Metamath Proof Explorer


Theorem aks6d1c6lem4

Description: Claim 6 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf Add hypothesis on coprimality, lift function to the integers so that group operations may be applied. Inline definition. (Contributed by metakunt, 14-May-2025)

Ref Expression
Hypotheses aks6d1c6lem4.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) }
aks6d1c6lem4.2 𝑃 = ( chr ‘ 𝐾 )
aks6d1c6lem4.3 ( 𝜑𝐾 ∈ Field )
aks6d1c6lem4.4 ( 𝜑𝑃 ∈ ℙ )
aks6d1c6lem4.5 ( 𝜑𝑅 ∈ ℕ )
aks6d1c6lem4.6 ( 𝜑𝑁 ∈ ℕ )
aks6d1c6lem4.7 ( 𝜑𝑃𝑁 )
aks6d1c6lem4.8 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
aks6d1c6lem4.9 ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 )
aks6d1c6lem4.10 𝐺 = ( 𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) ) ( ( var1𝐾 ) ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )
aks6d1c6lem4.11 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) )
aksaks6dlem4.12 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) )
aks6d1c6lem4.13 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )
aks6d1c6lem4.14 ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ( ( var1𝐾 ) ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) )
aks6d1c6lem4.15 ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) )
aks6d1c6lem4.16 ( 𝜑𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) )
aks6d1c6lem4.17 𝐻 = ( ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1𝐾 ) ‘ ( 𝐺 ) ) ‘ 𝑀 ) )
aks6d1c6lem4.18 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) )
aks6d1c6lem4.19 𝑆 = { 𝑠 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠𝑡 ) ≤ ( 𝐷 − 1 ) }
aks6d1c6lem4.20 𝐽 = ( 𝑗 ∈ ℤ ↦ ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) )
aks6d1c6lem4.21 ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ♯ ‘ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) )
aks6d1c6lem4.22 𝑈 = { 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑛 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑛 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑚 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) }
Assertion aks6d1c6lem4 ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ ( ℕ0m ( 0 ... 𝐴 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 aks6d1c6lem4.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) }
2 aks6d1c6lem4.2 𝑃 = ( chr ‘ 𝐾 )
3 aks6d1c6lem4.3 ( 𝜑𝐾 ∈ Field )
4 aks6d1c6lem4.4 ( 𝜑𝑃 ∈ ℙ )
5 aks6d1c6lem4.5 ( 𝜑𝑅 ∈ ℕ )
6 aks6d1c6lem4.6 ( 𝜑𝑁 ∈ ℕ )
7 aks6d1c6lem4.7 ( 𝜑𝑃𝑁 )
8 aks6d1c6lem4.8 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
9 aks6d1c6lem4.9 ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 )
10 aks6d1c6lem4.10 𝐺 = ( 𝑔 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1𝐾 ) ) ) ( ( var1𝐾 ) ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )
11 aks6d1c6lem4.11 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) )
12 aksaks6dlem4.12 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) )
13 aks6d1c6lem4.13 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )
14 aks6d1c6lem4.14 ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ( ( var1𝐾 ) ( +g ‘ ( Poly1𝐾 ) ) ( ( algSc ‘ ( Poly1𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) )
15 aks6d1c6lem4.15 ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) )
16 aks6d1c6lem4.16 ( 𝜑𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) )
17 aks6d1c6lem4.17 𝐻 = ( ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1𝐾 ) ‘ ( 𝐺 ) ) ‘ 𝑀 ) )
18 aks6d1c6lem4.18 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) )
