |  | nfv |  | 
						
							| 63 |  | nfv |  | 
						
							| 64 |  | fveqeq2 |  | 
						
							| 65 | 62 63 64 | cbvrexw |  | 
						
							| 66 | 65 | biimpi |  | 
						
							| 67 | 66 | adantl |  | 
						
							| 68 | 61 67 | r19.29a |  | 
						
							| 69 | 68 | ex |  | 
						
							| 70 | 69 | adantr |  | 
						
							| 71 | 70 | imp |  | 
						
							| 72 | 31 71 | mpdan |  | 
						
							| 73 | 72 | ex |  | 
						
							| 74 | 73 | ssrdv |  | 
						
							| 75 | 13 43 | ressbas2 |  | 
						
							| 76 | 74 75 | syl |  | 
						
							| 77 | 76 | feq3d |  | 
						
							| 78 | 27 77 | mpbid |  | 
						
							| 79 | 4 | a1i |  | 
						
							| 80 |  | simpr |  | 
						
							| 81 | 80 | oveq1d |  | 
						
							| 82 |  | simprl |  | 
						
							| 83 |  | simprr |  | 
						
							| 84 | 82 83 | zaddcld |  | 
						
							| 85 |  | ovexd |  | 
						
							| 86 | 79 81 84 85 | fvmptd |  | 
						
							| 87 | 47 | adantr |  | 
						
							| 88 | 56 | adantr |  | 
						
							| 89 | 82 83 88 | 3jca |  | 
						
							| 90 | 43 44 14 | mulgdir |  | 
						
							| 91 | 87 89 90 | syl2anc |  | 
						
							| 92 |  | simpr |  | 
						
							| 93 | 92 | oveq1d |  | 
						
							| 94 |  | ovexd |  | 
						
							| 95 | 79 93 82 94 | fvmptd |  | 
						
							| 96 |  | simpr |  | 
						
							| 97 | 96 | oveq1d |  | 
						
							| 98 |  | ovexd |  | 
						
							| 99 | 79 97 83 98 | fvmptd |  | 
						
							| 100 | 95 99 | oveq12d |  | 
						
							| 101 | 100 | eqcomd |  | 
						
							| 102 | 91 101 | eqtrd |  | 
						
							| 103 | 86 102 | eqtrd |  | 
						
							| 104 | 6 7 8 16 20 21 78 103 | isghmd |  |