Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6isolem1.1 |
|- ( ph -> R e. CMnd ) |
2 |
|
aks6d1c6isolem1.2 |
|- ( ph -> K e. NN ) |
3 |
|
aks6d1c6isolem1.3 |
|- U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } |
4 |
|
aks6d1c6isolem1.4 |
|- F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) |
5 |
|
aks6d1c6isolem1.5 |
|- ( ph -> M e. ( R PrimRoots K ) ) |
6 |
|
eqidd |
|- ( ph -> ( ( R |`s U ) |`s ran F ) = ( ( R |`s U ) |`s ran F ) ) |
7 |
|
eqidd |
|- ( ph -> ( 0g ` ( R |`s U ) ) = ( 0g ` ( R |`s U ) ) ) |
8 |
|
eqidd |
|- ( ph -> ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) ) |
9 |
|
eqid |
|- ( Base ` ( R |`s U ) ) = ( Base ` ( R |`s U ) ) |
10 |
|
eqid |
|- ( .g ` ( R |`s U ) ) = ( .g ` ( R |`s U ) ) |
11 |
1 2 3
|
primrootsunit |
|- ( ph -> ( ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) /\ ( R |`s U ) e. Abel ) ) |
12 |
11
|
simprd |
|- ( ph -> ( R |`s U ) e. Abel ) |
13 |
12
|
ablgrpd |
|- ( ph -> ( R |`s U ) e. Grp ) |
14 |
13
|
adantr |
|- ( ( ph /\ x e. ZZ ) -> ( R |`s U ) e. Grp ) |
15 |
|
simpr |
|- ( ( ph /\ x e. ZZ ) -> x e. ZZ ) |
16 |
11
|
simpld |
|- ( ph -> ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) ) |
17 |
5 16
|
eleqtrd |
|- ( ph -> M e. ( ( R |`s U ) PrimRoots K ) ) |
18 |
12
|
ablcmnd |
|- ( ph -> ( R |`s U ) e. CMnd ) |
19 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
20 |
18 19 10
|
isprimroot |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) <-> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
21 |
20
|
biimpd |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
22 |
17 21
|
mpd |
|- ( ph -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
23 |
22
|
simp1d |
|- ( ph -> M e. ( Base ` ( R |`s U ) ) ) |
24 |
23
|
adantr |
|- ( ( ph /\ x e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
25 |
9 10 14 15 24
|
mulgcld |
|- ( ( ph /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) |
26 |
25 4
|
fmptd |
|- ( ph -> F : ZZ --> ( Base ` ( R |`s U ) ) ) |
27 |
|
frn |
|- ( F : ZZ --> ( Base ` ( R |`s U ) ) -> ran F C_ ( Base ` ( R |`s U ) ) ) |
28 |
26 27
|
syl |
|- ( ph -> ran F C_ ( Base ` ( R |`s U ) ) ) |
29 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
30 |
|
simpr |
|- ( ( ph /\ c = 0 ) -> c = 0 ) |
31 |
30
|
fveqeq2d |
|- ( ( ph /\ c = 0 ) -> ( ( F ` c ) = ( 0g ` ( R |`s U ) ) <-> ( F ` 0 ) = ( 0g ` ( R |`s U ) ) ) ) |
32 |
4
|
a1i |
|- ( ph -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) |
33 |
|
simpr |
|- ( ( ph /\ x = 0 ) -> x = 0 ) |
34 |
33
|
oveq1d |
|- ( ( ph /\ x = 0 ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( 0 ( .g ` ( R |`s U ) ) M ) ) |
35 |
|
eqid |
|- ( 0g ` ( R |`s U ) ) = ( 0g ` ( R |`s U ) ) |
36 |
9 35 10
|
mulg0 |
|- ( M e. ( Base ` ( R |`s U ) ) -> ( 0 ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
37 |
23 36
|
syl |
|- ( ph -> ( 0 ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ x = 0 ) -> ( 0 ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
39 |
34 38
|
eqtrd |
|- ( ( ph /\ x = 0 ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
40 |
|
fvexd |
|- ( ph -> ( 0g ` ( R |`s U ) ) e. _V ) |
41 |
32 39 29 40
|
fvmptd |
|- ( ph -> ( F ` 0 ) = ( 0g ` ( R |`s U ) ) ) |
42 |
29 31 41
|
rspcedvd |
|- ( ph -> E. c e. ZZ ( F ` c ) = ( 0g ` ( R |`s U ) ) ) |
43 |
26
|
ffnd |
|- ( ph -> F Fn ZZ ) |
44 |
|
fvelrnb |
|- ( F Fn ZZ -> ( ( 0g ` ( R |`s U ) ) e. ran F <-> E. c e. ZZ ( F ` c ) = ( 0g ` ( R |`s U ) ) ) ) |
45 |
43 44
|
syl |
|- ( ph -> ( ( 0g ` ( R |`s U ) ) e. ran F <-> E. c e. ZZ ( F ` c ) = ( 0g ` ( R |`s U ) ) ) ) |
46 |
42 45
|
mpbird |
|- ( ph -> ( 0g ` ( R |`s U ) ) e. ran F ) |
47 |
|
fvelrnb |
|- ( F Fn ZZ -> ( y e. ran F <-> E. d e. ZZ ( F ` d ) = y ) ) |
48 |
43 47
|
syl |
|- ( ph -> ( y e. ran F <-> E. d e. ZZ ( F ` d ) = y ) ) |
49 |
48
|
biimpd |
|- ( ph -> ( y e. ran F -> E. d e. ZZ ( F ` d ) = y ) ) |
50 |
49
|
imp |
|- ( ( ph /\ y e. ran F ) -> E. d e. ZZ ( F ` d ) = y ) |
51 |
50
|
3adant3 |
|- ( ( ph /\ y e. ran F /\ z e. ran F ) -> E. d e. ZZ ( F ` d ) = y ) |
52 |
