| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6isolem1.1 |  |-  ( ph -> R e. CMnd ) | 
						
							| 2 |  | aks6d1c6isolem1.2 |  |-  ( ph -> K e. NN ) | 
						
							| 3 |  | aks6d1c6isolem1.3 |  |-  U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } | 
						
							| 4 |  | aks6d1c6isolem1.4 |  |-  F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 5 |  | aks6d1c6isolem1.5 |  |-  ( ph -> M e. ( R PrimRoots K ) ) | 
						
							| 6 |  | eqidd |  |-  ( ph -> ( ( R |`s U ) |`s ran F ) = ( ( R |`s U ) |`s ran F ) ) | 
						
							| 7 |  | eqidd |  |-  ( ph -> ( 0g ` ( R |`s U ) ) = ( 0g ` ( R |`s U ) ) ) | 
						
							| 8 |  | eqidd |  |-  ( ph -> ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( R |`s U ) ) = ( Base ` ( R |`s U ) ) | 
						
							| 10 |  | eqid |  |-  ( .g ` ( R |`s U ) ) = ( .g ` ( R |`s U ) ) | 
						
							| 11 | 1 2 3 | primrootsunit |  |-  ( ph -> ( ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) /\ ( R |`s U ) e. Abel ) ) | 
						
							| 12 | 11 | simprd |  |-  ( ph -> ( R |`s U ) e. Abel ) | 
						
							| 13 | 12 | ablgrpd |  |-  ( ph -> ( R |`s U ) e. Grp ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ x e. ZZ ) -> ( R |`s U ) e. Grp ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ x e. ZZ ) -> x e. ZZ ) | 
						
							| 16 | 11 | simpld |  |-  ( ph -> ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) ) | 
						
							| 17 | 5 16 | eleqtrd |  |-  ( ph -> M e. ( ( R |`s U ) PrimRoots K ) ) | 
						
							| 18 | 12 | ablcmnd |  |-  ( ph -> ( R |`s U ) e. CMnd ) | 
						
							| 19 | 2 | nnnn0d |  |-  ( ph -> K e. NN0 ) | 
						
							| 20 | 18 19 10 | isprimroot |  |-  ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) <-> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) | 
						
							| 21 | 20 | biimpd |  |-  ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) | 
						
							| 22 | 17 21 | mpd |  |-  ( ph -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) | 
						
							| 23 | 22 | simp1d |  |-  ( ph -> M e. ( Base ` ( R |`s U ) ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ x e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) | 
						
							| 25 | 9 10 14 15 24 | mulgcld |  |-  ( ( ph /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) | 
						
							| 26 | 25 4 | fmptd |  |-  ( ph -> F : ZZ --> ( Base ` ( R |`s U ) ) ) | 
						
							| 27 |  | frn |  |-  ( F : ZZ --> ( Base ` ( R |`s U ) ) -> ran F C_ ( Base ` ( R |`s U ) ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( ph -> ran F C_ ( Base ` ( R |`s U ) ) ) | 
						
							| 29 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 30 |  | simpr |  |-  ( ( ph /\ c = 0 ) -> c = 0 ) | 
						
							| 31 | 30 | fveqeq2d |  |-  ( ( ph /\ c = 0 ) -> ( ( F ` c ) = ( 0g ` ( R |`s U ) ) <-> ( F ` 0 ) = ( 0g ` ( R |`s U ) ) ) ) | 
						
							| 32 | 4 | a1i |  |-  ( ph -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 33 |  | simpr |  |-  ( ( ph /\ x = 0 ) -> x = 0 ) | 
						
							| 34 | 33 | oveq1d |  |-  ( ( ph /\ x = 0 ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( 0 ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 35 |  | eqid |  |-  ( 0g ` ( R |`s U ) ) = ( 0g ` ( R |`s U ) ) | 
						
							| 36 | 9 35 10 | mulg0 |  |-  ( M e. ( Base ` ( R |`s U ) ) -> ( 0 ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) | 
						
							| 37 | 23 36 | syl |  |-  ( ph -> ( 0 ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ x = 0 ) -> ( 0 ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) | 
						
							| 39 | 34 38 | eqtrd |  |-  ( ( ph /\ x = 0 ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) | 
						
							| 40 |  | fvexd |  |-  ( ph -> ( 0g ` ( R |`s U ) ) e. _V ) | 
						
							| 41 | 32 39 29 40 | fvmptd |  |-  ( ph -> ( F ` 0 ) = ( 0g ` ( R |`s U ) ) ) | 
						
							| 42 | 29 31 41 | rspcedvd |  |-  ( ph -> E. c e. ZZ ( F ` c ) = ( 0g ` ( R |`s U ) ) ) | 
						
