Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6lem4.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
2 |
|
aks6d1c6lem4.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks6d1c6lem4.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks6d1c6lem4.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks6d1c6lem4.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks6d1c6lem4.6 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
7 |
|
aks6d1c6lem4.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks6d1c6lem4.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks6d1c6lem4.9 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
10 |
|
aks6d1c6lem4.10 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
11 |
|
aks6d1c6lem4.11 |
⊢ 𝐴 = ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
12 |
|
aksaks6dlem4.12 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
13 |
|
aks6d1c6lem4.13 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
14 |
|
aks6d1c6lem4.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
15 |
|
aks6d1c6lem4.15 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
16 |
|
aks6d1c6lem4.16 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
17 |
|
aks6d1c6lem4.17 |
⊢ 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) |
18 |
|
aks6d1c6lem4.18 |
⊢ 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
19 |
|
aks6d1c6lem4.19 |
⊢ 𝑆 = { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } |
20 |
|
aks6d1c6lem4.20 |
⊢ 𝐽 = ( 𝑗 ∈ ℤ ↦ ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
21 |
|
aks6d1c6lem4.21 |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ♯ ‘ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
22 |
|
aks6d1c6lem4.22 |
⊢ 𝑈 = { 𝑚 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∣ ∃ 𝑛 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑛 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑚 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝑃 ) → 𝐴 < 𝑃 ) |
24 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
25 |
4 24
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
26 |
25
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
27 |
5
|
phicld |
⊢ ( 𝜑 → ( ϕ ‘ 𝑅 ) ∈ ℕ ) |
28 |
27
|
nnred |
⊢ ( 𝜑 → ( ϕ ‘ 𝑅 ) ∈ ℝ ) |
29 |
27
|
nnnn0d |
⊢ ( 𝜑 → ( ϕ ‘ 𝑅 ) ∈ ℕ0 ) |
30 |
29
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ϕ ‘ 𝑅 ) ) |
31 |
28 30
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ϕ ‘ 𝑅 ) ) ∈ ℝ ) |
32 |
|
2re |
⊢ 2 ∈ ℝ |
33 |
32
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
34 |
|
2pos |
⊢ 0 < 2 |
35 |
34
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
36 |
6
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
37 |
6
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
38 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
39 |
|
1lt2 |
⊢ 1 < 2 |
40 |
39
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
41 |
38 40
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
42 |
41
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
43 |
33 35 36 37 42
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
44 |
31 43
|
remulcld |
⊢ ( 𝜑 → ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ) |
45 |
44
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ) |
46 |
28 30
|
sqrtge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( ϕ ‘ 𝑅 ) ) ) |
47 |
33
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
48 |
35
|
gt0ne0d |
⊢ ( 𝜑 → 2 ≠ 0 ) |
49 |
|
logb1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 1 ) = 0 ) |
50 |
47 48 42 49
|
syl3anc |
⊢ ( 𝜑 → ( 2 logb 1 ) = 0 ) |
51 |
50
|
eqcomd |
⊢ ( 𝜑 → 0 = ( 2 logb 1 ) ) |
52 |
|
2z |
⊢ 2 ∈ ℤ |
53 |
52
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
54 |
33
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
55 |
|
0lt1 |
⊢ 0 < 1 |
56 |
55
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
57 |
6
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑁 ) |
58 |
53 54 38 56 36 37 57
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 1 ) ≤ ( 2 logb 𝑁 ) ) |
59 |
51 58
|
eqbrtrd |
⊢ ( 𝜑 → 0 ≤ ( 2 logb 𝑁 ) ) |
60 |
31 43 46 59
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) |
61 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
62 |
|
flge |
⊢ ( ( ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
63 |
