| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c6isolem1.1 |
|- ( ph -> R e. CMnd ) |
| 2 |
|
aks6d1c6isolem1.2 |
|- ( ph -> K e. NN ) |
| 3 |
|
aks6d1c6isolem1.3 |
|- U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } |
| 4 |
|
aks6d1c6isolem1.4 |
|- F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) |
| 5 |
|
aks6d1c6isolem1.5 |
|- ( ph -> M e. ( R PrimRoots K ) ) |
| 6 |
|
eqidd |
|- ( ph -> ( ( R |`s U ) |`s ran F ) = ( ( R |`s U ) |`s ran F ) ) |
| 7 |
|
eqidd |
|- ( ph -> ( 0g ` ( R |`s U ) ) = ( 0g ` ( R |`s U ) ) ) |
| 8 |
|
eqidd |
|- ( ph -> ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) ) |
| 9 |
|
eqid |
|- ( Base ` ( R |`s U ) ) = ( Base ` ( R |`s U ) ) |
| 10 |
|
eqid |
|- ( .g ` ( R |`s U ) ) = ( .g ` ( R |`s U ) ) |
| 11 |
1 2 3
|
primrootsunit |
|- ( ph -> ( ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) /\ ( R |`s U ) e. Abel ) ) |
| 12 |
11
|
simprd |
|- ( ph -> ( R |`s U ) e. Abel ) |
| 13 |
12
|
ablgrpd |
|- ( ph -> ( R |`s U ) e. Grp ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ x e. ZZ ) -> ( R |`s U ) e. Grp ) |
| 15 |
|
simpr |
|- ( ( ph /\ x e. ZZ ) -> x e. ZZ ) |
| 16 |
11
|
simpld |
|- ( ph -> ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) ) |
| 17 |
5 16
|
eleqtrd |
|- ( ph -> M e. ( ( R |`s U ) PrimRoots K ) ) |
| 18 |
12
|
ablcmnd |
|- ( ph -> ( R |`s U ) e. CMnd ) |
| 19 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
| 20 |
18 19 10
|
isprimroot |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) <-> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
| 21 |
20
|
biimpd |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
| 22 |
17 21
|
mpd |
|- ( ph -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
| 23 |
22
|
simp1d |
|- ( ph -> M e. ( Base ` ( R |`s U ) ) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ x e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
| 25 |
9 10 14 15 24
|
mulgcld |
|- ( ( ph /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) |
| 26 |
25 4
|
fmptd |
|- ( ph -> F : ZZ --> ( Base ` ( R |`s U ) ) ) |
| 27 |
|
frn |
|- ( F : ZZ --> ( Base ` ( R |`s U ) ) -> ran F C_ ( Base ` ( R |`s U ) ) ) |
| 28 |
26 27
|
syl |
|- ( ph -> ran F C_ ( Base ` ( R |`s U ) ) ) |
| 29 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 30 |
|
simpr |
|- ( ( ph /\ c = 0 ) -> c = 0 ) |
| 31 |
30
|
fveqeq2d |
|- ( ( ph /\ c = 0 ) -> ( ( F ` c ) = ( 0g ` ( R |`s U ) ) <-> ( F ` 0 ) = ( 0g ` ( R |`s U ) ) ) ) |
| 32 |
4
|
a1i |
|- ( ph -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) |
| 33 |
|
simpr |
|- ( ( ph /\ x = 0 ) -> x = 0 ) |
| 34 |
33
|
oveq1d |
|- ( ( ph /\ x = 0 ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( 0 ( .g ` ( R |`s U ) ) M ) ) |
| 35 |
|
eqid |
|- ( 0g ` ( R |`s U ) ) = ( 0g ` ( R |`s U ) ) |
| 36 |
9 35 10
|
mulg0 |
|- ( M e. ( Base ` ( R |`s U ) ) -> ( 0 ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 37 |
23 36
|
syl |
|- ( ph -> ( 0 ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ x = 0 ) -> ( 0 ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 39 |
34 38
|
eqtrd |
|- ( ( ph /\ x = 0 ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) ) |
| 40 |
|
fvexd |
|- ( ph -> ( 0g ` ( R |`s U ) ) e. _V ) |
| 41 |
32 39 29 40
|
fvmptd |
|- ( ph -> ( F ` 0 ) = ( 0g ` ( R |`s U ) ) ) |
| 42 |
29 31 41
|
rspcedvd |
|- ( ph -> E. c e. ZZ ( F ` c ) = ( 0g ` ( R |`s U ) ) ) |
| 43 |
26
|
ffnd |
|- ( ph -> F Fn ZZ ) |
| 44 |
|
fvelrnb |