							| 43 | 26 | ffnd |  |-  ( ph -> F Fn ZZ ) | 
						
							| 44 |  | fvelrnb |  |-  ( F Fn ZZ -> ( ( 0g ` ( R |`s U ) ) e. ran F <-> E. c e. ZZ ( F ` c ) = ( 0g ` ( R |`s U ) ) ) ) | 
						
							| 45 | 43 44 | syl |  |-  ( ph -> ( ( 0g ` ( R |`s U ) ) e. ran F <-> E. c e. ZZ ( F ` c ) = ( 0g ` ( R |`s U ) ) ) ) | 
						
							| 46 | 42 45 | mpbird |  |-  ( ph -> ( 0g ` ( R |`s U ) ) e. ran F ) | 
						
							| 47 |  | fvelrnb |  |-  ( F Fn ZZ -> ( y e. ran F <-> E. d e. ZZ ( F ` d ) = y ) ) | 
						
							| 48 | 43 47 | syl |  |-  ( ph -> ( y e. ran F <-> E. d e. ZZ ( F ` d ) = y ) ) | 
						
							| 49 | 48 | biimpd |  |-  ( ph -> ( y e. ran F -> E. d e. ZZ ( F ` d ) = y ) ) | 
						
							| 50 | 49 | imp |  |-  ( ( ph /\ y e. ran F ) -> E. d e. ZZ ( F ` d ) = y ) | 
						
							| 51 | 50 | 3adant3 |  |-  ( ( ph /\ y e. ran F /\ z e. ran F ) -> E. d e. ZZ ( F ` d ) = y ) | 
						
							| 52 |  | simpl1 |  |-  ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ph ) | 
						
							| 53 |  | simpl3 |  |-  ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> z e. ran F ) | 
						
							| 54 | 52 53 | jca |  |-  ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( ph /\ z e. ran F ) ) | 
						
							| 55 |  | fvelrnb |  |-  ( F Fn ZZ -> ( z e. ran F <-> E. e e. ZZ ( F ` e ) = z ) ) | 
						
							| 56 | 43 55 | syl |  |-  ( ph -> ( z e. ran F <-> E. e e. ZZ ( F ` e ) = z ) ) | 
						
							| 57 | 56 | biimpd |  |-  ( ph -> ( z e. ran F -> E. e e. ZZ ( F ` e ) = z ) ) | 
						
							| 58 | 57 | imp |  |-  ( ( ph /\ z e. ran F ) -> E. e e. ZZ ( F ` e ) = z ) | 
						
							| 59 | 54 58 | syl |  |-  ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> E. e e. ZZ ( F ` e ) = z ) | 
						
							| 60 |  | simpll1 |  |-  ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> ph ) | 
						
							| 61 |  | simplr |  |-  ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> E. d e. ZZ ( F ` d ) = y ) | 
						
							| 62 |  | simpr |  |-  ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> E. e e. ZZ ( F ` e ) = z ) | 
						
							| 63 | 60 61 62 | 3jca |  |-  ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) ) | 
						
							| 64 |  | simpr |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( F ` g ) = z ) | 
						
							| 65 | 64 | eqcomd |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> z = ( F ` g ) ) | 
						
							| 66 | 65 | oveq2d |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) = ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) ) | 
						
							| 67 |  | simpr |  |-  ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( F ` f ) = y ) | 
						
							| 68 | 67 | eqcomd |  |-  ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> y = ( F ` f ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) = ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) ) | 
						
							| 70 |  | simpll1 |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) -> ph ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ph ) | 
						
							| 72 |  | simpllr |  |-  ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> g e. ZZ ) | 
						
							| 73 |  | simplr |  |-  ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> f e. ZZ ) | 
						
							| 74 | 71 72 73 | 3jca |  |-  ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ph /\ g e. ZZ /\ f e. ZZ ) ) | 
						
							| 75 | 4 | a1i |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 76 |  | simpr |  |-  ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = f ) -> x = f ) | 
						
							| 77 | 76 | oveq1d |  |-  ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = f ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( f ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 78 |  | simp3 |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> f e. ZZ ) | 
						
							| 79 |  | ovexd |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( f ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 80 | 75 77 78 79 | fvmptd |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( F ` f ) = ( f ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 81 |  | simpr |  |-  ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = g ) -> x = g ) | 
						
							| 82 | 81 | oveq1d |  |-  ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = g ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( g ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 83 |  | simp2 |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> g e. ZZ ) | 
						
							| 84 |  | ovexd |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( g ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 85 | 75 82 83 84 | fvmptd |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( F ` g ) = ( g ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 86 | 80 85 | oveq12d |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) = ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 87 | 13 | 3ad2ant1 |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( R |`s U ) e. Grp ) | 
						
							| 88 | 23 | 3ad2ant1 |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) | 
						
							| 89 | 78 83 88 | 3jca |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( f e. ZZ /\ g e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) | 
						
