Metamath Proof Explorer


Theorem aks6d1c6isolem1

Description: Lemma to construct the map out of the quotient for AKS. (Contributed by metakunt, 14-May-2025)

Ref Expression
Hypotheses aks6d1c6isolem1.1 φ R CMnd
aks6d1c6isolem1.2 φ K
aks6d1c6isolem1.3 U = a Base R | i Base R i + R a = 0 R
aks6d1c6isolem1.4 F = x x R 𝑠 U M
aks6d1c6isolem1.5 φ M R PrimRoots K
Assertion aks6d1c6isolem1 φ R 𝑠 U 𝑠 ran F Grp

Proof

Step Hyp Ref Expression
1 aks6d1c6isolem1.1 φ R CMnd
2 aks6d1c6isolem1.2 φ K
3 aks6d1c6isolem1.3 U = a Base R | i Base R i + R a = 0 R
4 aks6d1c6isolem1.4 F = x x R 𝑠 U M
5 aks6d1c6isolem1.5 φ M R PrimRoots K
6 eqidd φ R 𝑠 U 𝑠 ran F = R 𝑠 U 𝑠 ran F
7 eqidd φ 0 R 𝑠 U = 0 R 𝑠 U
8 eqidd φ + R 𝑠 U = + R 𝑠 U
9 eqid Base R 𝑠 U = Base R 𝑠 U
10 eqid R 𝑠 U = R 𝑠 U
11 1 2 3 primrootsunit φ R PrimRoots K = R 𝑠 U PrimRoots K R 𝑠 U Abel
12 11 simprd φ R 𝑠 U Abel
13 12 ablgrpd φ R 𝑠 U Grp
14 13 adantr φ x R 𝑠 U Grp
15 simpr φ x x
16 11 simpld φ R PrimRoots K = R 𝑠 U PrimRoots K
17 5 16 eleqtrd φ M R 𝑠 U PrimRoots K
18 12 ablcmnd φ R 𝑠 U CMnd
19 2 nnnn0d φ K 0
20 18 19 10 isprimroot φ M R 𝑠 U PrimRoots K M Base R 𝑠 U K R 𝑠 U M = 0 R 𝑠 U l 0 l R 𝑠 U M = 0 R 𝑠 U K l
21 20 biimpd φ M R 𝑠 U PrimRoots K M Base R 𝑠 U K R 𝑠 U M = 0 R 𝑠 U l 0 l R 𝑠 U M = 0 R 𝑠 U K l
22 17 21 mpd φ M Base R 𝑠 U K R 𝑠 U M = 0 R 𝑠 U l 0 l R 𝑠 U M = 0 R 𝑠 U K l
23 22 simp1d φ M Base R 𝑠 U
24 23 adantr φ x M Base R 𝑠 U
25 9 10 14 15 24 mulgcld φ x x R 𝑠 U M Base R 𝑠 U
26 25 4 fmptd φ F : Base R 𝑠 U
27 frn F : Base R 𝑠 U ran F Base R 𝑠 U
28 26 27 syl φ ran F Base R 𝑠 U
29 0zd φ 0
30 simpr φ c = 0 c = 0
31 30 fveqeq2d φ c = 0 F c = 0 R 𝑠 U F 0 = 0 R 𝑠 U
32 4 a1i φ F = x x R 𝑠 U M
33 simpr φ x = 0 x = 0
34 33 oveq1d φ x = 0 x R 𝑠 U M = 0 R 𝑠 U M
35 eqid 0 R 𝑠 U = 0 R 𝑠 U
36 9 35 10 mulg0 M Base R 𝑠 U 0 R 𝑠 U M = 0 R 𝑠 U
37 23 36 syl φ 0 R 𝑠 U M = 0 R 𝑠 U
38 37 adantr φ x = 0 0 R 𝑠 U M = 0 R 𝑠 U
39 34 38 eqtrd φ x = 0 x R 𝑠 U M = 0 R 𝑠 U
40 fvexd φ 0 R 𝑠 U V
41 32 39 29 40 fvmptd φ F 0 = 0 R 𝑠 U
42 29 31 41 rspcedvd φ c F c = 0 R 𝑠 U
43 26 ffnd φ F Fn
44 fvelrnb F Fn 0 R 𝑠 U ran F c F c = 0 R 𝑠 U
45 43 44 syl φ 0 R 𝑠 U ran F c F c = 0 R 𝑠 U
46 42 45 mpbird φ 0 R 𝑠 U ran F
47 fvelrnb F Fn y ran F d F d = y
48 43 47 syl φ y ran F d F d = y
49 48 biimpd φ y ran F d F d = y
50 49 imp φ y ran F d F d = y
51 50 3adant3 φ y ran F z ran F d F d = y
52 simpl1 φ y ran F z ran F d F d = y φ
53 simpl3 φ y ran F z ran F d F d = y z ran F
54 52 53 jca φ y ran F z ran F d F d = y φ z ran F
55 fvelrnb F Fn z ran F e F e = z
56 43 55 syl φ z ran F e F e = z
57 56 biimpd φ z ran F e F e = z
58 57 imp φ z ran F e F e = z
59 54 58 syl φ y ran F z ran F d F d = y e F e = z