|- ( F Fn ZZ -> ( ( 0g ` ( R |`s U ) ) e. ran F <-> E. c e. ZZ ( F ` c ) = ( 0g ` ( R |`s U ) ) ) ) |
| 45 |
43 44
|
syl |
|- ( ph -> ( ( 0g ` ( R |`s U ) ) e. ran F <-> E. c e. ZZ ( F ` c ) = ( 0g ` ( R |`s U ) ) ) ) |
| 46 |
42 45
|
mpbird |
|- ( ph -> ( 0g ` ( R |`s U ) ) e. ran F ) |
| 47 |
|
fvelrnb |
|- ( F Fn ZZ -> ( y e. ran F <-> E. d e. ZZ ( F ` d ) = y ) ) |
| 48 |
43 47
|
syl |
|- ( ph -> ( y e. ran F <-> E. d e. ZZ ( F ` d ) = y ) ) |
| 49 |
48
|
biimpd |
|- ( ph -> ( y e. ran F -> E. d e. ZZ ( F ` d ) = y ) ) |
| 50 |
49
|
imp |
|- ( ( ph /\ y e. ran F ) -> E. d e. ZZ ( F ` d ) = y ) |
| 51 |
50
|
3adant3 |
|- ( ( ph /\ y e. ran F /\ z e. ran F ) -> E. d e. ZZ ( F ` d ) = y ) |
| 52 |
|
simpl1 |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ph ) |
| 53 |
|
simpl3 |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> z e. ran F ) |
| 54 |
52 53
|
jca |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( ph /\ z e. ran F ) ) |
| 55 |
|
fvelrnb |
|- ( F Fn ZZ -> ( z e. ran F <-> E. e e. ZZ ( F ` e ) = z ) ) |
| 56 |
43 55
|
syl |
|- ( ph -> ( z e. ran F <-> E. e e. ZZ ( F ` e ) = z ) ) |
| 57 |
56
|
biimpd |
|- ( ph -> ( z e. ran F -> E. e e. ZZ ( F ` e ) = z ) ) |
| 58 |
57
|
imp |
|- ( ( ph /\ z e. ran F ) -> E. e e. ZZ ( F ` e ) = z ) |
| 59 |
54 58
|
syl |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> E. e e. ZZ ( F ` e ) = z ) |
| 60 |
|
simpll1 |
|- ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> ph ) |
| 61 |
|
simplr |
|- ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> E. d e. ZZ ( F ` d ) = y ) |
| 62 |
|
simpr |
|- ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> E. e e. ZZ ( F ` e ) = z ) |
| 63 |
60 61 62
|
3jca |
|- ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) ) |
| 64 |
|
simpr |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( F ` g ) = z ) |
| 65 |
64
|
eqcomd |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> z = ( F ` g ) ) |
| 66 |
65
|
oveq2d |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) = ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) ) |
| 67 |
|
simpr |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( F ` f ) = y ) |
| 68 |
67
|
eqcomd |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> y = ( F ` f ) ) |
| 69 |
68
|
oveq1d |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) = ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) ) |
| 70 |
|
simpll1 |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) -> ph ) |
| 71 |
70
|
adantr |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ph ) |
| 72 |
|
simpllr |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> g e. ZZ ) |
| 73 |
|
simplr |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> f e. ZZ ) |
| 74 |
71 72 73
|
3jca |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ph /\ g e. ZZ /\ f e. ZZ ) ) |
| 75 |
4
|
a1i |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) |
| 76 |
|
simpr |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = f ) -> x = f ) |
| 77 |
76
|
oveq1d |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = f ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( f ( .g ` ( R |`s U ) ) M ) ) |
| 78 |
|
simp3 |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> f e. ZZ ) |
| 79 |
|
ovexd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( f ( .g ` ( R |`s U ) ) M ) e. _V ) |
| 80 |
75 77 78 79
|
fvmptd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( F ` f ) = ( f ( .g ` ( R |`s U ) ) M ) ) |
| 81 |
|
simpr |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = g ) -> x = g ) |
| 82 |
81
|
oveq1d |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = g ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( g ( .g ` ( R |`s U ) ) M ) ) |
| 83 |
|
simp2 |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> g e. ZZ ) |
| 84 |
|
ovexd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( g ( .g ` ( R |`s U ) ) M ) e. _V ) |
| 85 |
75 82 83 84
|
fvmptd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( F ` g ) = ( g ( .g ` ( R |`s U ) ) M ) ) |
| 86 |
80 85
|
oveq12d |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) = ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) ) |
| 87 |
13
|
3ad2ant1 |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( R |`s U ) e. Grp ) |
| 88 |
23
|
3ad2ant1 |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
| 89 |
78 83 88
|
3jca |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( f e. ZZ /\ g e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
| 90 |
|
eqid |
|- ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) |
| 91 |
9 10 90
|
mulgdir |
|- ( ( ( R |`s U ) e. Grp /\ ( f e. ZZ /\ g e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) = ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) ) |
| 92 |
87 89 91
|
syl2anc |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) = ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) ) |
| 93 |
78 83
|
zaddcld |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( f + g ) e. ZZ ) |
| 94 |
|
simpr |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ h = ( f + g ) ) -> h = ( f + g ) ) |
| 95 |
94
|
fveqeq2d |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ h = ( f + g ) ) -> ( ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) <-> ( F ` ( f + g ) ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) |
| 96 |
|
simpr |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = ( f + g ) ) -> x = ( f + g ) ) |
| 97 |
96
|
oveq1d |
|- ( ( ( ph /\ g e. ZZ /\ f e. ZZ ) /\ x = ( f + g ) ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) |
| 98 |
|
ovexd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. _V ) |
| 99 |
75 97 93 98
|
fvmptd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( F ` ( f + g ) ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) |
| 100 |
93 95 99
|
rspcedvd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) |
| 101 |
|
fvelrnb |
|- ( F Fn ZZ -> ( ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) |
| 102 |
43 101
|
syl |
|- ( ph -> ( ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) |
| 103 |
102
|
3ad2ant1 |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( f + g ) ( .g ` ( R |`s U ) ) M ) ) ) |
| 104 |
100 103
|
mpbird |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f + g ) ( .g ` ( R |`s U ) ) M ) e. ran F ) |
| 105 |
92 104
|
eqeltrrd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( f ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( g ( .g ` ( R |`s U ) ) M ) ) e. ran F ) |
| 106 |
86 105
|
eqeltrd |
|- ( ( ph /\ g e. ZZ /\ f e. ZZ ) -> ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) |
| 107 |
74 106
|
syl |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( F ` f ) ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) |
| 108 |
69 107
|
eqeltrd |
|- ( ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) |
| 109 |
|
simpl2 |
|- ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) -> E. d e. ZZ ( F ` d ) = y ) |