19 aks6d1c6lem4.19 𝑆 = { 𝑠 ∈ ( ℕ0m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠𝑡 ) ≤ ( 𝐷 − 1 ) }
20 aks6d1c6lem4.20 𝐽 = ( 𝑗 ∈ ℤ ↦ ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) )
21 aks6d1c6lem4.21 ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ♯ ‘ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) )
22 aks6d1c6lem4.22 𝑈 = { 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑛 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑛 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑚 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) }
23 simpr ( ( 𝜑𝐴 < 𝑃 ) → 𝐴 < 𝑃 )
24 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
25 4 24 syl ( 𝜑𝑃 ∈ ℕ )
26 25 nnred ( 𝜑𝑃 ∈ ℝ )
27 5 phicld ( 𝜑 → ( ϕ ‘ 𝑅 ) ∈ ℕ )
28 27 nnred ( 𝜑 → ( ϕ ‘ 𝑅 ) ∈ ℝ )
29 27 nnnn0d ( 𝜑 → ( ϕ ‘ 𝑅 ) ∈ ℕ0 )
30 29 nn0ge0d ( 𝜑 → 0 ≤ ( ϕ ‘ 𝑅 ) )
31 28 30 resqrtcld ( 𝜑 → ( √ ‘ ( ϕ ‘ 𝑅 ) ) ∈ ℝ )
32 2re 2 ∈ ℝ
33 32 a1i ( 𝜑 → 2 ∈ ℝ )
34 2pos 0 < 2
35 34 a1i ( 𝜑 → 0 < 2 )
36 6 nnred ( 𝜑𝑁 ∈ ℝ )
37 6 nngt0d ( 𝜑 → 0 < 𝑁 )
38 1red ( 𝜑 → 1 ∈ ℝ )
39 1lt2 1 < 2
40 39 a1i ( 𝜑 → 1 < 2 )
41 38 40 ltned ( 𝜑 → 1 ≠ 2 )
42 41 necomd ( 𝜑 → 2 ≠ 1 )
43 33 35 36 37 42 relogbcld ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ )
44 31 43 remulcld ( 𝜑 → ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ )
45 44 flcld ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ )
46 28 30 sqrtge0d ( 𝜑 → 0 ≤ ( √ ‘ ( ϕ ‘ 𝑅 ) ) )
47 33 recnd ( 𝜑 → 2 ∈ ℂ )
48 35 gt0ne0d ( 𝜑 → 2 ≠ 0 )
49 logb1 ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 1 ) = 0 )
50 47 48 42 49 syl3anc ( 𝜑 → ( 2 logb 1 ) = 0 )
51 50 eqcomd ( 𝜑 → 0 = ( 2 logb 1 ) )
52 2z 2 ∈ ℤ
53 52 a1i ( 𝜑 → 2 ∈ ℤ )
54 33 leidd ( 𝜑 → 2 ≤ 2 )
55 0lt1 0 < 1
56 55 a1i ( 𝜑 → 0 < 1 )
57 6 nnge1d ( 𝜑 → 1 ≤ 𝑁 )
58 53 54 38 56 36 37 57 logblebd ( 𝜑 → ( 2 logb 1 ) ≤ ( 2 logb 𝑁 ) )
59 51 58 eqbrtrd ( 𝜑 → 0 ≤ ( 2 logb 𝑁 ) )
60 31 43 46 59 mulge0d ( 𝜑 → 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) )
61 0zd ( 𝜑 → 0 ∈ ℤ )
62 flge ( ( ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) )
63 44 61 62 syl2anc ( 𝜑 → ( 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) )
64 60 63 mpbid ( 𝜑 → 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) )
65 45 64 jca ( 𝜑 → ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) )
66 elnn0z ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) )
67 65 66 sylibr ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℕ0 )
68 11 67 eqeltrid ( 𝜑𝐴 ∈ ℕ0 )
69 68 nn0red ( 𝜑𝐴 ∈ ℝ )
70 26 69 lenltd ( 𝜑 → ( 𝑃𝐴 ↔ ¬ 𝐴 < 𝑃 ) )
71 70 biimpar ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → 𝑃𝐴 )
72 oveq1 ( 𝑏 = 𝑃 → ( 𝑏 gcd 𝑁 ) = ( 𝑃 gcd 𝑁 ) )
73 72 eqeq1d ( 𝑏 = 𝑃 → ( ( 𝑏 gcd 𝑁 ) = 1 ↔ ( 𝑃 gcd 𝑁 ) = 1 ) )
74 9 adantr ( ( 𝜑𝑃𝐴 ) → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 )
75 1zzd ( ( 𝜑𝑃𝐴 ) → 1 ∈ ℤ )
76 11 45 eqeltrid ( 𝜑𝐴 ∈ ℤ )
77 76 adantr ( ( 𝜑𝑃𝐴 ) → 𝐴 ∈ ℤ )
78 25 nnzd ( 𝜑𝑃 ∈ ℤ )
79 78 adantr ( ( 𝜑𝑃𝐴 ) → 𝑃 ∈ ℤ )
80 25 nnge1d ( 𝜑 → 1 ≤ 𝑃 )
81 80 adantr ( ( 𝜑𝑃𝐴 ) → 1 ≤ 𝑃 )
82 simpr ( ( 𝜑𝑃𝐴 ) → 𝑃𝐴 )
83 75 77 79 81 82 elfzd ( ( 𝜑𝑃𝐴 ) → 𝑃 ∈ ( 1 ... 𝐴 ) )
84 73 74 83 rspcdva ( ( 𝜑𝑃𝐴 ) → ( 𝑃 gcd 𝑁 ) = 1 )
85 84 ex ( 𝜑 → ( 𝑃𝐴 → ( 𝑃 gcd 𝑁 ) = 1 ) )
86 85 adantr ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → ( 𝑃𝐴 → ( 𝑃 gcd 𝑁 ) = 1 ) )
87 71 86 mpd ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → ( 𝑃 gcd 𝑁 ) = 1 )
88 6 nnzd ( 𝜑𝑁 ∈ ℤ )
89 coprm ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑃𝑁 ↔ ( 𝑃 gcd 𝑁 ) = 1 ) )