44 61 62
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ↔ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
64 |
60 63
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) |
65 |
45 64
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
66 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ) ) |
67 |
65 66
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) ) · ( 2 logb 𝑁 ) ) ) ∈ ℕ0 ) |
68 |
11 67
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
69 |
68
|
nn0red |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
70 |
26 69
|
lenltd |
⊢ ( 𝜑 → ( 𝑃 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑃 ) ) |
71 |
70
|
biimpar |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → 𝑃 ≤ 𝐴 ) |
72 |
|
oveq1 |
⊢ ( 𝑏 = 𝑃 → ( 𝑏 gcd 𝑁 ) = ( 𝑃 gcd 𝑁 ) ) |
73 |
72
|
eqeq1d |
⊢ ( 𝑏 = 𝑃 → ( ( 𝑏 gcd 𝑁 ) = 1 ↔ ( 𝑃 gcd 𝑁 ) = 1 ) ) |
74 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≤ 𝐴 ) → ∀ 𝑏 ∈ ( 1 ... 𝐴 ) ( 𝑏 gcd 𝑁 ) = 1 ) |
75 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑃 ≤ 𝐴 ) → 1 ∈ ℤ ) |
76 |
11 45
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≤ 𝐴 ) → 𝐴 ∈ ℤ ) |
78 |
25
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≤ 𝐴 ) → 𝑃 ∈ ℤ ) |
80 |
25
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑃 ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 ≤ 𝐴 ) → 1 ≤ 𝑃 ) |
82 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑃 ≤ 𝐴 ) → 𝑃 ≤ 𝐴 ) |
83 |
75 77 79 81 82
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑃 ≤ 𝐴 ) → 𝑃 ∈ ( 1 ... 𝐴 ) ) |
84 |
73 74 83
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑃 ≤ 𝐴 ) → ( 𝑃 gcd 𝑁 ) = 1 ) |
85 |
84
|
ex |
⊢ ( 𝜑 → ( 𝑃 ≤ 𝐴 → ( 𝑃 gcd 𝑁 ) = 1 ) ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → ( 𝑃 ≤ 𝐴 → ( 𝑃 gcd 𝑁 ) = 1 ) ) |
87 |
71 86
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → ( 𝑃 gcd 𝑁 ) = 1 ) |
88 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
89 |
|
coprm |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑁 ↔ ( 𝑃 gcd 𝑁 ) = 1 ) ) |
90 |
4 88 89
|
syl2anc |
⊢ ( 𝜑 → ( ¬ 𝑃 ∥ 𝑁 ↔ ( 𝑃 gcd 𝑁 ) = 1 ) ) |
91 |
90
|
con1bid |
⊢ ( 𝜑 → ( ¬ ( 𝑃 gcd 𝑁 ) = 1 ↔ 𝑃 ∥ 𝑁 ) ) |
92 |
91
|
bicomd |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ↔ ¬ ( 𝑃 gcd 𝑁 ) = 1 ) ) |
93 |
92
|
biimpd |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 → ¬ ( 𝑃 gcd 𝑁 ) = 1 ) ) |
94 |
7 93
|
mpd |
⊢ ( 𝜑 → ¬ ( 𝑃 gcd 𝑁 ) = 1 ) |
95 |
94
|
neqned |
⊢ ( 𝜑 → ( 𝑃 gcd 𝑁 ) ≠ 1 ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → ( 𝑃 gcd 𝑁 ) ≠ 1 ) |
97 |
96
|
neneqd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → ¬ ( 𝑃 gcd 𝑁 ) = 1 ) |
98 |
87 97
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝑃 ) → 𝐴 < 𝑃 ) |
99 |
23 98
|
pm2.61dan |
⊢ ( 𝜑 → 𝐴 < 𝑃 ) |
100 |
|
eqid |
⊢ ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
101 |
|
imaco |
⊢ ( ( 𝐽 ∘ 𝐸 ) “ ( ℕ0 × ℕ0 ) ) = ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) |
102 |
101
|
eqcomi |
⊢ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ( ( 𝐽 ∘ 𝐸 ) “ ( ℕ0 × ℕ0 ) ) |
103 |
|
resima |
⊢ ( ( ( 𝐽 ∘ 𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) “ ( ℕ0 × ℕ0 ) ) = ( ( 𝐽 ∘ 𝐸 ) “ ( ℕ0 × ℕ0 ) ) |
104 |
103
|
eqcomi |
⊢ ( ( 𝐽 ∘ 𝐸 ) “ ( ℕ0 × ℕ0 ) ) = ( ( ( 𝐽 ∘ 𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) “ ( ℕ0 × ℕ0 ) ) |
105 |
104
|
a1i |
⊢ ( 𝜑 → ( ( 𝐽 ∘ 𝐸 ) “ ( ℕ0 × ℕ0 ) ) = ( ( ( 𝐽 ∘ 𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) “ ( ℕ0 × ℕ0 ) ) ) |
106 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℕ0 × ℕ0 ) ) → 𝑃 ∈ ℤ ) |
107 |
|
xp1st |
⊢ ( 𝑣 ∈ ( ℕ0 × ℕ0 ) → ( 1st ‘ 𝑣 ) ∈ ℕ0 ) |
108 |
107
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( 1st ‘ 𝑣 ) ∈ ℕ0 ) |
109 |
106 108
|
zexpcld |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) ∈ ℤ ) |
110 |
25
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
111 |
|
dvdsval2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
112 |
78 110 88 111
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
113 |
7 112
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
115 |
|
xp2nd |
⊢ ( 𝑣 ∈ ( ℕ0 × ℕ0 ) → ( 2nd ‘ 𝑣 ) ∈ ℕ0 ) |
116 |
115
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( 2nd ‘ 𝑣 ) ∈ ℕ0 ) |
117 |
114 116
|
zexpcld |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ∈ ℤ ) |
118 |
109 117
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ∈ ℤ ) |
