Metamath Proof Explorer


Theorem aks6d1c6isolem1

Description: Lemma to construct the map out of the quotient for AKS. (Contributed by metakunt, 14-May-2025)

Ref Expression
Hypotheses aks6d1c6isolem1.1 ( 𝜑𝑅 ∈ CMnd )
aks6d1c6isolem1.2 ( 𝜑𝐾 ∈ ℕ )
aks6d1c6isolem1.3 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g𝑅 ) 𝑎 ) = ( 0g𝑅 ) }
aks6d1c6isolem1.4 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
aks6d1c6isolem1.5 ( 𝜑𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) )
Assertion aks6d1c6isolem1 ( 𝜑 → ( ( 𝑅s 𝑈 ) ↾s ran 𝐹 ) ∈ Grp )

Proof

Step Hyp Ref Expression
1 aks6d1c6isolem1.1 ( 𝜑𝑅 ∈ CMnd )
2 aks6d1c6isolem1.2 ( 𝜑𝐾 ∈ ℕ )
3 aks6d1c6isolem1.3 𝑈 = { 𝑎 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 ( +g𝑅 ) 𝑎 ) = ( 0g𝑅 ) }
4 aks6d1c6isolem1.4 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
5 aks6d1c6isolem1.5 ( 𝜑𝑀 ∈ ( 𝑅 PrimRoots 𝐾 ) )
6 eqidd ( 𝜑 → ( ( 𝑅s 𝑈 ) ↾s ran 𝐹 ) = ( ( 𝑅s 𝑈 ) ↾s ran 𝐹 ) )
7 eqidd ( 𝜑 → ( 0g ‘ ( 𝑅s 𝑈 ) ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) )
8 eqidd ( 𝜑 → ( +g ‘ ( 𝑅s 𝑈 ) ) = ( +g ‘ ( 𝑅s 𝑈 ) ) )
9 eqid ( Base ‘ ( 𝑅s 𝑈 ) ) = ( Base ‘ ( 𝑅s 𝑈 ) )
10 eqid ( .g ‘ ( 𝑅s 𝑈 ) ) = ( .g ‘ ( 𝑅s 𝑈 ) )
11 1 2 3 primrootsunit ( 𝜑 → ( ( 𝑅 PrimRoots 𝐾 ) = ( ( 𝑅s 𝑈 ) PrimRoots 𝐾 ) ∧ ( 𝑅s 𝑈 ) ∈ Abel ) )
12 11 simprd ( 𝜑 → ( 𝑅s 𝑈 ) ∈ Abel )
13 12 ablgrpd ( 𝜑 → ( 𝑅s 𝑈 ) ∈ Grp )
14 13 adantr ( ( 𝜑𝑥 ∈ ℤ ) → ( 𝑅s 𝑈 ) ∈ Grp )
15 simpr ( ( 𝜑𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ )
16 11 simpld ( 𝜑 → ( 𝑅 PrimRoots 𝐾 ) = ( ( 𝑅s 𝑈 ) PrimRoots 𝐾 ) )
17 5 16 eleqtrd ( 𝜑𝑀 ∈ ( ( 𝑅s 𝑈 ) PrimRoots 𝐾 ) )
18 12 ablcmnd ( 𝜑 → ( 𝑅s 𝑈 ) ∈ CMnd )
19 2 nnnn0d ( 𝜑𝐾 ∈ ℕ0 )
20 18 19 10 isprimroot ( 𝜑 → ( 𝑀 ∈ ( ( 𝑅s 𝑈 ) PrimRoots 𝐾 ) ↔ ( 𝑀 ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) → 𝐾𝑙 ) ) ) )
21 20 biimpd ( 𝜑 → ( 𝑀 ∈ ( ( 𝑅s 𝑈 ) PrimRoots 𝐾 ) → ( 𝑀 ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) → 𝐾𝑙 ) ) ) )
22 17 21 mpd ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) ∧ ( 𝐾 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) → 𝐾𝑙 ) ) )
23 22 simp1d ( 𝜑𝑀 ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) )
24 23 adantr ( ( 𝜑𝑥 ∈ ℤ ) → 𝑀 ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) )
25 9 10 14 15 24 mulgcld ( ( 𝜑𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) )
26 25 4 fmptd ( 𝜑𝐹 : ℤ ⟶ ( Base ‘ ( 𝑅s 𝑈 ) ) )
27 frn ( 𝐹 : ℤ ⟶ ( Base ‘ ( 𝑅s 𝑈 ) ) → ran 𝐹 ⊆ ( Base ‘ ( 𝑅s 𝑈 ) ) )
28 26 27 syl ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ ( 𝑅s 𝑈 ) ) )
29 0zd ( 𝜑 → 0 ∈ ℤ )
30 simpr ( ( 𝜑𝑐 = 0 ) → 𝑐 = 0 )
31 30 fveqeq2d ( ( 𝜑𝑐 = 0 ) → ( ( 𝐹𝑐 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) ↔ ( 𝐹 ‘ 0 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) ) )
32 4 a1i ( 𝜑𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
33 simpr ( ( 𝜑𝑥 = 0 ) → 𝑥 = 0 )
34 33 oveq1d ( ( 𝜑𝑥 = 0 ) → ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
35 eqid ( 0g ‘ ( 𝑅s 𝑈 ) ) = ( 0g ‘ ( 𝑅s 𝑈 ) )
36 9 35 10 mulg0 ( 𝑀 ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) → ( 0 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) )
37 23 36 syl ( 𝜑 → ( 0 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) )
38 37 adantr ( ( 𝜑𝑥 = 0 ) → ( 0 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) )
39 34 38 eqtrd ( ( 𝜑𝑥 = 0 ) → ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) )
40 fvexd ( 𝜑 → ( 0g ‘ ( 𝑅s 𝑈 ) ) ∈ V )
41 32 39 29 40 fvmptd ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) )
42 29 31 41 rspcedvd ( 𝜑 → ∃ 𝑐 ∈ ℤ ( 𝐹𝑐 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) )
43 26 ffnd ( 𝜑𝐹 Fn ℤ )
44 fvelrnb ( 𝐹 Fn ℤ → ( ( 0g ‘ ( 𝑅s 𝑈 ) ) ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ ℤ ( 𝐹𝑐 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) ) )
45 43 44 syl ( 𝜑 → ( ( 0g ‘ ( 𝑅s 𝑈 ) ) ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ ℤ ( 𝐹𝑐 ) = ( 0g ‘ ( 𝑅s 𝑈 ) ) ) )
46 42 45 mpbird ( 𝜑 → ( 0g ‘ ( 𝑅s 𝑈 ) ) ∈ ran 𝐹 )
47 fvelrnb ( 𝐹 Fn ℤ → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) )
48 43 47 syl ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) )
49 48 biimpd ( 𝜑 → ( 𝑦 ∈ ran 𝐹 → ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) )
50 49 imp ( ( 𝜑𝑦 ∈ ran 𝐹 ) → ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 )
51 50 3adant3 ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) → ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 )
52 simpl1 ( ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) → 𝜑 )
53 simpl3 ( ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) → 𝑧 ∈ ran 𝐹 )
54 52 53 jca ( ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) → ( 𝜑𝑧 ∈ ran 𝐹 ) )
55 fvelrnb ( 𝐹 Fn ℤ → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) )
56 43 55 syl ( 𝜑 → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) )
57 56 biimpd ( 𝜑 → ( 𝑧 ∈ ran 𝐹 → ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) )
58 57 imp ( ( 𝜑𝑧 ∈ ran 𝐹 ) → ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 )
59 54 58 syl ( ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) → ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 )
60 simpll1 ( ( ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) → 𝜑 )
61 simplr ( ( ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) → ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 )
62 simpr ( ( ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) → ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 )
63 60 61 62 3jca ( ( ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) → ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) )
64 simpr ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ ( 𝐹𝑔 ) = 𝑧 ) → ( 𝐹𝑔 ) = 𝑧 )
65 64 eqcomd ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ ( 𝐹𝑔 ) = 𝑧 ) → 𝑧 = ( 𝐹𝑔 ) )
66 65 oveq2d ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ ( 𝐹𝑔 ) = 𝑧 ) → ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) 𝑧 ) = ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝐹𝑔 ) ) )
67 simpr ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → ( 𝐹𝑓 ) = 𝑦 )
68 67 eqcomd ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → 𝑦 = ( 𝐹𝑓 ) )
69 68 oveq1d ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝐹𝑔 ) ) = ( ( 𝐹𝑓 ) ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝐹𝑔 ) ) )
70 simpll1 ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) → 𝜑 )
71 70 adantr ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → 𝜑 )
72 simpllr ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → 𝑔 ∈ ℤ )
73 simplr ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → 𝑓 ∈ ℤ )
74 71 72 73 3jca ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) )
75 4 a1i ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
76 simpr ( ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑓 ) → 𝑥 = 𝑓 )
77 76 oveq1d ( ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑓 ) → ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
78 simp3 ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → 𝑓 ∈ ℤ )
