Description: Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issubgrpd.s | |
|
issubgrpd.z | |
||
issubgrpd.p | |
||
issubgrpd.ss | |
||
issubgrpd.zcl | |
||
issubgrpd.acl | |
||
issubgrpd.ncl | |
||
issubgrpd.g | |
||
Assertion | issubgrpd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubgrpd.s | |
|
2 | issubgrpd.z | |
|
3 | issubgrpd.p | |
|
4 | issubgrpd.ss | |
|
5 | issubgrpd.zcl | |
|
6 | issubgrpd.acl | |
|
7 | issubgrpd.ncl | |
|
8 | issubgrpd.g | |
|
9 | 1 2 3 4 5 6 7 8 | issubgrpd2 | |
10 | eqid | |
|
11 | 10 | subggrp | |
12 | 9 11 | syl | |
13 | 1 12 | eqeltrd | |