119 |
|
vex |
⊢ 𝑘 ∈ V |
120 |
|
vex |
⊢ 𝑙 ∈ V |
121 |
119 120
|
op1std |
⊢ ( 𝑣 = 〈 𝑘 , 𝑙 〉 → ( 1st ‘ 𝑣 ) = 𝑘 ) |
122 |
121
|
oveq2d |
⊢ ( 𝑣 = 〈 𝑘 , 𝑙 〉 → ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) = ( 𝑃 ↑ 𝑘 ) ) |
123 |
119 120
|
op2ndd |
⊢ ( 𝑣 = 〈 𝑘 , 𝑙 〉 → ( 2nd ‘ 𝑣 ) = 𝑙 ) |
124 |
123
|
oveq2d |
⊢ ( 𝑣 = 〈 𝑘 , 𝑙 〉 → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) |
125 |
122 124
|
oveq12d |
⊢ ( 𝑣 = 〈 𝑘 , 𝑙 〉 → ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) = ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
126 |
125
|
mpompt |
⊢ ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ) = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
127 |
12 126
|
eqtr4i |
⊢ 𝐸 = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ) |
128 |
127
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ) ) |
129 |
20
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( 𝑗 ∈ ℤ ↦ ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
130 |
|
oveq1 |
⊢ ( 𝑗 = ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) → ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
131 |
118 128 129 130
|
fmptco |
⊢ ( 𝜑 → ( 𝐽 ∘ 𝐸 ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
132 |
131
|
reseq1d |
⊢ ( 𝜑 → ( ( 𝐽 ∘ 𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) = ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ↾ ( ℕ0 × ℕ0 ) ) ) |
133 |
|
ssidd |
⊢ ( 𝜑 → ( ℕ0 × ℕ0 ) ⊆ ( ℕ0 × ℕ0 ) ) |
134 |
133
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ↾ ( ℕ0 × ℕ0 ) ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
135 |
128 118
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸 ‘ 𝑣 ) = ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ) |
136 |
135
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
137 |
136
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
138 |
137
|
eqcomd |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
139 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
140 |
|
eqid |
⊢ ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
141 |
139 140
|
fmptd |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) : ( ℕ0 × ℕ0 ) ⟶ V ) |
142 |
|
ffn |
⊢ ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) : ( ℕ0 × ℕ0 ) ⟶ V → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) Fn ( ℕ0 × ℕ0 ) ) |
143 |
141 142
|
syl |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) Fn ( ℕ0 × ℕ0 ) ) |
144 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ V ) |
145 |
144 100
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) : ( ℕ0 × ℕ0 ) ⟶ V ) |
146 |
|
ffn |
⊢ ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) : ( ℕ0 × ℕ0 ) ⟶ V → ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) Fn ( ℕ0 × ℕ0 ) ) |
147 |
145 146
|
syl |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) Fn ( ℕ0 × ℕ0 ) ) |
148 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ) |
149 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑣 = 𝑐 ) → 𝑣 = 𝑐 ) |
150 |
149
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑣 = 𝑐 ) → ( 𝐸 ‘ 𝑣 ) = ( 𝐸 ‘ 𝑐 ) ) |
151 |
150
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑣 = 𝑐 ) → ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
152 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → 𝑐 ∈ ( ℕ0 × ℕ0 ) ) |
153 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ∈ V ) |
154 |
148 151 152 153
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ‘ 𝑐 ) = ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) |
155 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) |
156 |
22
|
ssrab3 |
⊢ 𝑈 ⊆ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
157 |
156
|
a1i |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
158 |
157
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → 𝑈 ⊆ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
159 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
160 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
161 |
160
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
162 |
159 161
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
163 |
162 5 22
|
primrootsunit |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) = ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) ∧ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Abel ) ) |
164 |
163
|