|
simpl1 |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ph ) |
53 |
|
simpl3 |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> z e. ran F ) |
54 |
52 53
|
jca |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( ph /\ z e. ran F ) ) |
55 |
|
fvelrnb |
|- ( F Fn ZZ -> ( z e. ran F <-> E. e e. ZZ ( F ` e ) = z ) ) |
56 |
43 55
|
syl |
|- ( ph -> ( z e. ran F <-> E. e e. ZZ ( F ` e ) = z ) ) |
57 |
56
|
biimpd |
|- ( ph -> ( z e. ran F -> E. e e. ZZ ( F ` e ) = z ) ) |
58 |
57
|
imp |
|- ( ( ph /\ z e. ran F ) -> E. e e. ZZ ( F ` e ) = z ) |
59 |
54 58
|
syl |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> E. e e. ZZ ( F ` e ) = z ) |
60 |
|
simpll1 |
|- ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> ph ) |
61 |
|
simplr |
|- ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> E. d e. ZZ ( F ` d ) = y ) |
62 |
|
simpr |
|- ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> E. e e. ZZ ( F ` e ) = z ) |
63 |
60 61 62
|
3jca |
|- ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) ) |
64 |
|
simpr |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( F ` g ) = z ) |
65 |
64
|
eqcomd |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> z = ( F ` g ) ) |
66 |
65
|
oveq2d |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) = ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) ) |
67 |
|
simpr |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( F ` f ) = y ) |
68 |
67
|
eqcomd |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> y = ( F ` f ) ) |
69 |
68
|
oveq1d |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) = ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) ) |
70 |
|
simpll1 |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) -> ph ) |
71 |
70
|
adantr |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ph ) |
72 |
|
simpllr |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> g e. ZZ ) |
73 |
|
simplr |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> f e. ZZ ) |
74 |
71 72 73
|
3jca |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ph /\ g e. ZZ /\ f e. ZZ ) ) |
75 |
4
|
a1i |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) |
76 |
|
simpr |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = f ) -> x = f ) |
77 |
76
|
oveq1d |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = f ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( f ( .g ` ( R |`s U ) ) M ) ) |
78 |
|
simp3 |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> f e. ZZ ) |
79 |
|
ovexd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( f ( .g ` ( R |`s U ) ) M ) e. _V ) |
80 |
75 77 78 79
|
fvmptd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( F ` f ) = ( f ( .g ` ( R |`s U ) ) M ) ) |
81 |
|
simpr |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = g ) -> x = g ) |
82 |
81
|
oveq1d |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = g ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( g ( .g ` ( R |`s U ) ) M ) ) |
83 |
|
simp2 |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> g e. ZZ ) |
84 |
|
ovexd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( g ( .g ` ( R |`s U ) ) M ) e. _V ) |
85 |
75 82 83 84
|
fvmptd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( F ` g ) = ( g ( .g ` ( R |`s U ) ) M ) ) |
86 |
80 85
|
oveq12d |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) = ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) ) |
87 |
13
|
3ad2ant1 |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( R |`s U ) e. Grp ) |
88 |
23
|
3ad2ant1 |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
89 |
78 83 88
|
3jca |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( f e. ZZ /\ g e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
90 |
|
eqid |
|- ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) |
91 |
9 10 90
|
mulgdir |
|- ( ( ( R |`s U ) e. Grp /\ ( f e. ZZ /\ g e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) = ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) ) |
92 |
87 89 91
|
