Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6isolem1.1 |
|- ( ph -> R e. CMnd ) |
2 |
|
aks6d1c6isolem1.2 |
|- ( ph -> K e. NN ) |
3 |
|
aks6d1c6isolem1.3 |
|- U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } |
4 |
|
aks6d1c6isolem1.4 |
|- F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) |
5 |
|
aks6d1c6isolem1.5 |
|- ( ph -> M e. ( R PrimRoots K ) ) |
6 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
7 |
|
eqid |
|- ( Base ` ( ( R |`s U ) |`s ran F ) ) = ( Base ` ( ( R |`s U ) |`s ran F ) ) |
8 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
9 |
|
zex |
|- ZZ e. _V |
10 |
9
|
mptex |
|- ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) e. _V |
11 |
4 10
|
eqeltri |
|- F e. _V |
12 |
11
|
rnex |
|- ran F e. _V |
13 |
|
eqid |
|- ( ( R |`s U ) |`s ran F ) = ( ( R |`s U ) |`s ran F ) |
14 |
|
eqid |
|- ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) |
15 |
13 14
|
ressplusg |
|- ( ran F e. _V -> ( +g ` ( R |`s U ) ) = ( +g ` ( ( R |`s U ) |`s ran F ) ) ) |
16 |
12 15
|
ax-mp |
|- ( +g ` ( R |`s U ) ) = ( +g ` ( ( R |`s U ) |`s ran F ) ) |
17 |
|
zringring |
|- ZZring e. Ring |
18 |
17
|
a1i |
|- ( ph -> ZZring e. Ring ) |
19 |
|
ringgrp |
|- ( ZZring e. Ring -> ZZring e. Grp ) |
20 |
18 19
|
syl |
|- ( ph -> ZZring e. Grp ) |
21 |
1 2 3 4 5
|
aks6d1c6isolem1 |
|- ( ph -> ( ( R |`s U ) |`s ran F ) e. Grp ) |
22 |
|
ovexd |
|- ( ( ph /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) M ) e. _V ) |
23 |
22 4
|
fmptd |
|- ( ph -> F : ZZ --> _V ) |
24 |
|
ffn |
|- ( F : ZZ --> _V -> F Fn ZZ ) |
25 |
23 24
|
syl |
|- ( ph -> F Fn ZZ ) |
26 |
|
dffn3 |
|- ( F Fn ZZ <-> F : ZZ --> ran F ) |
27 |
25 26
|
sylib |
|- ( ph -> F : ZZ --> ran F ) |
28 |
|
fvelrnb |
|- ( F Fn ZZ -> ( w e. ran F <-> E. v e. ZZ ( F ` v ) = w ) ) |
29 |
25 28
|
syl |
|- ( ph -> ( w e. ran F <-> E. v e. ZZ ( F ` v ) = w ) ) |
30 |
29
|
biimpd |
|- ( ph -> ( w e. ran F -> E. v e. ZZ ( F ` v ) = w ) ) |
31 |
30
|
imp |
|- ( ( ph /\ w e. ran F ) -> E. v e. ZZ ( F ` v ) = w ) |
32 |
|
simpr |
|- ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> ( F ` z ) = w ) |
33 |
32
|
eqcomd |
|- ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> w = ( F ` z ) ) |
34 |
|
simplll |
|- ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> ph ) |
35 |
|
simplr |
|- ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> z e. ZZ ) |
36 |
34 35
|
jca |
|- ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> ( ph /\ z e. ZZ ) ) |
37 |
4
|
a1i |
|- ( ( ph /\ z e. ZZ ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) |
38 |
|
simpr |
|- ( ( ( ph /\ z e. ZZ ) /\ x = z ) -> x = z ) |
39 |
38
|
oveq1d |
|- ( ( ( ph /\ z e. ZZ ) /\ x = z ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( z ( .g ` ( R |`s U ) ) M ) ) |
40 |
|
simpr |
|- ( ( ph /\ z e. ZZ ) -> z e. ZZ ) |
41 |
|
ovexd |
|- ( ( ph /\ z e. ZZ ) -> ( z ( .g ` ( R |`s U ) ) M ) e. _V ) |
42 |
37 39 40 41
|
fvmptd |
|- ( ( ph /\ z e. ZZ ) -> ( F ` z ) = ( z ( .g ` ( R |`s U ) ) M ) ) |
43 |
|
eqid |
|- ( Base ` ( R |`s U ) ) = ( Base ` ( R |`s U ) ) |
44 |
|
eqid |
|- ( .g ` ( R |`s U ) ) = ( .g ` ( R |`s U ) ) |
45 |
1 2 3
|
primrootsunit |