79 ovexd ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ V )
80 75 77 78 79 fvmptd ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝐹𝑓 ) = ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
81 simpr ( ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑔 ) → 𝑥 = 𝑔 )
82 81 oveq1d ( ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑔 ) → ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 𝑔 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
83 simp2 ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → 𝑔 ∈ ℤ )
84 ovexd ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝑔 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ V )
85 75 82 83 84 fvmptd ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝐹𝑔 ) = ( 𝑔 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
86 80 85 oveq12d ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝐹𝑓 ) ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝐹𝑔 ) ) = ( ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝑔 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
87 13 3ad2ant1 ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝑅s 𝑈 ) ∈ Grp )
88 23 3ad2ant1 ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → 𝑀 ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) )
89 78 83 88 3jca ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) ) )
90 eqid ( +g ‘ ( 𝑅s 𝑈 ) ) = ( +g ‘ ( 𝑅s 𝑈 ) )
91 9 10 90 mulgdir ( ( ( 𝑅s 𝑈 ) ∈ Grp ∧ ( 𝑓 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) ) ) → ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝑔 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
92 87 89 91 syl2anc ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝑔 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
93 78 83 zaddcld ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝑓 + 𝑔 ) ∈ ℤ )
94 simpr ( ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ = ( 𝑓 + 𝑔 ) ) → = ( 𝑓 + 𝑔 ) )
95 94 fveqeq2d ( ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ = ( 𝑓 + 𝑔 ) ) → ( ( 𝐹 ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ↔ ( 𝐹 ‘ ( 𝑓 + 𝑔 ) ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
96 simpr ( ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = ( 𝑓 + 𝑔 ) ) → 𝑥 = ( 𝑓 + 𝑔 ) )
97 96 oveq1d ( ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) ∧ 𝑥 = ( 𝑓 + 𝑔 ) ) → ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
98 ovexd ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ V )
99 75 97 93 98 fvmptd ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑓 + 𝑔 ) ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
100 93 95 99 rspcedvd ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ∃ ∈ ℤ ( 𝐹 ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
101 fvelrnb ( 𝐹 Fn ℤ → ( ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ ran 𝐹 ↔ ∃ ∈ ℤ ( 𝐹 ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
102 43 101 syl ( 𝜑 → ( ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ ran 𝐹 ↔ ∃ ∈ ℤ ( 𝐹 ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
103 102 3ad2ant1 ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ ran 𝐹 ↔ ∃ ∈ ℤ ( 𝐹 ) = ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
104 100 103 mpbird ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝑓 + 𝑔 ) ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ ran 𝐹 )
105 92 104 eqeltrrd ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝑔 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) ∈ ran 𝐹 )