| 110 |
|
nfv |
|- F/ f ( F ` d ) = y |
| 111 |
|
nfv |
|- F/ d ( F ` f ) = y |
| 112 |
|
fveqeq2 |
|- ( d = f -> ( ( F ` d ) = y <-> ( F ` f ) = y ) ) |
| 113 |
110 111 112
|
cbvrexw |
|- ( E. d e. ZZ ( F ` d ) = y <-> E. f e. ZZ ( F ` f ) = y ) |
| 114 |
113
|
biimpi |
|- ( E. d e. ZZ ( F ` d ) = y -> E. f e. ZZ ( F ` f ) = y ) |
| 115 |
109 114
|
syl |
|- ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) -> E. f e. ZZ ( F ` f ) = y ) |
| 116 |
108 115
|
r19.29a |
|- ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) |
| 117 |
116
|
adantr |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( y ( +g ` ( R |`s U ) ) ( F ` g ) ) e. ran F ) |
| 118 |
66 117
|
eqeltrd |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) /\ g e. ZZ ) /\ ( F ` g ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) |
| 119 |
|
simp3 |
|- ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) -> E. e e. ZZ ( F ` e ) = z ) |
| 120 |
|
nfv |
|- F/ g ( F ` e ) = z |
| 121 |
|
nfv |
|- F/ e ( F ` g ) = z |
| 122 |
|
fveqeq2 |
|- ( e = g -> ( ( F ` e ) = z <-> ( F ` g ) = z ) ) |
| 123 |
120 121 122
|
cbvrexw |
|- ( E. e e. ZZ ( F ` e ) = z <-> E. g e. ZZ ( F ` g ) = z ) |
| 124 |
123
|
biimpi |
|- ( E. e e. ZZ ( F ` e ) = z -> E. g e. ZZ ( F ` g ) = z ) |
| 125 |
119 124
|
syl |
|- ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) -> E. g e. ZZ ( F ` g ) = z ) |
| 126 |
118 125
|
r19.29a |
|- ( ( ph /\ E. d e. ZZ ( F ` d ) = y /\ E. e e. ZZ ( F ` e ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) |
| 127 |
63 126
|
syl |
|- ( ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) /\ E. e e. ZZ ( F ` e ) = z ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) |
| 128 |
127
|
ex |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( E. e e. ZZ ( F ` e ) = z -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) ) |
| 129 |
59 128
|
mpd |
|- ( ( ( ph /\ y e. ran F /\ z e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) |
| 130 |
51 129
|
mpdan |
|- ( ( ph /\ y e. ran F /\ z e. ran F ) -> ( y ( +g ` ( R |`s U ) ) z ) e. ran F ) |
| 131 |
|
simpr |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( F ` f ) = y ) |
| 132 |
131
|
eqcomd |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> y = ( F ` f ) ) |
| 133 |
132
|
fveq2d |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) |
| 134 |
|
simplll |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ph ) |
| 135 |
|
simplr |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> f e. ZZ ) |
| 136 |
134 135
|
jca |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ph /\ f e. ZZ ) ) |
| 137 |
|
simpr |
|- ( ( ph /\ f e. ZZ ) -> f e. ZZ ) |
| 138 |
137
|
znegcld |
|- ( ( ph /\ f e. ZZ ) -> -u f e. ZZ ) |
| 139 |
|
simpr |
|- ( ( ( ph /\ f e. ZZ ) /\ h = -u f ) -> h = -u f ) |
| 140 |
139
|
fveqeq2d |
|- ( ( ( ph /\ f e. ZZ ) /\ h = -u f ) -> ( ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) <-> ( F ` -u f ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) |
| 141 |
4
|
a1i |
|- ( ( ph /\ f e. ZZ ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) |
| 142 |
|
simpr |
|- ( ( ( ph /\ f e. ZZ ) /\ x = -u f ) -> x = -u f ) |
| 143 |
142
|
oveq1d |
|- ( ( ( ph /\ f e. ZZ ) /\ x = -u f ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( -u f ( .g ` ( R |`s U ) ) M ) ) |
| 144 |
|
ovexd |
|- ( ( ph /\ f e. ZZ ) -> ( -u f ( .g ` ( R |`s U ) ) M ) e. _V ) |
| 145 |
141 143 138 144
|
fvmptd |