							| 90 |  | eqid |  |-  ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) | 
						
							| 91 | 9 10 90 | mulgdir |  |-  ( ( ( R |`s U ) e. Grp /\ ( f e. ZZ /\ g e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) = ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 92 | 87 89 91 | syl2anc |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) = ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 93 | 78 83 | zaddcld |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( f + g ) e. ZZ ) | 
						
							| 94 |  | simpr |  |-  ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ h = ( f + g ) ) -> h = ( f + g ) ) | 
						
							| 95 | 94 | fveqeq2d |  |-  ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ h = ( f + g ) ) -> ( ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) <-> ( F ` ( f + g ) ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 96 |  | simpr |  |-  ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = ( f + g ) ) -> x = ( f + g ) ) | 
						
							| 97 | 96 | oveq1d |  |-  ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = ( f + g ) ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 98 |  | ovexd |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 99 | 75 97 93 98 | fvmptd |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( F ` ( f + g ) ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 100 | 93 95 99 | rspcedvd |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 101 |  | fvelrnb |  |-  ( F Fn ZZ -> ( ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 102 | 43 101 | syl |  |-  ( ph -> ( ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 103 | 102 | 3ad2ant1 |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 104 | 100 103 | mpbird |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F ) | 
						
							| 105 | 92 104 | eqeltrrd |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) e. ran F ) | 
						
							| 106 | 86 105 | eqeltrd |  |-  ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) | 
						
							| 107 | 74 106 | syl |  |-  ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) | 
						
							| 108 | 69 107 | eqeltrd |  |-  ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) | 
						
							| 109 |  | simpl2 |  |-  ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) -> E. d e. ZZ ( F ` d ) = y ) | 
						
							| 110 |  | nfv |  |-  F/ f ( F ` d ) = y | 
						
							| 111 |  | nfv |  |-  F/ d ( F ` f ) = y | 
						
							| 112 |  | fveqeq2 |  |-  ( d = f -> ( ( F ` d ) = y <-> ( F ` f ) = y ) ) | 
						
							| 113 | 110 111 112 | cbvrexw |  |-  ( E. d e. ZZ ( F ` d ) = y <-> E. f e. ZZ ( F ` f ) = y ) | 
						
							| 114 | 113 | biimpi |  |-  ( E. d e. ZZ ( F ` d ) = y -> E. f e. ZZ ( F ` f ) = y ) | 
						
							| 115 | 109 114 | syl |  |-  ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) -> E. f e. ZZ ( F ` f ) = y ) | 
						
							| 116 | 108 115 | r19.29a |  |-  ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) | 
						
							| 117 | 116 | adantr |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) | 
						
							| 118 | 66 117 | eqeltrd |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) | 
						
							| 119 |  | simp3 |  |-  ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) -> E. e e. ZZ ( F ` e ) = z ) | 
						
							| 120 |  | nfv |  |-  F/ g ( F ` e ) = z | 
						
							| 121 |  | nfv |  |-  F/ e ( F ` g ) = z | 
						
							| 122 |  | fveqeq2 |  |-  ( e = g -> ( ( F ` e ) = z <-> ( F ` g ) = z ) ) | 
						
							| 123 | 120 121 122 | cbvrexw |  |-  ( E. e e. ZZ ( F ` e ) = z <-> E. g e. ZZ ( F ` g ) = z ) | 
						
							| 124 | 123 | biimpi |  |-  ( E. e e. ZZ ( F ` e ) = z -> E. g e. ZZ ( F ` g ) = z ) | 
						
							| 125 | 119 124 | syl |  |-  ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) -> E. g e. ZZ ( F ` g ) = z ) | 
						
							| 126 | 118 125 | r19.29a |  |-  ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) | 
						
							| 127 | 63 126 | syl |  |-  ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) | 
						
							| 128 | 127 | ex |  |-  ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( E. e e. ZZ ( F ` e ) = z -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) ) | 
						
							| 129 | 59 128 | mpd |  |-  ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) | 
						
							| 130 | 51 129 | mpdan |  |-  ( ( ph /\ y e. ran F /\ z e. ran F ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) | 
						
							| 131 |  | simpr |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( F ` f ) = y ) | 
						
							| 132 | 131 | eqcomd |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> y = ( F ` f ) ) | 
						
							| 133 | 132 | fveq2d |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) | 
						
							| 134 |  | simplll |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ph ) | 
						
							| 135 |  | simplr |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> f e. ZZ ) | 
						
							| 136 | 134 135 | jca |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ph /\ f e. ZZ ) ) | 
						
							| 137 |  | simpr |  |-  ( ( ph /\ f e. ZZ ) -> f e. ZZ ) | 
						
							| 138 | 137 | znegcld |  |-  ( ( ph /\ f e. ZZ ) -> -u f e. ZZ ) | 
						
							| 139 |  | simpr |  |-  ( ( ( ph /\ f e. ZZ ) /\ h = -u f ) -> h = -u f ) | 
						
							| 140 | 139 | fveqeq2d |  |-  ( ( ( ph /\ f e. ZZ ) /\ h = -u f ) -> ( ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) <-> ( F ` -u f ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) | 
						