106 86 105 eqeltrd ( ( 𝜑𝑔 ∈ ℤ ∧ 𝑓 ∈ ℤ ) → ( ( 𝐹𝑓 ) ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝐹𝑔 ) ) ∈ ran 𝐹 )
107 74 106 syl ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → ( ( 𝐹𝑓 ) ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝐹𝑔 ) ) ∈ ran 𝐹 )
108 69 107 eqeltrd ( ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝐹𝑔 ) ) ∈ ran 𝐹 )
109 simpl2 ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) → ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 )
110 nfv 𝑓 ( 𝐹𝑑 ) = 𝑦
111 nfv 𝑑 ( 𝐹𝑓 ) = 𝑦
112 fveqeq2 ( 𝑑 = 𝑓 → ( ( 𝐹𝑑 ) = 𝑦 ↔ ( 𝐹𝑓 ) = 𝑦 ) )
113 110 111 112 cbvrexw ( ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ↔ ∃ 𝑓 ∈ ℤ ( 𝐹𝑓 ) = 𝑦 )
114 113 biimpi ( ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 → ∃ 𝑓 ∈ ℤ ( 𝐹𝑓 ) = 𝑦 )
115 109 114 syl ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) → ∃ 𝑓 ∈ ℤ ( 𝐹𝑓 ) = 𝑦 )
116 108 115 r19.29a ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) → ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝐹𝑔 ) ) ∈ ran 𝐹 )
117 116 adantr ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ ( 𝐹𝑔 ) = 𝑧 ) → ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) ( 𝐹𝑔 ) ) ∈ ran 𝐹 )
118 66 117 eqeltrd ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) ∧ 𝑔 ∈ ℤ ) ∧ ( 𝐹𝑔 ) = 𝑧 ) → ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 )
119 simp3 ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) → ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 )
120 nfv 𝑔 ( 𝐹𝑒 ) = 𝑧
121 nfv 𝑒 ( 𝐹𝑔 ) = 𝑧
122 fveqeq2 ( 𝑒 = 𝑔 → ( ( 𝐹𝑒 ) = 𝑧 ↔ ( 𝐹𝑔 ) = 𝑧 ) )
123 120 121 122 cbvrexw ( ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ↔ ∃ 𝑔 ∈ ℤ ( 𝐹𝑔 ) = 𝑧 )
124 123 biimpi ( ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 → ∃ 𝑔 ∈ ℤ ( 𝐹𝑔 ) = 𝑧 )
125 119 124 syl ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) → ∃ 𝑔 ∈ ℤ ( 𝐹𝑔 ) = 𝑧 )
126 118 125 r19.29a ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) → ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 )
127 63 126 syl ( ( ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 ) → ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 )
128 127 ex ( ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) → ( ∃ 𝑒 ∈ ℤ ( 𝐹𝑒 ) = 𝑧 → ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 ) )
129 59 128 mpd ( ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) → ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 )
130 51 129 mpdan ( ( 𝜑𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ) → ( 𝑦 ( +g ‘ ( 𝑅s 𝑈 ) ) 𝑧 ) ∈ ran 𝐹 )
131 simpr ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → ( 𝐹𝑓 ) = 𝑦 )
132 131 eqcomd ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → 𝑦 = ( 𝐹𝑓 ) )
133 132 fveq2d ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ 𝑦 ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) )
134 simplll ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → 𝜑 )
135 simplr ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → 𝑓 ∈ ℤ )
136 134 135 jca ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → ( 𝜑𝑓 ∈ ℤ ) )
137 simpr ( ( 𝜑𝑓 ∈ ℤ ) → 𝑓 ∈ ℤ )
138 137 znegcld ( ( 𝜑𝑓 ∈ ℤ ) → - 𝑓 ∈ ℤ )
139 simpr ( ( ( 𝜑𝑓 ∈ ℤ ) ∧ = - 𝑓 ) → = - 𝑓 )
140 139 fveqeq2d ( ( ( 𝜑𝑓 ∈ ℤ ) ∧ = - 𝑓 ) → ( ( 𝐹 ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) ↔ ( 𝐹 ‘ - 𝑓 ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) ) )
141 4 a1i ( ( 𝜑𝑓 ∈ ℤ ) → 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
142 simpr ( ( ( 𝜑𝑓 ∈ ℤ ) ∧ 𝑥 = - 𝑓 ) → 𝑥 = - 𝑓 )
143 142 oveq1d ( ( ( 𝜑𝑓 ∈ ℤ ) ∧ 𝑥 = - 𝑓 ) → ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( - 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
144 ovexd ( ( 𝜑𝑓 ∈ ℤ ) → ( - 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ V )
145 141 143 138 144 fvmptd ( ( 𝜑𝑓 ∈ ℤ ) → ( 𝐹 ‘ - 𝑓 ) = ( - 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
146 13 adantr ( ( 𝜑𝑓 ∈ ℤ ) → ( 𝑅s 𝑈 ) ∈ Grp )
147 23 adantr ( ( 𝜑𝑓 ∈ ℤ ) → 𝑀 ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) )
148 eqid ( invg ‘ ( 𝑅s 𝑈 ) ) = ( invg ‘ ( 𝑅s 𝑈 ) )
149 9 10 148 mulgneg ( ( ( 𝑅s 𝑈 ) ∈ Grp ∧ 𝑓 ∈ ℤ ∧ 𝑀 ∈ ( Base ‘ ( 𝑅s 𝑈 ) ) ) → ( - 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
150 146 137 147 149 syl3anc ( ( 𝜑𝑓 ∈ ℤ ) → ( - 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) )
151 simpr ( ( ( 𝜑𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑓 ) → 𝑥 = 𝑓 )
152 151 oveq1d ( ( ( 𝜑𝑓 ∈ ℤ ) ∧ 𝑥 = 𝑓 ) → ( 𝑥 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
153 ovexd ( ( 𝜑𝑓 ∈ ℤ ) → ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ∈ V )
154 141 152 137 153 fvmptd ( ( 𝜑𝑓 ∈ ℤ ) → ( 𝐹𝑓 ) = ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) )
155 154 eqcomd ( ( 𝜑𝑓 ∈ ℤ ) → ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( 𝐹𝑓 ) )
156 155 fveq2d ( ( 𝜑𝑓 ∈ ℤ ) → ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) )
157 150 156 eqtrd ( ( 𝜑𝑓 ∈ ℤ ) → ( - 𝑓 ( .g ‘ ( 𝑅s 𝑈 ) ) 𝑀 ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) )
158 145 157 eqtrd ( ( 𝜑𝑓 ∈ ℤ ) → ( 𝐹 ‘ - 𝑓 ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) )
159 138 140 158 rspcedvd ( ( 𝜑𝑓 ∈ ℤ ) → ∃ ∈ ℤ ( 𝐹 ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) )
160 fvelrnb ( 𝐹 Fn ℤ → ( ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) ∈ ran 𝐹 ↔ ∃ ∈ ℤ ( 𝐹 ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) ) )
161 43 160 syl ( 𝜑 → ( ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) ∈ ran 𝐹 ↔ ∃ ∈ ℤ ( 𝐹 ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) ) )
162 161 adantr ( ( 𝜑𝑓 ∈ ℤ ) → ( ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) ∈ ran 𝐹 ↔ ∃ ∈ ℤ ( 𝐹 ) = ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) ) )
163 159 162 mpbird ( ( 𝜑𝑓 ∈ ℤ ) → ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) ∈ ran 𝐹 )
164 163 a1i ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → ( ( 𝜑𝑓 ∈ ℤ ) → ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) ∈ ran 𝐹 ) )
165 136 164 mpd ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ ( 𝐹𝑓 ) ) ∈ ran 𝐹 )
166 133 165 eqeltrd ( ( ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) ∧ 𝑓 ∈ ℤ ) ∧ ( 𝐹𝑓 ) = 𝑦 ) → ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 )
167 114 adantl ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) → ∃ 𝑓 ∈ ℤ ( 𝐹𝑓 ) = 𝑦 )
168 166 167 r19.29a ( ( 𝜑 ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) → ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 )
169 168 ex ( 𝜑 → ( ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 → ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 ) )
170 169 adantr ( ( 𝜑𝑦 ∈ ran 𝐹 ) → ( ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 → ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 ) )
171 170 imp ( ( ( 𝜑𝑦 ∈ ran 𝐹 ) ∧ ∃ 𝑑 ∈ ℤ ( 𝐹𝑑 ) = 𝑦 ) → ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 )
172 50 171 mpdan ( ( 𝜑𝑦 ∈ ran 𝐹 ) → ( ( invg ‘ ( 𝑅s 𝑈 ) ) ‘ 𝑦 ) ∈ ran 𝐹 )
173 6 7 8 28 46 130 172 13 issubgrpd ( 𝜑 → ( ( 𝑅s 𝑈 ) ↾s ran 𝐹 ) ∈ Grp )