syl2anc |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) = ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) ) |
93 |
78 83
|
zaddcld |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( f + g ) e. ZZ ) |
94 |
|
simpr |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ h = ( f + g ) ) -> h = ( f + g ) ) |
95 |
94
|
fveqeq2d |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ h = ( f + g ) ) -> ( ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) <-> ( F ` ( f + g ) ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) |
96 |
|
simpr |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = ( f + g ) ) -> x = ( f + g ) ) |
97 |
96
|
oveq1d |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = ( f + g ) ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) |
98 |
|
ovexd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. _V ) |
99 |
75 97 93 98
|
fvmptd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( F ` ( f + g ) ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) |
100 |
93 95 99
|
rspcedvd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) |
101 |
|
fvelrnb |
|- ( F Fn ZZ -> ( ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) |
102 |
43 101
|
syl |
|- ( ph -> ( ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) |
103 |
102
|
3ad2ant1 |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) |
104 |
100 103
|
mpbird |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F ) |
105 |
92 104
|
eqeltrrd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) e. ran F ) |
106 |
86 105
|
eqeltrd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) |
107 |
74 106
|
syl |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) |
108 |
69 107
|
eqeltrd |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) |
109 |
|
simpl2 |
|- ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) -> E. d e. ZZ ( F ` d ) = y ) |
110 |
|
nfv |
|- F/ f ( F ` d ) = y |
111 |
|
nfv |
|- F/ d ( F ` f ) = y |
112 |
|
fveqeq2 |
|- ( d = f -> ( ( F ` d ) = y <-> ( F ` f ) = y ) ) |
113 |
110 111 112
|
cbvrexw |
|- ( E. d e. ZZ ( F ` d ) = y <-> E. f e. ZZ ( F ` f ) = y ) |
114 |
113
|
biimpi |
|- ( E. d e. ZZ ( F ` d ) = y -> E. f e. ZZ ( F ` f ) = y ) |
115 |
109 114
|
syl |
|- ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) -> E. f e. ZZ ( F ` f ) = y ) |
116 |
108 115
|
r19.29a |
|- ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) |
117 |
116
|
adantr |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) |
118 |
66 117
|
eqeltrd |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) |
119 |
|
simp3 |
|- ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) -> E. e e. ZZ ( F ` e ) = z ) |
120 |
|
nfv |
|- F/ g ( F ` e ) = z |
121 |
|
nfv |
|- F/ e ( F ` g ) = z |
122 |
|
fveqeq2 |
|- ( e = g -> ( ( F ` e ) = z <-> ( F ` g ) = z ) ) |
123 |
120 121 122
|
cbvrexw |
|- ( E. e e. ZZ ( F ` e ) = z <-> E. g e. ZZ ( F ` g ) = z ) |
124 |
123
|
biimpi |
|- ( E. e e. ZZ ( F ` e ) = z -> E. g e. ZZ ( F ` g ) = z ) |
125 |
119 124
|
syl |
|- ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) -> E. g e. ZZ ( F ` g ) = z ) |
126 |
118 125
|
r19.29a |
|- ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) |
127 |
63 126
|
syl |
|- ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) |
128 |
127
|
ex |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( E. e e. ZZ ( F ` e ) = z -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) ) |
129 |
59 128
|
mpd |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) |
130 |
51 129
|
mpdan |
|- ( ( ph /\ y e. ran F /\ z e. ran F ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) |
131 |
|
simpr |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( F ` f ) = y ) |
132 |
131
|
eqcomd |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> y = ( F ` f ) ) |
133 |
132
|
fveq2d |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) |
134 |
|
simplll |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ph ) |
135 |
|
simplr |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> f e. ZZ ) |
136 |
134 135