60 simpll1 φ y ran F z ran F d F d = y e F e = z φ
61 simplr φ y ran F z ran F d F d = y e F e = z d F d = y
62 simpr φ y ran F z ran F d F d = y e F e = z e F e = z
63 60 61 62 3jca φ y ran F z ran F d F d = y e F e = z φ d F d = y e F e = z
64 simpr φ d F d = y e F e = z g F g = z F g = z
65 64 eqcomd φ d F d = y e F e = z g F g = z z = F g
66 65 oveq2d φ d F d = y e F e = z g F g = z y + R 𝑠 U z = y + R 𝑠 U F g
67 simpr φ d F d = y e F e = z g f F f = y F f = y
68 67 eqcomd φ d F d = y e F e = z g f F f = y y = F f
69 68 oveq1d φ d F d = y e F e = z g f F f = y y + R 𝑠 U F g = F f + R 𝑠 U F g
70 simpll1 φ d F d = y e F e = z g f φ
71 70 adantr φ d F d = y e F e = z g f F f = y φ
72 simpllr φ d F d = y e F e = z g f F f = y g
73 simplr φ d F d = y e F e = z g f F f = y f
74 71 72 73 3jca φ d F d = y e F e = z g f F f = y φ g f
75 4 a1i φ g f F = x x R 𝑠 U M
76 simpr φ g f x = f x = f
77 76 oveq1d φ g f x = f x R 𝑠 U M = f R 𝑠 U M
78 simp3 φ g f f
79 ovexd φ g f f R 𝑠 U M V
80 75 77 78 79 fvmptd φ g f F f = f R 𝑠 U M
81 simpr φ g f x = g x = g
82 81 oveq1d φ g f x = g x R 𝑠 U M = g R 𝑠 U M
83 simp2 φ g f g
84 ovexd φ g f g R 𝑠 U M V
85 75 82 83 84 fvmptd φ g f F g = g R 𝑠 U M
86 80 85 oveq12d φ g f F f + R 𝑠 U F g = f R 𝑠 U M + R 𝑠 U g R 𝑠 U M
87 13 3ad2ant1 φ g f R 𝑠 U Grp
88 23 3ad2ant1 φ g f M Base R 𝑠 U
89 78 83 88 3jca φ g f f g M Base R 𝑠 U
90 eqid + R 𝑠 U = + R 𝑠 U
91 9 10 90 mulgdir R 𝑠 U Grp f g M Base R 𝑠 U f + g R 𝑠 U M = f R 𝑠 U M + R 𝑠 U g R 𝑠 U M
92 87 89 91 syl2anc φ g f f + g R 𝑠 U M = f R 𝑠 U M + R 𝑠 U g R 𝑠 U M
93 78 83 zaddcld φ g f f + g
94 simpr φ g f h = f + g h = f + g
95 94 fveqeq2d φ g f h = f + g F h = f + g R 𝑠 U M F f + g = f + g R 𝑠 U M
96 simpr φ g f x = f + g x = f + g
97 96 oveq1d φ g f x = f + g x R 𝑠 U M = f + g R 𝑠 U M
98 ovexd φ g f f + g R 𝑠 U M V
99 75 97 93 98 fvmptd φ g f F f + g = f + g R 𝑠 U M
100 93 95 99 rspcedvd φ g f h F h = f + g R 𝑠 U M
101 fvelrnb F Fn f + g R 𝑠 U M ran F h F h = f + g R 𝑠 U M
102 43 101 syl φ f + g R 𝑠 U M ran F h F h = f + g R 𝑠 U M
103 102 3ad2ant1 φ g f f + g R 𝑠 U M ran F h F h = f + g R 𝑠 U M
104 100 103 mpbird φ g f f + g R 𝑠 U M ran F
105 92 104 eqeltrrd φ g f f R 𝑠 U M + R 𝑠 U g R 𝑠 U M ran F
106 86 105 eqeltrd φ g f F f + R 𝑠 U F g ran F
107 74 106 syl φ d F d = y e F e = z g f F f = y F f + R 𝑠 U F g ran F
108 69 107 eqeltrd φ d F d = y e F e = z g f F f = y y + R 𝑠 U F g ran F
109 simpl2 φ d F d = y e F e = z g d F d = y
110 nfv f F d = y
111 nfv d F f = y
112 fveqeq2 d = f F d = y F f = y
113 110 111 112 cbvrexw d F d = y f F f = y
114 113 biimpi d F d = y f F f = y
115 109 114 syl φ d F d = y e F e = z g f F f = y
116 108 115 r19.29a φ d F d = y e F e = z g y + R 𝑠 U F g ran F
