Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issubgrpd.s | |
|
issubgrpd.z | |
||
issubgrpd.p | |
||
issubgrpd.ss | |
||
issubgrpd.zcl | |
||
issubgrpd.acl | |
||
issubgrpd.ncl | |
||
issubgrpd.g | |
||
Assertion | issubgrpd2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubgrpd.s | |
|
2 | issubgrpd.z | |
|
3 | issubgrpd.p | |
|
4 | issubgrpd.ss | |
|
5 | issubgrpd.zcl | |
|
6 | issubgrpd.acl | |
|
7 | issubgrpd.ncl | |
|
8 | issubgrpd.g | |
|
9 | 5 | ne0d | |
10 | 3 | oveqd | |
11 | 10 | ad2antrr | |
12 | 6 | 3expa | |
13 | 11 12 | eqeltrrd | |
14 | 13 | ralrimiva | |
15 | 14 7 | jca | |
16 | 15 | ralrimiva | |
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | 17 18 19 | issubg2 | |
21 | 8 20 | syl | |
22 | 4 9 16 21 | mpbir3and | |