Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6isolem1.1 |
|
2 |
|
aks6d1c6isolem1.2 |
|
3 |
|
aks6d1c6isolem1.3 |
|
4 |
|
aks6d1c6isolem1.4 |
|
5 |
|
aks6d1c6isolem1.5 |
|
6 |
|
eqidd |
|
7 |
|
eqidd |
|
8 |
|
eqidd |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
1 2 3
|
primrootsunit |
|
12 |
11
|
simprd |
|
13 |
12
|
ablgrpd |
|
14 |
13
|
adantr |
|
15 |
|
simpr |
|
16 |
11
|
simpld |
|
17 |
5 16
|
eleqtrd |
|
18 |
12
|
ablcmnd |
|
19 |
2
|
nnnn0d |
|
20 |
18 19 10
|
isprimroot |
|
21 |
20
|
biimpd |
|
22 |
17 21
|
mpd |
|
23 |
22
|
simp1d |
|
24 |
23
|
adantr |
|
25 |
9 10 14 15 24
|
mulgcld |
|
26 |
25 4
|
fmptd |
|
27 |
|
frn |
|
28 |
26 27
|
syl |
|
29 |
|
0zd |
|
30 |
|
simpr |
|
31 |
30
|
fveqeq2d |
|
32 |
4
|
a1i |
|
33 |
|
simpr |
|
34 |
33
|
oveq1d |
|
35 |
|
eqid |
|
36 |
9 35 10
|
mulg0 |
|
37 |
23 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
34 38
|
eqtrd |
|
40 |
|
fvexd |
|
41 |
32 39 29 40
|
fvmptd |
|
42 |
29 31 41
|
rspcedvd |
|
43 |
26
|
ffnd |
|
44 |
|
fvelrnb |
|
45 |
43 44
|
syl |
|
46 |
42 45
|
mpbird |
|
47 |
|
fvelrnb |
|
48 |
43 47
|
syl |
|
49 |
48
|
biimpd |
|
50 |
49
|
imp |
|
51 |
50
|
3adant3 |
|
52 |
|
simpl1 |
|
53 |
|
simpl3 |
|
54 |
52 53
|
jca |
|
55 |
|
fvelrnb |
|
56 |
43 55
|
syl |
|
57 |
56
|
biimpd |
|
58 |
57
|
imp |
|
59 |
54 58
|
syl |
|
60 |
|
simpll1 |
|
61 |
|
simplr |
|
62 |
|
simpr |
|
63 |
60 61 62
|
3jca |
|
64 |
|
simpr |
|
65 |
64
|
eqcomd |
|
66 |
65
|
oveq2d |
|
67 |
|
simpr |
|
68 |
67
|
eqcomd |
|
69 |
68
|
oveq1d |
|
70 |
|
simpll1 |
|
71 |
70
|
adantr |
|
72 |
|
simpllr |
|
73 |
|
simplr |
|
74 |
71 72 73
|
3jca |
|
75 |
4
|
a1i |
|
76 |
|
simpr |
|
77 |
76
|
oveq1d |
|
78 |
|
simp3 |
|
79 |
|
ovexd |
|
80 |
75 77 78 79
|
fvmptd |
|
81 |
|
simpr |
|
82 |
81
|
oveq1d |
|
83 |
|
simp2 |
|
84 |
|
ovexd |
|
85 |
75 82 83 84
|
fvmptd |
|
86 |
80 85
|
oveq12d |
|
87 |
13
|
3ad2ant1 |
|
88 |
23
|
3ad2ant1 |
|
89 |
78 83 88
|
3jca |
|
90 |
|
eqid |
|
91 |
9 10 90
|
mulgdir |
|
92 |
87 89 91
|
syl2anc |
|
93 |
78 83
|
zaddcld |
|
94 |
|
simpr |
|
95 |
94
|
fveqeq2d |
|
96 |
|
simpr |
|
97 |
96
|
oveq1d |
|
98 |
|
ovexd |
|
99 |
75 97 93 98
|
fvmptd |
|
100 |
93 95 99
|
rspcedvd |
|
101 |
|
fvelrnb |
|
102 |
43 101
|
syl |
|
103 |
102
|
3ad2ant1 |
|
104 |
100 103
|
mpbird |
|
105 |
92 104
|
eqeltrrd |
|
106 |
86 105
|
eqeltrd |
|
107 |
74 106
|
syl |
|
108 |
69 107
|
eqeltrd |
|
109 |
|
simpl2 |
|
110 |
|
nfv |
|
111 |
|
nfv |
|
112 |
|
fveqeq2 |
|
113 |
110 111 112
|
cbvrexw |
|
114 |
113
|
biimpi |
|
115 |
109 114
|
syl |
|
116 |
108 115
|
r19.29a |
|
117 |
116
|
adantr |
|
118 |
66 117
|
eqeltrd |
|
119 |
|
simp3 |
|
120 |
|
nfv |
|
121 |
|
nfv |
|
122 |
|
fveqeq2 |
|
123 |
120 121 122
|
cbvrexw |
|
124 |
123
|
biimpi |
|
125 |
119 124
|
syl |
|
126 |
118 125
|
r19.29a |
|
127 |
63 126
|
syl |
|
128 |
127
|
ex |
|
129 |
59 128
|
mpd |
|
130 |
51 129
|
mpdan |
|
131 |
|
simpr |
|
132 |
131
|
eqcomd |
|
133 |
132
|
fveq2d |
|
134 |
|
simplll |
|
135 |
|
simplr |
|
136 |
134 135
|
jca |
|
137 |
|
simpr |
|
138 |
137
|
znegcld |
|
139 |
|
simpr |
|
140 |
139
|
fveqeq2d |
|
141 |
4
|
a1i |
|
142 |
|
simpr |
|
143 |
142
|
oveq1d |
|
144 |
|
ovexd |
|
145 |
141 143 138 144
|
fvmptd |
|
146 |
13
|
adantr |
|
147 |
23
|
adantr |
|
148 |
|
eqid |
|
149 |
9 10 148
|
mulgneg |
|
150 |
146 137 147 149
|
syl3anc |
|
151 |
|
simpr |
|
152 |
151
|
oveq1d |
|
153 |
|
ovexd |
|
154 |
141 152 137 153
|
fvmptd |
|
155 |
154
|
eqcomd |
|
156 |
155
|
fveq2d |
|
157 |
150 156
|
eqtrd |
|
158 |
145 157
|
eqtrd |
|
159 |
138 140 158
|
rspcedvd |
|
160 |
|
fvelrnb |
|
161 |
43 160
|
syl |
|
162 |
161
|
adantr |
|
163 |
159 162
|
mpbird |
|
164 |
163
|
a1i |
|
165 |
136 164
|
mpd |
|
166 |
133 165
|
eqeltrd |
|
167 |
114
|
adantl |
|
168 |
166 167
|
r19.29a |
|
169 |
168
|
ex |
|
170 |
169
|
adantr |
|
171 |
170
|
imp |
|
172 |
50 171
|
mpdan |
|
173 |
6 7 8 28 46 130 172 13
|
issubgrpd |
|