Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6isolem1.1 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
2 |
|
aks6d1c6isolem1.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
aks6d1c6isolem1.3 |
⊢ 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g ‘ 𝑅 ) 𝑎 ) = ( 0g ‘ 𝑅 ) } |
4 |
|
aks6d1c6isolem1.4 |
⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
5 |
|
aks6d1c6isolem1.5 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) = ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ) |
7 |
|
eqidd |
⊢ ( 𝜑 → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) = ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) |
10 |
|
eqid |
⊢ ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) |
11 |
1 2 3
|
primrootsunit |
⊢ ( 𝜑 → ( ( 𝑅 PrimRoots 𝐾 ) = ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ∧ ( 𝑅 ↾s 𝑈 ) ∈ Abel ) ) |
12 |
11
|
simprd |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Abel ) |
13 |
12
|
ablgrpd |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ Grp ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝑅 ↾s 𝑈 ) ∈ Grp ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) |
16 |
11
|
simpld |
⊢ ( 𝜑 → ( 𝑅 PrimRoots 𝐾 ) = ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) |
17 |
5 16
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ) |
18 |
12
|
ablcmnd |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑈 ) ∈ CMnd ) |
19 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
20 |
18 19 10
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) ↔ ( 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
21 |
20
|
biimpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( 𝑅 ↾s 𝑈 ) PrimRoots 𝐾 ) → ( 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) ) |
22 |
17 21
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) → 𝐾 ∥ 𝑙 ) ) ) |
23 |
22
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
25 |
9 10 14 15 24
|
mulgcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
26 |
25 4
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℤ ⟶ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
27 |
|
frn |
⊢ ( 𝐹 : ℤ ⟶ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → ran 𝐹 ⊆ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
29 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 = 0 ) → 𝑐 = 0 ) |
31 |
30
|
fveqeq2d |
⊢ ( ( 𝜑 ∧ 𝑐 = 0 ) → ( ( 𝐹 ‘ 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ↔ ( 𝐹 ‘ 0 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
32 |
4
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → 𝑥 = 0 ) |
34 |
33
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
35 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) |
36 |
9 35 10
|
mulg0 |
⊢ ( 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) → ( 0 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
37 |
23 36
|
syl |
⊢ ( 𝜑 → ( 0 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( 0 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
39 |
34 38
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
40 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∈ V ) |
41 |
32 39 29 40
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
42 |
29 31 41
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ℤ ( 𝐹 ‘ 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
43 |
26
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℤ ) |
44 |
|
fvelrnb |
⊢ ( 𝐹 Fn ℤ → ( ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ ℤ ( 𝐹 ‘ 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → ( ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ ℤ ( 𝐹 ‘ 𝑐 ) = ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
46 |
42 45
|
mpbird |
⊢ ( 𝜑 → ( 0g ‘ ( 𝑅 ↾s 𝑈 ) ) ∈ ran 𝐹 ) |
47 |
|
fvelrnb |
⊢ ( 𝐹 Fn ℤ → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ) |
48 |
43 47
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ) |
49 |
48
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐹 → ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ) |
50 |
49
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) |
51 |
50
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) → ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) |
52 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) → 𝜑 ) |
53 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) → 𝑧 ∈ ran 𝐹 ) |
54 |
52 53
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) → ( 𝜑 ∧ 𝑧 ∈ ran 𝐹 ) ) |
55 |
|
fvelrnb |
⊢ ( 𝐹 Fn ℤ → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ) |
56 |
43 55
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ) |
57 |
56
|
biimpd |
⊢ ( 𝜑 → ( 𝑧 ∈ ran 𝐹 → ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ) |
58 |
57
|
imp |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐹 ) → ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) |
59 |
54 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) → ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) |
60 |
|
simpll1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) → 𝜑 ) |
61 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) → ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) |
62 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) → ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) |
63 |
60 61 62
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) → ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ) |
64 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑔 ) = 𝑧 ) → ( 𝐹 ‘ 𝑔 ) = 𝑧 ) |
65 |
64
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑔 ) = 𝑧 ) → 𝑧 = ( 𝐹 ‘ 𝑔 ) ) |
66 |
65
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑔 ) = 𝑧 ) → ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑧 ) = ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑔 ) ) ) |
67 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → ( 𝐹 ‘ 𝑓 ) = 𝑦 ) |
68 |
67
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑓 ) ) |
69 |
68