							| 141 | 4 | a1i |  |-  ( ( ph /\ f e. ZZ ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 142 |  | simpr |  |-  ( ( ( ph /\ f e. ZZ ) /\ x = -u f ) -> x = -u f ) | 
						
							| 143 | 142 | oveq1d |  |-  ( ( ( ph /\ f e. ZZ ) /\ x = -u f ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( -u f ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 144 |  | ovexd |  |-  ( ( ph /\ f e. ZZ ) -> ( -u f ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 145 | 141 143 138 144 | fvmptd |  |-  ( ( ph /\ f e. ZZ ) -> ( F ` -u f ) = ( -u f ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 146 | 13 | adantr |  |-  ( ( ph /\ f e. ZZ ) -> ( R |`s U ) e. Grp ) | 
						
							| 147 | 23 | adantr |  |-  ( ( ph /\ f e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) | 
						
							| 148 |  | eqid |  |-  ( invg ` ( R |`s U ) ) = ( invg ` ( R |`s U ) ) | 
						
							| 149 | 9 10 148 | mulgneg |  |-  ( ( ( R |`s U ) e. Grp /\ f e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) -> ( -u f ( .g ` ( R |`s U ) ) M ) = ( ( invg ` ( R |`s U ) ) ` ( f ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 150 | 146 137 147 149 | syl3anc |  |-  ( ( ph /\ f e. ZZ ) -> ( -u f ( .g ` ( R |`s U ) ) M ) = ( ( invg ` ( R |`s U ) ) ` ( f ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 151 |  | simpr |  |-  ( ( ( ph /\ f e. ZZ ) /\ x = f ) -> x = f ) | 
						
							| 152 | 151 | oveq1d |  |-  ( ( ( ph /\ f e. ZZ ) /\ x = f ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( f ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 153 |  | ovexd |  |-  ( ( ph /\ f e. ZZ ) -> ( f ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 154 | 141 152 137 153 | fvmptd |  |-  ( ( ph /\ f e. ZZ ) -> ( F ` f ) = ( f ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 155 | 154 | eqcomd |  |-  ( ( ph /\ f e. ZZ ) -> ( f ( .g ` ( R |`s U ) ) M ) = ( F ` f ) ) | 
						
							| 156 | 155 | fveq2d |  |-  ( ( ph /\ f e. ZZ ) -> ( ( invg ` ( R |`s U ) ) ` ( f ( .g ` ( R |`s U ) ) M ) ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) | 
						
							| 157 | 150 156 | eqtrd |  |-  ( ( ph /\ f e. ZZ ) -> ( -u f ( .g ` ( R |`s U ) ) M ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) | 
						
							| 158 | 145 157 | eqtrd |  |-  ( ( ph /\ f e. ZZ ) -> ( F ` -u f ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) | 
						
							| 159 | 138 140 158 | rspcedvd |  |-  ( ( ph /\ f e. ZZ ) -> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) | 
						
							| 160 |  | fvelrnb |  |-  ( F Fn ZZ -> ( ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) | 
						
							| 161 | 43 160 | syl |  |-  ( ph -> ( ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) | 
						
							| 162 | 161 | adantr |  |-  ( ( ph /\ f e. ZZ ) -> ( ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) | 
						
							| 163 | 159 162 | mpbird |  |-  ( ( ph /\ f e. ZZ ) -> ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F ) | 
						
							| 164 | 163 | a1i |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( ph /\ f e. ZZ ) -> ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F ) ) | 
						
							| 165 | 136 164 | mpd |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F ) | 
						
							| 166 | 133 165 | eqeltrd |  |-  ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) | 
						
							| 167 | 114 | adantl |  |-  ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) -> E. f e. ZZ ( F ` f ) = y ) | 
						
							| 168 | 166 167 | r19.29a |  |-  ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) | 
						
							| 169 | 168 | ex |  |-  ( ph -> ( E. d e. ZZ ( F ` d ) = y -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) ) | 
						
							| 170 | 169 | adantr |  |-  ( ( ph /\ y e. ran F ) -> ( E. d e. ZZ ( F ` d ) = y -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) ) | 
						
							| 171 | 170 | imp |  |-  ( ( ( ph /\ y e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) | 
						
							| 172 | 50 171 | mpdan |  |-  ( ( ph /\ y e. ran F ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) | 
						
							| 173 | 6 7 8 28 46 130 172 13 | issubgrpd |  |-  ( ph -> ( ( R |`s U ) |`s ran F ) e. Grp ) |