| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6isolem1.1 |  |-  ( ph -> R e. CMnd ) | 
						
							| 2 |  | aks6d1c6isolem1.2 |  |-  ( ph -> K e. NN ) | 
						
							| 3 |  | aks6d1c6isolem1.3 |  |-  U = { a e. ( Base ` R ) | E. i e. ( Base ` R ) ( i ( +g ` R ) a ) = ( 0g ` R ) } | 
						
							| 4 |  | aks6d1c6isolem1.4 |  |-  F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 5 |  | aks6d1c6isolem1.5 |  |-  ( ph -> M e. ( R PrimRoots K ) ) | 
						
							| 6 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 7 |  | eqid |  |-  ( Base ` ( ( R |`s U ) |`s ran F ) ) = ( Base ` ( ( R |`s U ) |`s ran F ) ) | 
						
							| 8 |  | zringplusg |  |-  + = ( +g ` ZZring ) | 
						
							| 9 |  | zex |  |-  ZZ e. _V | 
						
							| 10 | 9 | mptex |  |-  ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) e. _V | 
						
							| 11 | 4 10 | eqeltri |  |-  F e. _V | 
						
							| 12 | 11 | rnex |  |-  ran F e. _V | 
						
							| 13 |  | eqid |  |-  ( ( R |`s U ) |`s ran F ) = ( ( R |`s U ) |`s ran F ) | 
						
							| 14 |  | eqid |  |-  ( +g ` ( R |`s U ) ) = ( +g ` ( R |`s U ) ) | 
						
							| 15 | 13 14 | ressplusg |  |-  ( ran F e. _V -> ( +g ` ( R |`s U ) ) = ( +g ` ( ( R |`s U ) |`s ran F ) ) ) | 
						
							| 16 | 12 15 | ax-mp |  |-  ( +g ` ( R |`s U ) ) = ( +g ` ( ( R |`s U ) |`s ran F ) ) | 
						
							| 17 |  | zringring |  |-  ZZring e. Ring | 
						
							| 18 | 17 | a1i |  |-  ( ph -> ZZring e. Ring ) | 
						
							| 19 |  | ringgrp |  |-  ( ZZring e. Ring -> ZZring e. Grp ) | 
						
							| 20 | 18 19 | syl |  |-  ( ph -> ZZring e. Grp ) | 
						
							| 21 | 1 2 3 4 5 | aks6d1c6isolem1 |  |-  ( ph -> ( ( R |`s U ) |`s ran F ) e. Grp ) | 
						
							| 22 |  | ovexd |  |-  ( ( ph /\ x e. ZZ ) -> ( x ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 23 | 22 4 | fmptd |  |-  ( ph -> F : ZZ --> _V ) | 
						
							| 24 |  | ffn |  |-  ( F : ZZ --> _V -> F Fn ZZ ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> F Fn ZZ ) | 
						
							| 26 |  | dffn3 |  |-  ( F Fn ZZ <-> F : ZZ --> ran F ) | 
						
							| 27 | 25 26 | sylib |  |-  ( ph -> F : ZZ --> ran F ) | 
						
							| 28 |  | fvelrnb |  |-  ( F Fn ZZ -> ( w e. ran F <-> E. v e. ZZ ( F ` v ) = w ) ) | 
						
							| 29 | 25 28 | syl |  |-  ( ph -> ( w e. ran F <-> E. v e. ZZ ( F ` v ) = w ) ) | 
						
							| 30 | 29 | biimpd |  |-  ( ph -> ( w e. ran F -> E. v e. ZZ ( F ` v ) = w ) ) | 
						
							| 31 | 30 | imp |  |-  ( ( ph /\ w e. ran F ) -> E. v e. ZZ ( F ` v ) = w ) | 
						
							| 32 |  | simpr |  |-  ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> ( F ` z ) = w ) | 
						
							| 33 | 32 | eqcomd |  |-  ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> w = ( F ` z ) ) | 
						
							| 34 |  | simplll |  |-  ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> ph ) | 
						
							| 35 |  | simplr |  |-  ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> z e. ZZ ) | 
						
							| 36 | 34 35 | jca |  |-  ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> ( ph /\ z e. ZZ ) ) | 
						
							| 37 | 4 | a1i |  |-  ( ( ph /\ z e. ZZ ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 38 |  | simpr |  |-  ( ( ( ph /\ z e. ZZ ) /\ x = z ) -> x = z ) | 
						
							| 39 | 38 | oveq1d |  |-  ( ( ( ph /\ z e. ZZ ) /\ x = z ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( z ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 40 |  | simpr |  |-  ( ( ph /\ z e. ZZ ) -> z e. ZZ ) | 
						
							| 41 |  | ovexd |  |-  ( ( ph /\ z e. ZZ ) -> ( z ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 42 | 37 39 40 41 | fvmptd |  |-  ( ( ph /\ z e. ZZ ) -> ( F ` z ) = ( z ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 43 |  | eqid |  |-  ( Base ` ( R |`s U ) ) = ( Base ` ( R |`s U ) ) | 
						
							| 44 |  | eqid |  |-  ( .g ` ( R |`s U ) ) = ( .g ` ( R |`s U ) ) | 
						
							| 45 | 1 2 3 | primrootsunit |  |-  ( ph -> ( ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) /\ ( R |`s U ) e. Abel ) ) | 
						
							| 46 | 45 | simprd |  |-  ( ph -> ( R |`s U ) e. Abel ) | 
						
							| 47 | 46 | ablgrpd |  |-  ( ph -> ( R |`s U ) e. Grp ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ z e. ZZ ) -> ( R |`s U ) e. Grp ) | 
						
							| 49 | 45 | simpld |  |-  ( ph -> ( R PrimRoots K ) = ( ( R |`s U ) PrimRoots K ) ) | 
						
							| 50 | 5 49 | eleqtrd |  |-  ( ph -> M e. ( ( R |`s U ) PrimRoots K ) ) | 
						
							| 51 | 46 | ablcmnd |  |-  ( ph -> ( R |`s U ) e. CMnd ) | 
						
							| 52 | 2 | nnnn0d |  |-  ( ph -> K e. NN0 ) | 
						
							| 53 | 51 52 44 | isprimroot |  |-  ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) <-> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) | 
						
							| 54 | 53 | biimpd |  |-  ( ph -> ( M e. ( ( R |`s U ) PrimRoots K ) -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) ) | 
						
							| 55 | 50 54 | mpd |  |-  ( ph -> ( M e. ( Base ` ( R |`s U ) ) /\ ( K ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) /\ A. l e. NN0 ( ( l ( .g ` ( R |`s U ) ) M ) = ( 0g ` ( R |`s U ) ) -> K || l ) ) ) | 
						
							| 56 | 55 | simp1d |  |-  ( ph -> M e. ( Base ` ( R |`s U ) ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ z e. ZZ ) -> M e. ( Base ` ( R |`s U ) ) ) | 
						
							| 58 | 43 44 48 40 57 | mulgcld |  |-  ( ( ph /\ z e. ZZ ) -> ( z ( .g ` ( R |`s U ) ) M ) e. ( Base ` ( R |`s U ) ) ) | 
						
							| 59 | 42 58 | eqeltrd |  |-  ( ( ph /\ z e. ZZ ) -> ( F ` z ) e. ( Base ` ( R |`s U ) ) ) | 
						
							| 60 | 36 59 | syl |  |-  ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> ( F ` z ) e. ( Base ` ( R |`s U ) ) ) | 
						
							| 61 | 33 60 | eqeltrd |  |-  ( ( ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) /\ z e. ZZ ) /\ ( F ` z ) = w ) -> w e. ( Base ` ( R |`s U ) ) ) | 
						
							| 62 |  | nfv |  |-  F/ z ( F ` v ) = w | 
						
							| 63 |  | nfv |  |-  F/ v ( F ` z ) = w | 
						
							| 64 |  | fveqeq2 |  |-  ( v = z -> ( ( F ` v ) = w <-> ( F ` z ) = w ) ) | 
						
							| 65 | 62 63 64 | cbvrexw |  |-  ( E. v e. ZZ ( F ` v ) = w <-> E. z e. ZZ ( F ` z ) = w ) | 
						
							| 66 | 65 | biimpi |  |-  ( E. v e. ZZ ( F ` v ) = w -> E. z e. ZZ ( F ` z ) = w ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) -> E. z e. ZZ ( F ` z ) = w ) | 
						
							| 68 | 61 67 | r19.29a |  |-  ( ( ph /\ E. v e. ZZ ( F ` v ) = w ) -> w e. ( Base ` ( R |`s U ) ) ) | 
						
							| 69 | 68 | ex |  |-  ( ph -> ( E. v e. ZZ ( F ` v ) = w -> w e. ( Base ` ( R |`s U ) ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ph /\ w e. ran F ) -> ( E. v e. ZZ ( F ` v ) = w -> w e. ( Base ` ( R |`s U ) ) ) ) | 
						
							| 71 | 70 | imp |  |-  ( ( ( ph /\ w e. ran F ) /\ E. v e. ZZ ( F ` v ) = w ) -> w e. ( Base ` ( R |`s U ) ) ) | 
						