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑔 ) ) = ( ( 𝐹 ‘ 𝑓 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑔 ) ) ) |
70 |
|
simpll1 |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) → 𝜑 ) |
71 |
70
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → 𝜑 ) |
72 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → 𝑔 ∈ ℤ ) |
73 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → 𝑓 ∈ ℤ ) |
74 |
71 72 73
|
3jca |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ) |
75 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
76 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑓 ) → 𝑥 = 𝑓 ) |
77 |
76
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑓 ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
78 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → 𝑓 ∈ ℤ ) |
79 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
80 |
75 77 78 79
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝐹 ‘ 𝑓 ) = ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
81 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑔 ) → 𝑥 = 𝑔 ) |
82 |
81
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑔 ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 𝑔 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
83 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → 𝑔 ∈ ℤ ) |
84 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝑔 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
85 |
75 82 83 84
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝐹 ‘ 𝑔 ) = ( 𝑔 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
86 |
80 85
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑓 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑔 ) ) = ( ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑔 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
87 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝑅 ↾s 𝑈 ) ∈ Grp ) |
88 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
89 |
78 83 88
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
90 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) = ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) |
91 |
9 10 90
|
mulgdir |
⊢ ( ( ( 𝑅 ↾s 𝑈 ) ∈ Grp ∧ ( 𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) → ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑔 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
92 |
87 89 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑔 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
93 |
78 83
|
zaddcld |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝑓 + 𝑔 ) ∈ ℤ ) |
94 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ ℎ = ( 𝑓 + 𝑔 ) ) → ℎ = ( 𝑓 + 𝑔 ) ) |
95 |
94
|
fveqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ ℎ = ( 𝑓 + 𝑔 ) ) → ( ( 𝐹 ‘ ℎ ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ↔ ( 𝐹 ‘ ( 𝑓 + 𝑔 ) ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
96 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = ( 𝑓 + 𝑔 ) ) → 𝑥 = ( 𝑓 + 𝑔 ) ) |
97 |
96
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = ( 𝑓 + 𝑔 ) ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
98 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
99 |
75 97 93 98
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑓 + 𝑔 ) ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
100 |
93 95 99
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ∃ ℎ ∈ ℤ ( 𝐹 ‘ ℎ ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
101 |
|
fvelrnb |
⊢ ( 𝐹 Fn ℤ → ( ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ ran 𝐹 ↔ ∃ ℎ ∈ ℤ ( 𝐹 ‘ ℎ ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
102 |
43 101
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ ran 𝐹 ↔ ∃ ℎ ∈ ℤ ( 𝐹 ‘ ℎ ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
103 |
102
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ ran 𝐹 ↔ ∃ ℎ ∈ ℤ ( 𝐹 ‘ ℎ ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
104 |
100 103
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ ran 𝐹 ) |
105 |
92 104
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝑔 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ∈ ran 𝐹 ) |
106 |
86 105
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑓 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑔 ) ) ∈ ran 𝐹 ) |
107 |
74 106
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑓 ) ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑔 ) ) ∈ ran 𝐹 ) |
108 |
69 107
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑔 ) ) ∈ ran 𝐹 ) |
109 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) → ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) |
110 |
|
nfv |
⊢ Ⅎ 𝑓 ( 𝐹 ‘ 𝑑 ) = 𝑦 |
111 |
|
nfv |
⊢ Ⅎ 𝑑 ( 𝐹 ‘ 𝑓 ) = 𝑦 |
112 |
|
fveqeq2 |
⊢ ( 𝑑 = 𝑓 → ( ( 𝐹 ‘ 𝑑 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) ) |
113 |
110 111 112
|
cbvrexw |
⊢ ( ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ↔ ∃ 𝑓 ∈ ℤ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) |
114 |
113
|
biimpi |
⊢ ( ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 → ∃ 𝑓 ∈ ℤ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) |
115 |
109 114
|
syl |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) → ∃ 𝑓 ∈ ℤ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) |
116 |
108 115
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) → ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑔 ) ) ∈ ran 𝐹 ) |
117 |
116
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑔 ) = 𝑧 ) → ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) ( 𝐹 ‘ 𝑔 ) ) ∈ ran 𝐹 ) |
118 |
66 117
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑔 ) = 𝑧 ) → ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 ) |
119 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) → ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) |
120 |
|
nfv |
⊢ Ⅎ 𝑔 ( 𝐹 ‘ 𝑒 ) = 𝑧 |
121 |
|
nfv |
⊢ Ⅎ 𝑒 ( 𝐹 ‘ 𝑔 ) = 𝑧 |
122 |
|
fveqeq2 |
⊢ ( 𝑒 = 𝑔 → ( ( 𝐹 ‘ 𝑒 ) = 𝑧 ↔ ( 𝐹 ‘ 𝑔 ) = 𝑧 ) ) |
123 |
120 121 122
|
cbvrexw |
⊢ ( ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ↔ ∃ 𝑔 ∈ ℤ ( 𝐹 ‘ 𝑔 ) = 𝑧 ) |
124 |
123
|
biimpi |
⊢ ( ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 → ∃ 𝑔 ∈ ℤ ( 𝐹 ‘ 𝑔 ) = 𝑧 ) |
125 |
119 124
|
syl |
⊢ ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) → ∃ 𝑔 ∈ ℤ ( 𝐹 ‘ 𝑔 ) = 𝑧 ) |
126 |
118 125
|
r19.29a |
⊢ ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) → ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 ) |
127 |
63 126
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 ) → ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 ) |
128 |
127
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) → ( ∃ 𝑒 ∈ ℤ ( 𝐹 ‘ 𝑒 ) = 𝑧 → ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 ) ) |
129 |
59 128
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) → ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 ) |
130 |
51 129
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐹 ) → ( 𝑦 ( +g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 ) |
131 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → ( 𝐹 ‘ 𝑓 ) = 𝑦 ) |
132 |
131
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑓 ) ) |
133 |
132
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ 𝑦 ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ) |
134 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → 𝜑 ) |
135 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → 𝑓 ∈ ℤ ) |
136 |
134 135
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → ( 𝜑 ∧ 𝑓 ∈ ℤ ) ) |
137 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → 𝑓 ∈ ℤ ) |
138 |
137
|
znegcld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → - 𝑓 ∈ ℤ ) |
139 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) ∧ ℎ = - 𝑓 ) → ℎ = - 𝑓 ) |
140 |
139
|
fveqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) ∧ ℎ = - 𝑓 ) → ( ( 𝐹 ‘ ℎ ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ↔ ( 𝐹 ‘ - 𝑓 ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ) ) |
141 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
142 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = - 𝑓 ) → 𝑥 = - 𝑓 ) |
143 |
142
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = - 𝑓 ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( - 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
144 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( - 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
145 |
141 143 138 144
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( 𝐹 ‘ - 𝑓 ) = ( - 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
146 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( 𝑅 ↾s 𝑈 ) ∈ Grp ) |
147 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
148 |
|
eqid |
⊢ ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) = ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) |
149 |
9 10 148
|
mulgneg |
⊢ ( ( ( 𝑅 ↾s 𝑈 ) ∈ Grp ∧ 𝑓 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( 𝑅 ↾s 𝑈 ) ) ) → ( - 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
150 |
146 137 147 149
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( - 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) ) |
151 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑓 ) → 𝑥 = 𝑓 ) |
152 |
151
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑓 ) → ( 𝑥 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
153 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
154 |
141 152 137 153
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( 𝐹 ‘ 𝑓 ) = ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) |
155 |
154
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( 𝐹 ‘ 𝑓 ) ) |
156 |
155
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ) |
157 |
150 156
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( - 𝑓 ( .g ‘ ( 𝑅 ↾s 𝑈 ) ) 𝑀 ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ) |
158 |
145 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( 𝐹 ‘ - 𝑓 ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ) |
159 |
138 140 158
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ∃ ℎ ∈ ℤ ( 𝐹 ‘ ℎ ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ) |
160 |
|
fvelrnb |
⊢ ( 𝐹 Fn ℤ → ( ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ∈ ran 𝐹 ↔ ∃ ℎ ∈ ℤ ( 𝐹 ‘ ℎ ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ) ) |
161 |
43 160
|
syl |
⊢ ( 𝜑 → ( ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ∈ ran 𝐹 ↔ ∃ ℎ ∈ ℤ ( 𝐹 ‘ ℎ ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ) ) |
162 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ∈ ran 𝐹 ↔ ∃ ℎ ∈ ℤ ( 𝐹 ‘ ℎ ) = ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ) ) |
163 |
159 162
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ∈ ran 𝐹 ) |
164 |
163
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → ( ( 𝜑 ∧ 𝑓 ∈ ℤ ) → ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ∈ ran 𝐹 ) ) |
165 |
136 164
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ ( 𝐹 ‘ 𝑓 ) ) ∈ ran 𝐹 ) |
166 |
133 165
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) → ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 ) |
167 |
114
|
adantl |
⊢ ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) → ∃ 𝑓 ∈ ℤ ( 𝐹 ‘ 𝑓 ) = 𝑦 ) |
168 |
166 167
|
r19.29a |
⊢ ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) → ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 ) |
169 |
168
|
ex |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 → ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 ) ) |
170 |
169
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → ( ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 → ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 ) ) |
171 |
170
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹 ‘ 𝑑 ) = 𝑦 ) → ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 ) |
172 |
50 171
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → ( ( invg ‘ ( 𝑅 ↾s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 ) |
173 |
6 7 8 28 46 130 172 13
|
issubgrpd |
⊢ ( 𝜑 → ( ( 𝑅 ↾s 𝑈 ) ↾s ran 𝐹 ) ∈ Grp ) |