90 4 88 89 syl2anc ( 𝜑 → ( ¬ 𝑃𝑁 ↔ ( 𝑃 gcd 𝑁 ) = 1 ) )
91 90 con1bid ( 𝜑 → ( ¬ ( 𝑃 gcd 𝑁 ) = 1 ↔ 𝑃𝑁 ) )
92 91 bicomd ( 𝜑 → ( 𝑃𝑁 ↔ ¬ ( 𝑃 gcd 𝑁 ) = 1 ) )
93 92 biimpd ( 𝜑 → ( 𝑃𝑁 → ¬ ( 𝑃 gcd 𝑁 ) = 1 ) )
94 7 93 mpd ( 𝜑 → ¬ ( 𝑃 gcd 𝑁 ) = 1 )
95 94 neqned ( 𝜑 → ( 𝑃 gcd 𝑁 ) ≠ 1 )
96 95 adantr ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → ( 𝑃 gcd 𝑁 ) ≠ 1 )
97 96 neneqd ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → ¬ ( 𝑃 gcd 𝑁 ) = 1 )
98 87 97 pm2.21dd ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → 𝐴 < 𝑃 )
99 23 98 pm2.61dan ( 𝜑𝐴 < 𝑃 )
100 eqid ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )
101 imaco ( ( 𝐽𝐸 ) “ ( ℕ0 × ℕ0 ) ) = ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) )
102 101 eqcomi ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ( ( 𝐽𝐸 ) “ ( ℕ0 × ℕ0 ) )
103 resima ( ( ( 𝐽𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) “ ( ℕ0 × ℕ0 ) ) = ( ( 𝐽𝐸 ) “ ( ℕ0 × ℕ0 ) )
104 103 eqcomi ( ( 𝐽𝐸 ) “ ( ℕ0 × ℕ0 ) ) = ( ( ( 𝐽𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) “ ( ℕ0 × ℕ0 ) )
105 104 a1i ( 𝜑 → ( ( 𝐽𝐸 ) “ ( ℕ0 × ℕ0 ) ) = ( ( ( 𝐽𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) “ ( ℕ0 × ℕ0 ) ) )
106 78 adantr ( ( 𝜑𝑣 ∈ ( ℕ0 × ℕ0 ) ) → 𝑃 ∈ ℤ )
107 xp1st ( 𝑣 ∈ ( ℕ0 × ℕ0 ) → ( 1st𝑣 ) ∈ ℕ0 )
108 107 adantl ( ( 𝜑𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( 1st𝑣 ) ∈ ℕ0 )
109 106 108 zexpcld ( ( 𝜑𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝑃 ↑ ( 1st𝑣 ) ) ∈ ℤ )
110 25 nnne0d ( 𝜑𝑃 ≠ 0 )
111 dvdsval2 ( ( 𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑃𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) )
112 78 110 88 111 syl3anc ( 𝜑 → ( 𝑃𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) )
113 7 112 mpbid ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℤ )
114 113 adantr ( ( 𝜑𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝑁 / 𝑃 ) ∈ ℤ )
115 xp2nd ( 𝑣 ∈ ( ℕ0 × ℕ0 ) → ( 2nd𝑣 ) ∈ ℕ0 )
116 115 adantl ( ( 𝜑𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( 2nd𝑣 ) ∈ ℕ0 )
117 114 116 zexpcld ( ( 𝜑𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ∈ ℤ )
118 109 117 zmulcld ( ( 𝜑𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ∈ ℤ )
119 vex 𝑘 ∈ V
120 vex 𝑙 ∈ V
121 119 120 op1std ( 𝑣 = ⟨ 𝑘 , 𝑙 ⟩ → ( 1st𝑣 ) = 𝑘 )
122 121 oveq2d ( 𝑣 = ⟨ 𝑘 , 𝑙 ⟩ → ( 𝑃 ↑ ( 1st𝑣 ) ) = ( 𝑃𝑘 ) )
123 119 120 op2ndd ( 𝑣 = ⟨ 𝑘 , 𝑙 ⟩ → ( 2nd𝑣 ) = 𝑙 )
124 123 oveq2d ( 𝑣 = ⟨ 𝑘 , 𝑙 ⟩ → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) )
125 122 124 oveq12d ( 𝑣 = ⟨ 𝑘 , 𝑙 ⟩ → ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) = ( ( 𝑃𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) )
126 125 mpompt ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ) = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) )
127 12 126 eqtr4i 𝐸 = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) )
128 127 a1i ( 𝜑𝐸 = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ) )
129 20 a1i ( 𝜑𝐽 = ( 𝑗 ∈ ℤ ↦ ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) )
130 oveq1 ( 𝑗 = ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) → ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) )
131 118 128 129 130 fmptco ( 𝜑 → ( 𝐽𝐸 ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) )
132 131 reseq1d ( 𝜑 → ( ( 𝐽𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) = ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ↾ ( ℕ0 × ℕ0 ) ) )
133 ssidd ( 𝜑 → ( ℕ0 × ℕ0 ) ⊆ ( ℕ0 × ℕ0 ) )