simpld |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) = ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) ) |
165 |
16 164
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) ) |
166 |
163
|
simprd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Abel ) |
167 |
|
ablcmn |
⊢ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ Abel → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ CMnd ) |
168 |
166 167
|
syl |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ∈ CMnd ) |
169 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
170 |
|
eqid |
⊢ ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) = ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) |
171 |
168 169 170
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ∀ 𝑤 ∈ ℕ0 ( ( 𝑤 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) → 𝑅 ∥ 𝑤 ) ) ) ) |
172 |
171
|
biimpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) PrimRoots 𝑅 ) → ( 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ∀ 𝑤 ∈ ℕ0 ( ( 𝑤 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) → 𝑅 ∥ 𝑤 ) ) ) ) |
173 |
165 172
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ∧ ∀ 𝑤 ∈ ℕ0 ( ( 𝑤 ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( 0g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) → 𝑅 ∥ 𝑤 ) ) ) |
174 |
173
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
175 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
176 |
155 175
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
177 |
157 176
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) ) |
178 |
174 177
|
eleqtrrd |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
179 |
178
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → 𝑀 ∈ 𝑈 ) |
180 |
6 4 7 12
|
aks6d1c2p1 |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ) |
181 |
180
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸 ‘ 𝑐 ) ∈ ℕ ) |
182 |
155 158 179 181
|
ressmulgnnd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) = ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
183 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
184 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑗 = 𝑐 ) → 𝑗 = 𝑐 ) |
185 |
184
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑗 = 𝑐 ) → ( 𝐸 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑐 ) ) |
186 |
185
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑗 = 𝑐 ) → ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
187 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ V ) |
188 |
183 186 152 187
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ‘ 𝑐 ) = ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
189 |
188
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ‘ 𝑐 ) ) |
190 |
154 182 189
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ‘ 𝑐 ) = ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ‘ 𝑐 ) ) |
191 |
143 147 190
|
eqfnfvd |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
192 |
138 191
|
eqtrd |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
193 |
134 192
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( ( 𝑃 ↑ ( 1st ‘ 𝑣 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 ) ↾s 𝑈 ) ) 𝑀 ) ) ↾ ( ℕ0 × ℕ0 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
194 |
132 193
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐽 ∘ 𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
195 |
194
|
imaeq1d |
⊢ ( 𝜑 → ( ( ( 𝐽 ∘ 𝐸 ) ↾ ( ℕ0 × ℕ0 ) ) “ ( ℕ0 × ℕ0 ) ) = ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) “ ( ℕ0 × ℕ0 ) ) ) |
196 |
105 195
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐽 ∘ 𝐸 ) “ ( ℕ0 × ℕ0 ) ) = ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) “ ( ℕ0 × ℕ0 ) ) ) |
197 |
102 196
|
eqtrid |
⊢ ( 𝜑 → ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) “ ( ℕ0 × ℕ0 ) ) ) |
198 |
197
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐽 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = ( ♯ ‘ ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) “ ( ℕ0 × ℕ0 ) ) ) ) |
199 |
21 198
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ♯ ‘ ( ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) “ ( ℕ0 × ℕ0 ) ) ) ) |
200 |
1 2 3 4 5 6 7 8 99 10 68 12 13 14 15 16 17 18 19 100 199
|
aks6d1c6lem3 |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |