Metamath Proof Explorer


Theorem issubgrpd

Description: Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014)

Ref Expression
Hypotheses issubgrpd.s φS=I𝑠D
issubgrpd.z φ0˙=0I
issubgrpd.p φ+˙=+I
issubgrpd.ss φDBaseI
issubgrpd.zcl φ0˙D
issubgrpd.acl φxDyDx+˙yD
issubgrpd.ncl φxDinvgIxD
issubgrpd.g φIGrp
Assertion issubgrpd φSGrp

Proof

Step Hyp Ref Expression
1 issubgrpd.s φS=I𝑠D
2 issubgrpd.z φ0˙=0I
3 issubgrpd.p φ+˙=+I
4 issubgrpd.ss φDBaseI
5 issubgrpd.zcl φ0˙D
6 issubgrpd.acl φxDyDx+˙yD
7 issubgrpd.ncl φxDinvgIxD
8 issubgrpd.g φIGrp
9 1 2 3 4 5 6 7 8 issubgrpd2 φDSubGrpI
10 eqid I𝑠D=I𝑠D
11 10 subggrp DSubGrpII𝑠DGrp
12 9 11 syl φI𝑠DGrp
13 1 12 eqeltrd φSGrp