|- ( ( ph /\ f e. ZZ ) -> ( F ` -u f ) = ( -u f ( .g ` ( R |`s U ) ) M ) ) |
| 146 |
13
|
adantr |
|- ( ( ph /\ f e. ZZ ) -> ( R |`s U ) e. Grp ) |
| 147 |
23
|
adantr |
|- ( ( ph /\ f e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
| 148 |
|
eqid |
|- ( invg ` ( R |`s U ) ) = ( invg ` ( R |`s U ) ) |
| 149 |
9 10 148
|
mulgneg |
|- ( ( ( R |`s U ) e. Grp /\ f e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) -> ( -u f ( .g ` ( R |`s U ) ) M ) = ( ( invg ` ( R |`s U ) ) ` ( f ( .g ` ( R |`s U ) ) M ) ) ) |
| 150 |
146 137 147 149
|
syl3anc |
|- ( ( ph /\ f e. ZZ ) -> ( -u f ( .g ` ( R |`s U ) ) M ) = ( ( invg ` ( R |`s U ) ) ` ( f ( .g ` ( R |`s U ) ) M ) ) ) |
| 151 |
|
simpr |
|- ( ( ( ph /\ f e. ZZ ) /\ x = f ) -> x = f ) |
| 152 |
151
|
oveq1d |
|- ( ( ( ph /\ f e. ZZ ) /\ x = f ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( f ( .g ` ( R |`s U ) ) M ) ) |
| 153 |
|
ovexd |
|- ( ( ph /\ f e. ZZ ) -> ( f ( .g ` ( R |`s U ) ) M ) e. _V ) |
| 154 |
141 152 137 153
|
fvmptd |
|- ( ( ph /\ f e. ZZ ) -> ( F ` f ) = ( f ( .g ` ( R |`s U ) ) M ) ) |
| 155 |
154
|
eqcomd |
|- ( ( ph /\ f e. ZZ ) -> ( f ( .g ` ( R |`s U ) ) M ) = ( F ` f ) ) |
| 156 |
155
|
fveq2d |
|- ( ( ph /\ f e. ZZ ) -> ( ( invg ` ( R |`s U ) ) ` ( f ( .g ` ( R |`s U ) ) M ) ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) |
| 157 |
150 156
|
eqtrd |
|- ( ( ph /\ f e. ZZ ) -> ( -u f ( .g ` ( R |`s U ) ) M ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) |
| 158 |
145 157
|
eqtrd |
|- ( ( ph /\ f e. ZZ ) -> ( F ` -u f ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) |
| 159 |
138 140 158
|
rspcedvd |
|- ( ( ph /\ f e. ZZ ) -> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) |
| 160 |
|
fvelrnb |
|- ( F Fn ZZ -> ( ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) |
| 161 |
43 160
|
syl |
|- ( ph -> ( ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) |
| 162 |
161
|
adantr |
|- ( ( ph /\ f e. ZZ ) -> ( ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F <-> E. h e. ZZ ( F ` h ) = ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) ) ) |
| 163 |
159 162
|
mpbird |
|- ( ( ph /\ f e. ZZ ) -> ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F ) |
| 164 |
163
|
a1i |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( ph /\ f e. ZZ ) -> ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F ) ) |
| 165 |
136 164
|
mpd |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( invg ` ( R |`s U ) ) ` ( F ` f ) ) e. ran F ) |
| 166 |
133 165
|
eqeltrd |
|- ( ( ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) /\ f e. ZZ ) /\ ( F ` f ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) |
| 167 |
114
|
adantl |
|- ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) -> E. f e. ZZ ( F ` f ) = y ) |
| 168 |
166 167
|
r19.29a |
|- ( ( ph /\ E. d e. ZZ ( F ` d ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) |
| 169 |
168
|
ex |
|- ( ph -> ( E. d e. ZZ ( F ` d ) = y -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) ) |
| 170 |
169
|
adantr |
|- ( ( ph /\ y e. ran F ) -> ( E. d e. ZZ ( F ` d ) = y -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) ) |
| 171 |
170
|
imp |
|- ( ( ( ph /\ y e. ran F ) /\ E. d e. ZZ ( F ` d ) = y ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) |
| 172 |
50 171
|
mpdan |
|- ( ( ph /\ y e. ran F ) -> ( ( invg ` ( R |`s U ) ) ` y ) e. ran F ) |
| 173 |
6 7 8 28 46 130 172 13
|
issubgrpd |
|- ( ph -> ( ( R |`s U ) |`s ran F ) e. Grp ) |