|- ( ph -> ( ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) /\ ( R |`s U ) e. Abel ) ) |
46 |
45
|
simprd |
|- ( ph -> ( R |`s U ) e. Abel ) |
47 |
46
|
ablgrpd |
|- ( ph -> ( R |`s U ) e. Grp ) |
48 |
47
|
adantr |
|- ( ( ph /\ z e. ZZ ) -> ( R |`s U ) e. Grp ) |
49 |
45
|
simpld |
|- ( ph -> ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) ) |
50 |
5 49
|
eleqtrd |
|- ( ph -> M e. ( ( R |`s U ) PrimRoots K ) ) |
51 |
46
|
ablcmnd |
|- ( ph -> ( R |`s U ) e. CMnd ) |
52 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
53 |
51 52 44
|
isprimroot |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) <-> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
54 |
53
|
biimpd |
|- ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) |
55 |
50 54
|
mpd |
|- ( ph -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) |
56 |
55
|
simp1d |
|- ( ph -> M e. ( Base ` ( R |`s U ) ) ) |
57 |
56
|
adantr |
|- ( ( ph /\ z e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) |
58 |
43 44 48 40 57
|
mulgcld |
|- ( ( ph /\ z e. ZZ ) -> ( z ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) |
59 |
42 58
|
eqeltrd |
|- ( ( ph /\ z e. ZZ ) -> ( F ` z ) e. ( Base ` ( R |`s U ) ) ) |
60 |
36 59
|
syl |
|- ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> ( F ` z ) e. ( Base ` ( R |`s U ) ) ) |
61 |
33 60
|
eqeltrd |
|- ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> w e. ( Base ` ( R |`s U ) ) ) |
62 |
|
nfv |
|- F/ z ( F ` v ) = w |
63 |
|
nfv |
|- F/ v ( F ` z ) = w |
64 |
|
fveqeq2 |
|- ( v = z -> ( ( F ` v ) = w <-> ( F ` z ) = w ) ) |
65 |
62 63 64
|
cbvrexw |
|- ( E. v e. ZZ ( F ` v ) = w <-> E. z e. ZZ ( F ` z ) = w ) |
66 |
65
|
biimpi |
|- ( E. v e. ZZ ( F ` v ) = w -> E. z e. ZZ ( F ` z ) = w ) |
67 |
66
|
adantl |
|- ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) -> E. z e. ZZ ( F ` z ) = w ) |
68 |
61 67
|
r19.29a |
|- ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) -> w e. ( Base ` ( R |`s U ) ) ) |
69 |
68
|
ex |
|- ( ph -> ( E. v e. ZZ ( F ` v ) = w -> w e. ( Base ` ( R |`s U ) ) ) ) |
70 |
69
|
adantr |
|- ( ( ph /\ w e. ran F ) -> ( E. v e. ZZ ( F ` v ) = w -> w e. ( Base ` ( R |`s U ) ) ) ) |
71 |
70
|
imp |
|- ( ( ( ph /\ w e. ran F ) /\ E. v e. ZZ ( F ` v ) = w ) -> w e. ( Base ` ( R |`s U ) ) ) |
72 |
31 71
|
mpdan |
|- ( ( ph /\ w e. ran F ) -> w e. ( Base ` ( R |`s U ) ) ) |
73 |
72
|
ex |
|- ( ph -> ( w e. ran F -> w e. ( Base ` ( R |`s U ) ) ) ) |
74 |
73
|
ssrdv |
|- ( ph -> ran F C_ ( Base ` ( R |`s U ) ) ) |
75 |
13 43
|
ressbas2 |
|- ( ran F C_ ( Base ` ( R |`s U ) ) -> ran F = ( Base ` ( ( R |`s U ) |`s ran F ) ) ) |
76 |
74 75
|
syl |
|- ( ph -> ran F = ( Base ` ( ( R |`s U ) |`s ran F ) ) ) |
77 |
76
|
feq3d |
|- ( ph -> ( F : ZZ --> ran F <-> F : ZZ --> ( Base ` ( ( R |`s U ) |`s ran F ) ) ) ) |
78 |
27 77
|
mpbid |
|- ( ph -> F : ZZ --> ( Base ` ( ( R |`s U ) |`s ran F ) ) ) |
79 |
4
|
a1i |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) |
80 |
|
simpr |
|- ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = ( y + z ) ) -> x = ( y + z ) ) |
81 |
80
|
oveq1d |
|- ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = ( y + z ) ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( ( y + z ) ( .g ` ( R |`s U ) ) M ) ) |
82 |
|
simprl |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> y e. ZZ ) |
83 |
|
simprr |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> z e. ZZ ) |
84 |
82 83
|
zaddcld |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( y + z ) e. ZZ ) |
85 |
|
ovexd |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y + z ) ( .g ` ( R |`s U ) ) M ) e. _V ) |
86 |
79 81 84 85
|
fvmptd |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( F ` ( y + z ) ) = ( ( y + z ) ( .g ` ( R |`s U ) ) M ) ) |
87 |
47
|
adantr |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( R |`s U ) e. Grp ) |
88 |
56
|
adantr |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> M e. ( Base ` ( R |`s U ) ) ) |
89 |
82 83 88
|
3jca |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( y e. ZZ /\ z e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) |
90 |
43 44 14
|
mulgdir |
|- ( ( ( R |`s U ) e. Grp /\ ( y e. ZZ /\ z e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( y + z ) ( .g ` ( R |`s U ) ) M ) = ( ( y ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( z ( .g ` ( R |`s U ) ) M ) ) ) |
91 |
87 89 90
|
syl2anc |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y + z ) ( .g ` ( R |`s U ) ) M ) = ( ( y ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( z ( .g ` ( R |`s U ) ) M ) ) ) |
92 |
|
simpr |
|- ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = y ) -> x = y ) |
93 |
92
|
oveq1d |
|- ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = y ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( y ( .g ` ( R |`s U ) ) M ) ) |
94 |
|
ovexd |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( y ( .g ` ( R |`s U ) ) M ) e. _V ) |
95 |
79 93 82 94
|
fvmptd |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( F ` y ) = ( y ( .g ` ( R |`s U ) ) M ) ) |
96 |
|
simpr |
|- ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = z ) -> x = z ) |
97 |
96
|
oveq1d |
|- ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = z ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( z ( .g ` ( R |`s U ) ) M ) ) |
98 |
|
ovexd |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( z ( .g ` ( R |`s U ) ) M ) e. _V ) |
99 |
79 97 83 98
|
fvmptd |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( F ` z ) = ( z ( .g ` ( R |`s U ) ) M ) ) |
100 |
95 99
|
oveq12d |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( F ` y ) ( +g ` ( R |`s U ) ) ( F ` z ) ) = ( ( y ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( z ( .g ` ( R |`s U ) ) M ) ) ) |
101 |
100
|
eqcomd |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( z ( .g ` ( R |`s U ) ) M ) ) = ( ( F ` y ) ( +g ` ( R |`s U ) ) ( F ` z ) ) ) |
102 |
91 101
|
eqtrd |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y + z ) ( .g ` ( R |`s U ) ) M ) = ( ( F ` y ) ( +g ` ( R |`s U ) ) ( F ` z ) ) ) |
103 |
86 102
|
eqtrd |
|- ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( F ` ( y + z ) ) = ( ( F ` y ) ( +g ` ( R |`s U ) ) ( F ` z ) ) ) |
104 |
6 7 8 16 20 21 78 103
|
isghmd |
|- ( ph -> F e. ( ZZring GrpHom ( ( R |`s U ) |`s ran F ) ) ) |