134 133 resmptd ( 𝜑 → ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ↾ ( ℕ0 × ℕ0 ) ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) )
135 128 118 fvmpt2d ( ( 𝜑𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸𝑣 ) = ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) )
136 135 oveq1d ( ( 𝜑𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) )
137 136 mpteq2dva ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) )
138 137 eqcomd ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) )
139 ovexd ( ( 𝜑𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ∈ V )
140 eqid ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) )
141 139 140 fmptd ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) : ( ℕ0 × ℕ0 ) ⟶ V )
142 ffn ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) : ( ℕ0 × ℕ0 ) ⟶ V → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) Fn ( ℕ0 × ℕ0 ) )
143 141 142 syl ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) Fn ( ℕ0 × ℕ0 ) )
144 ovexd ( ( 𝜑𝑗 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ V )
145 144 100 fmptd ( 𝜑 → ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) : ( ℕ0 × ℕ0 ) ⟶ V )
146 ffn ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) : ( ℕ0 × ℕ0 ) ⟶ V → ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) Fn ( ℕ0 × ℕ0 ) )
147 145 146 syl ( 𝜑 → ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) Fn ( ℕ0 × ℕ0 ) )
148 eqidd ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) )
149 simpr ( ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑣 = 𝑐 ) → 𝑣 = 𝑐 )
150 149 fveq2d ( ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑣 = 𝑐 ) → ( 𝐸𝑣 ) = ( 𝐸𝑐 ) )
151 150 oveq1d ( ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑣 = 𝑐 ) → ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( ( 𝐸𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) )
152 simpr ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → 𝑐 ∈ ( ℕ0 × ℕ0 ) )
153 ovexd ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ∈ V )
154 148 151 152 153 fvmptd ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ‘ 𝑐 ) = ( ( 𝐸𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) )
155 eqid ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 )
156 22 ssrab3 𝑈 ⊆ ( Base ‘ ( mulGrp ‘ 𝐾 ) )
157 156 a1i ( 𝜑𝑈 ⊆ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) )
158 157 adantr ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → 𝑈 ⊆ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) )
159 3 fldcrngd ( 𝜑𝐾 ∈ CRing )
160 eqid ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 )
161 160 crngmgp ( 𝐾 ∈ CRing → ( mulGrp ‘ 𝐾 ) ∈ CMnd )
162 159 161 syl ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ CMnd )
163 162 5 22 primrootsunit ( 𝜑 → ( ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) = ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) ∧ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Abel ) )
164 163 simpld ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) = ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) )
165 16 164 eleqtrd ( 𝜑𝑀 ∈ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) )
166 163 simprd ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Abel )
167 ablcmn ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Abel → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ CMnd )
168 166 167 syl ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ CMnd )
169 5 nnnn0d ( 𝜑𝑅 ∈ ℕ0 )
170 eqid ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) = ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) )