							| 72 | 31 71 | mpdan |  |-  ( ( ph /\ w e. ran F ) -> w e. ( Base ` ( R |`s U ) ) ) | 
						
							| 73 | 72 | ex |  |-  ( ph -> ( w e. ran F -> w e. ( Base ` ( R |`s U ) ) ) ) | 
						
							| 74 | 73 | ssrdv |  |-  ( ph -> ran F C_ ( Base ` ( R |`s U ) ) ) | 
						
							| 75 | 13 43 | ressbas2 |  |-  ( ran F C_ ( Base ` ( R |`s U ) ) -> ran F = ( Base ` ( ( R |`s U ) |`s ran F ) ) ) | 
						
							| 76 | 74 75 | syl |  |-  ( ph -> ran F = ( Base ` ( ( R |`s U ) |`s ran F ) ) ) | 
						
							| 77 | 76 | feq3d |  |-  ( ph -> ( F : ZZ --> ran F <-> F : ZZ --> ( Base ` ( ( R |`s U ) |`s ran F ) ) ) ) | 
						
							| 78 | 27 77 | mpbid |  |-  ( ph -> F : ZZ --> ( Base ` ( ( R |`s U ) |`s ran F ) ) ) | 
						
							| 79 | 4 | a1i |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> F = ( x e. ZZ |-> ( x ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 80 |  | simpr |  |-  ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = ( y + z ) ) -> x = ( y + z ) ) | 
						
							| 81 | 80 | oveq1d |  |-  ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = ( y + z ) ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( ( y + z ) ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 82 |  | simprl |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> y e. ZZ ) | 
						
							| 83 |  | simprr |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> z e. ZZ ) | 
						
							| 84 | 82 83 | zaddcld |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( y + z ) e. ZZ ) | 
						
							| 85 |  | ovexd |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y + z ) ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 86 | 79 81 84 85 | fvmptd |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( F ` ( y + z ) ) = ( ( y + z ) ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 87 | 47 | adantr |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( R |`s U ) e. Grp ) | 
						
							| 88 | 56 | adantr |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> M e. ( Base ` ( R |`s U ) ) ) | 
						
							| 89 | 82 83 88 | 3jca |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( y e. ZZ /\ z e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) | 
						
							| 90 | 43 44 14 | mulgdir |  |-  ( ( ( R |`s U ) e. Grp /\ ( y e. ZZ /\ z e. ZZ /\ M e. ( Base ` ( R |`s U ) ) ) ) -> ( ( y + z ) ( .g ` ( R |`s U ) ) M ) = ( ( y ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( z ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 91 | 87 89 90 | syl2anc |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y + z ) ( .g ` ( R |`s U ) ) M ) = ( ( y ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( z ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 92 |  | simpr |  |-  ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = y ) -> x = y ) | 
						
							| 93 | 92 | oveq1d |  |-  ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = y ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( y ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 94 |  | ovexd |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( y ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 95 | 79 93 82 94 | fvmptd |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( F ` y ) = ( y ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 96 |  | simpr |  |-  ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = z ) -> x = z ) | 
						
							| 97 | 96 | oveq1d |  |-  ( ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) /\ x = z ) -> ( x ( .g ` ( R |`s U ) ) M ) = ( z ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 98 |  | ovexd |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( z ( .g ` ( R |`s U ) ) M ) e. _V ) | 
						
							| 99 | 79 97 83 98 | fvmptd |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( F ` z ) = ( z ( .g ` ( R |`s U ) ) M ) ) | 
						
							| 100 | 95 99 | oveq12d |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( F ` y ) ( +g ` ( R |`s U ) ) ( F ` z ) ) = ( ( y ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( z ( .g ` ( R |`s U ) ) M ) ) ) | 
						
							| 101 | 100 | eqcomd |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y ( .g ` ( R |`s U ) ) M ) ( +g ` ( R |`s U ) ) ( z ( .g ` ( R |`s U ) ) M ) ) = ( ( F ` y ) ( +g ` ( R |`s U ) ) ( F ` z ) ) ) | 
						
							| 102 | 91 101 | eqtrd |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y + z ) ( .g ` ( R |`s U ) ) M ) = ( ( F ` y ) ( +g ` ( R |`s U ) ) ( F ` z ) ) ) | 
						
							| 103 | 86 102 | eqtrd |  |-  ( ( ph /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( F ` ( y + z ) ) = ( ( F ` y ) ( +g ` ( R |`s U ) ) ( F ` z ) ) ) | 
						
							| 104 | 6 7 8 16 20 21 78 103 | isghmd |  |-  ( ph -> F e. ( ZZring GrpHom ( ( R |`s U ) |`s ran F ) ) ) |