Metamath Proof Explorer


Theorem issubgrpd2

Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014)

Ref Expression
Hypotheses issubgrpd.s φS=I𝑠D
issubgrpd.z φ0˙=0I
issubgrpd.p φ+˙=+I
issubgrpd.ss φDBaseI
issubgrpd.zcl φ0˙D
issubgrpd.acl φxDyDx+˙yD
issubgrpd.ncl φxDinvgIxD
issubgrpd.g φIGrp
Assertion issubgrpd2 φDSubGrpI

Proof

Step Hyp Ref Expression
1 issubgrpd.s φS=I𝑠D
2 issubgrpd.z φ0˙=0I
3 issubgrpd.p φ+˙=+I
4 issubgrpd.ss φDBaseI
5 issubgrpd.zcl φ0˙D
6 issubgrpd.acl φxDyDx+˙yD
7 issubgrpd.ncl φxDinvgIxD
8 issubgrpd.g φIGrp
9 5 ne0d φD
10 3 oveqd φx+˙y=x+Iy
11 10 ad2antrr φxDyDx+˙y=x+Iy
12 6 3expa φxDyDx+˙yD
13 11 12 eqeltrrd φxDyDx+IyD
14 13 ralrimiva φxDyDx+IyD
15 14 7 jca φxDyDx+IyDinvgIxD
16 15 ralrimiva φxDyDx+IyDinvgIxD
17 eqid BaseI=BaseI
18 eqid +I=+I
19 eqid invgI=invgI
20 17 18 19 issubg2 IGrpDSubGrpIDBaseIDxDyDx+IyDinvgIxD
21 8 20 syl φDSubGrpIDBaseIDxDyDx+IyDinvgIxD
22 4 9 16 21 mpbir3and φDSubGrpI