171 168 169 170 isprimroot ( 𝜑 → ( 𝑀 ∈ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ∀ 𝑤 ∈ ℕ0 ( ( 𝑤 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) → 𝑅𝑤 ) ) ) )
172 171 biimpd ( 𝜑 → ( 𝑀 ∈ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) → ( 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ∀ 𝑤 ∈ ℕ0 ( ( 𝑤 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) → 𝑅𝑤 ) ) ) )
173 165 172 mpd ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ∀ 𝑤 ∈ ℕ0 ( ( 𝑤 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) → 𝑅𝑤 ) ) )
174 173 simp1d ( 𝜑𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) )
175 eqid ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) )
176 155 175 ressbas2 ( 𝑈 ⊆ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) )
177 157 176 syl ( 𝜑𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) )
178 174 177 eleqtrrd ( 𝜑𝑀𝑈 )
179 178 adantr ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → 𝑀𝑈 )
180 6 4 7 12 aks6d1c2p1 ( 𝜑𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ )
181 180 ffvelcdmda ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸𝑐 ) ∈ ℕ )
182 155 158 179 181 ressmulgnnd ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( ( 𝐸𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )
183 eqidd ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) )
184 simpr ( ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑗 = 𝑐 ) → 𝑗 = 𝑐 )
185 184 fveq2d ( ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑗 = 𝑐 ) → ( 𝐸𝑗 ) = ( 𝐸𝑐 ) )
186 185 oveq1d ( ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑗 = 𝑐 ) → ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( ( 𝐸𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )
187 ovexd ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ V )
188 183 186 152 187 fvmptd ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ‘ 𝑐 ) = ( ( 𝐸𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )
189 188 eqcomd ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ‘ 𝑐 ) )
190 154 182 189 3eqtrd ( ( 𝜑𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ‘ 𝑐 ) = ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ‘ 𝑐 ) )
191 143 147 190 eqfnfvd ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) )
192 138 191 eqtrd ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) )
193 134 192 eqtrd ( 𝜑 → ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ↾ ( ℕ0 × ℕ0 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) )
194 132 193 eqtrd ( 𝜑 → ( ( 𝐽𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) )
195 194 imaeq1d ( 𝜑 → ( ( ( 𝐽𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) “ ( ℕ0 × ℕ0 ) ) = ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) “ ( ℕ0 × ℕ0 ) ) )
196 105 195 eqtrd ( 𝜑 → ( ( 𝐽𝐸 ) “ ( ℕ0 × ℕ0 ) ) = ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) “ ( ℕ0 × ℕ0 ) ) )
197 102 196 eqtrid ( 𝜑 → ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) “ ( ℕ0 × ℕ0 ) ) )
198 197 fveq2d ( 𝜑 → ( ♯ ‘ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = ( ♯ ‘ ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) “ ( ℕ0 × ℕ0 ) ) ) )
199 21 198 breqtrd ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ♯ ‘ ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) “ ( ℕ0 × ℕ0 ) ) ) )
200 1 2 3 4 5 6 7 8 99 10 68 12 13 14 15 16 17 18 19 100 199 aks6d1c6lem3 ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ ( ℕ0m ( 0 ... 𝐴 ) ) ) ) )