|
jca |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ph /\ f e. ZZ ) ) |
137 |
|
simpr |
|- ( ( ph /\ f e. ZZ ) -> f e. ZZ ) |
138 |
137
|
znegcld |
|- ( ( ph /\ f e. ZZ ) -> -u f e. ZZ ) |
139 |
|
simpr |
|- ( ( ( ph /\ f e. ZZ ) /\ h = -u f ) -> h = -u f ) |
140 |
139
|
fveqeq2d |
|- ( ( ( ph /\ f e. ZZ ) /\ h = -u f ) -> ( ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) <-> ( F ` -u f ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) |
141 |
4
|
a1i |
|- ( ( ph /\ f e. ZZ ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) |
142 |
|
simpr |
|- ( ( ( ph /\ f e. ZZ ) /\ x = -u f ) -> x = -u f ) |
143 |
142
|
oveq1d |
|- ( ( ( ph /\ f e. ZZ ) /\ x = -u f ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( -u f ( .g ` ( R |`s U ) ) M ) ) |
144 |
|
ovexd |
|- ( ( ph /\ f e. ZZ ) -> ( -u f ( .g ` ( R |`s U ) ) M ) e. _V ) |
145 |
141 143 138 144
|
fvmptd |
|- ( ( ph /\ f e. ZZ ) -> ( F ` -u f ) = ( -u f ( .g ` ( R |`s U ) ) M ) ) |
146 |
13
|
adantr |
|- ( ( ph /\ f e. ZZ ) -> ( R |`s U ) e. Grp ) |
147 |
23
|
adantr |
|- ( ( ph /\ f e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
148 |
|
eqid |
|- ( invg ` ( R |`s U ) ) = ( invg ` ( R |`s U ) ) |
149 |
9 10 148
|
mulgneg |
|- ( ( ( R |`s U ) e. Grp /\ f e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) -> ( -u f ( .g ` ( R |`s U ) ) M ) = ( ( invg ` ( R |`s U ) ) ` ( f ( .g ` ( R |`s U ) ) M ) ) ) |
150 |
146 137 147 149
|
syl3anc |
|- ( ( ph /\ f e. ZZ ) -> ( -u f ( .g ` ( R |`s U ) ) M ) = ( ( invg ` ( R |`s U ) ) ` ( f ( .g ` ( R |`s U ) ) M ) ) ) |
151 |
|
simpr |
|- ( ( ( ph /\ f e. ZZ ) /\ x = f ) -> x = f ) |
152 |
151
|
oveq1d |
|- ( ( ( ph /\ f e. ZZ ) /\ x = f ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( f ( .g ` ( R |`s U ) ) M ) ) |
153 |
|
ovexd |
|- ( ( ph /\ f e. ZZ ) -> ( f ( .g ` ( R |`s U ) ) M ) e. _V ) |
154 |
141 152 137 153
|
fvmptd |
|- ( ( ph /\ f e. ZZ ) -> ( F ` f ) = ( f ( .g ` ( R |`s U ) ) M ) ) |
155 |
154
|
eqcomd |
|- ( ( ph /\ f e. ZZ ) -> ( f ( .g ` ( R |`s U ) ) M ) = ( F ` f ) ) |
156 |
155
|
fveq2d |
|- ( ( ph /\ f e. ZZ ) -> ( ( invg ` ( R |`s U ) ) ` ( f ( .g ` ( R |`s U ) ) M ) ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) |
157 |
150 156
|
eqtrd |
|- ( ( ph /\ f e. ZZ ) -> ( -u f ( .g ` ( R |`s U ) ) M ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) |
158 |
145 157
|
eqtrd |
|- ( ( ph /\ f e. ZZ ) -> ( F ` -u f ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) |
159 |
138 140 158
|
rspcedvd |
|- ( ( ph /\ f e. ZZ ) -> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) |
160 |
|
fvelrnb |
|- ( F Fn ZZ -> ( ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) |
161 |
43 160
|
syl |
|- ( ph -> ( ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) |
162 |
161
|
adantr |
|- ( ( ph /\ f e. ZZ ) -> ( ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) |
163 |
159 162
|
mpbird |
|- ( ( ph /\ f e. ZZ ) -> ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F ) |
164 |
163
|
a1i |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( ph /\ f e. ZZ ) -> ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F ) ) |
165 |
136 164
|
mpd |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F ) |
166 |
133 165
|
eqeltrd |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) |
167 |
114
|
adantl |
|- ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) -> E. f e. ZZ ( F ` f ) = y ) |
168 |
166 167
|
r19.29a |
|- ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) |
169 |
168
|
ex |
|- ( ph -> ( E. d e. ZZ ( F ` d ) = y -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) ) |
170 |
169
|
adantr |
|- ( ( ph /\ y e. ran F ) -> ( E. d e. ZZ ( F ` d ) = y -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) ) |
171 |
170
|
imp |
|- ( ( ( ph /\ y e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) |
172 |
50 171
|
mpdan |
|- ( ( ph /\ y e. ran F ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) |
173 |
6 7 8 28 46 130 172 13
|
issubgrpd |
|- ( ph -> ( ( R |`s U ) |`s ran F ) e. Grp ) |