117 116 adantr φ d F d = y e F e = z g F g = z y + R 𝑠 U F g ran F
118 66 117 eqeltrd φ d F d = y e F e = z g F g = z y + R 𝑠 U z ran F
119 simp3 φ d F d = y e F e = z e F e = z
120 nfv g F e = z
121 nfv e F g = z
122 fveqeq2 e = g F e = z F g = z
123 120 121 122 cbvrexw e F e = z g F g = z
124 123 biimpi e F e = z g F g = z
125 119 124 syl φ d F d = y e F e = z g F g = z
126 118 125 r19.29a φ d F d = y e F e = z y + R 𝑠 U z ran F
127 63 126 syl φ y ran F z ran F d F d = y e F e = z y + R 𝑠 U z ran F
128 127 ex φ y ran F z ran F d F d = y e F e = z y + R 𝑠 U z ran F
129 59 128 mpd φ y ran F z ran F d F d = y y + R 𝑠 U z ran F
130 51 129 mpdan φ y ran F z ran F y + R 𝑠 U z ran F
131 simpr φ d F d = y f F f = y F f = y
132 131 eqcomd φ d F d = y f F f = y y = F f
133 132 fveq2d φ d F d = y f F f = y inv g R 𝑠 U y = inv g R 𝑠 U F f
134 simplll φ d F d = y f F f = y φ
135 simplr φ d F d = y f F f = y f
136 134 135 jca φ d F d = y f F f = y φ f
137 simpr φ f f
138 137 znegcld φ f f
139 simpr φ f h = f h = f
140 139 fveqeq2d φ f h = f F h = inv g R 𝑠 U F f F f = inv g R 𝑠 U F f
141 4 a1i φ f F = x x R 𝑠 U M
142 simpr φ f x = f x = f
143 142 oveq1d φ f x = f x R 𝑠 U M = f R 𝑠 U M
144 ovexd φ f f R 𝑠 U M V
145 141 143 138 144 fvmptd φ f F f = f R 𝑠 U M
146 13 adantr φ f R 𝑠 U Grp
147 23 adantr φ f M Base R 𝑠 U
148 eqid inv g R 𝑠 U = inv g R 𝑠 U
149 9 10 148 mulgneg R 𝑠 U Grp f M Base R 𝑠 U f R 𝑠 U M = inv g R 𝑠 U f R 𝑠 U M
150 146 137 147 149 syl3anc φ f f R 𝑠 U M = inv g R 𝑠 U f R 𝑠 U M
151 simpr φ f x = f x = f
152 151 oveq1d φ f x = f x R 𝑠 U M = f R 𝑠 U M
153 ovexd φ f f R 𝑠 U M V
154 141 152 137 153 fvmptd φ f F f = f R 𝑠 U M
155 154 eqcomd φ f f R 𝑠 U M = F f
156 155 fveq2d φ f inv g R 𝑠 U f R 𝑠 U M = inv g R 𝑠 U F f
157 150 156 eqtrd φ f f R 𝑠 U M = inv g R 𝑠 U F f
158 145 157 eqtrd φ f F f = inv g R 𝑠 U F f
159 138 140 158 rspcedvd φ f h F h = inv g R 𝑠 U F f
160 fvelrnb F Fn inv g R 𝑠 U F f ran F h F h = inv g R 𝑠 U F f
161 43 160 syl φ inv g R 𝑠 U F f ran F h F h = inv g R 𝑠 U F f
162 161 adantr φ f inv g R 𝑠 U F f ran F h F h = inv g R 𝑠 U F f
163 159 162 mpbird φ f inv g R 𝑠 U F f ran F
164 163 a1i φ d F d = y f F f = y φ f inv g R 𝑠 U F f ran F
165 136 164 mpd φ d F d = y f F f = y inv g R 𝑠 U F f ran F
166 133 165 eqeltrd φ d F d = y f F f = y inv g R 𝑠 U y ran F
167 114 adantl φ d F d = y f F f = y
168 166 167 r19.29a φ d F d = y inv g R 𝑠 U y ran F
169 168 ex φ d F d = y inv g R 𝑠 U y ran F
170 169 adantr φ y ran F d F d = y inv g R 𝑠 U y ran F
171 170 imp φ y ran F d F d = y inv g R 𝑠 U y ran F
172 50 171 mpdan φ y ran F inv g R 𝑠 U y ran F
173 6 7 8 28 46 130 172 13 issubgrpd φ R 𝑠 U 𝑠 ran F Grp