| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6lem4.1 | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } | 
						
							| 2 |  | aks6d1c6lem4.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks6d1c6lem4.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks6d1c6lem4.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks6d1c6lem4.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks6d1c6lem4.6 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | aks6d1c6lem4.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks6d1c6lem4.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks6d1c6lem4.9 | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝑏  gcd  𝑁 )  =  1 ) | 
						
							| 10 |  | aks6d1c6lem4.10 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c6lem4.11 | ⊢ 𝐴  =  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 12 |  | aksaks6dlem4.12 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 13 |  | aks6d1c6lem4.13 | ⊢ 𝐿  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 14 |  | aks6d1c6lem4.14 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 15 |  | aks6d1c6lem4.15 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 16 |  | aks6d1c6lem4.16 | ⊢ ( 𝜑  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 17 |  | aks6d1c6lem4.17 | ⊢ 𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) | 
						
							| 18 |  | aks6d1c6lem4.18 | ⊢ 𝐷  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 19 |  | aks6d1c6lem4.19 | ⊢ 𝑆  =  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } | 
						
							| 20 |  | aks6d1c6lem4.20 | ⊢ 𝐽  =  ( 𝑗  ∈  ℤ  ↦  ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 21 |  | aks6d1c6lem4.21 | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≤  ( ♯ ‘ ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 22 |  | aks6d1c6lem4.22 | ⊢ 𝑈  =  { 𝑚  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∣  ∃ 𝑛  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝑛 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑚 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) } | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  <  𝑃 )  →  𝐴  <  𝑃 ) | 
						
							| 24 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 25 | 4 24 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 26 | 25 | nnred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 27 | 5 | phicld | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑅 )  ∈  ℕ ) | 
						
							| 28 | 27 | nnred | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑅 )  ∈  ℝ ) | 
						
							| 29 | 27 | nnnn0d | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑅 )  ∈  ℕ0 ) | 
						
							| 30 | 29 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( ϕ ‘ 𝑅 ) ) | 
						
							| 31 | 28 30 | resqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ϕ ‘ 𝑅 ) )  ∈  ℝ ) | 
						
							| 32 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 33 | 32 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 34 |  | 2pos | ⊢ 0  <  2 | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  0  <  2 ) | 
						
							| 36 | 6 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 37 | 6 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 38 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 39 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  1  <  2 ) | 
						
							| 41 | 38 40 | ltned | ⊢ ( 𝜑  →  1  ≠  2 ) | 
						
							| 42 | 41 | necomd | ⊢ ( 𝜑  →  2  ≠  1 ) | 
						
							| 43 | 33 35 36 37 42 | relogbcld | ⊢ ( 𝜑  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 44 | 31 43 | remulcld | ⊢ ( 𝜑  →  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ ) | 
						
							| 45 | 44 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ ) | 
						
							| 46 | 28 30 | sqrtge0d | ⊢ ( 𝜑  →  0  ≤  ( √ ‘ ( ϕ ‘ 𝑅 ) ) ) | 
						
							| 47 | 33 | recnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 48 | 35 | gt0ne0d | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 49 |  | logb1 | ⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0  ∧  2  ≠  1 )  →  ( 2  logb  1 )  =  0 ) | 
						
							| 50 | 47 48 42 49 | syl3anc | ⊢ ( 𝜑  →  ( 2  logb  1 )  =  0 ) | 
						
							| 51 | 50 | eqcomd | ⊢ ( 𝜑  →  0  =  ( 2  logb  1 ) ) | 
						
							| 52 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 53 | 52 | a1i | ⊢ ( 𝜑  →  2  ∈  ℤ ) | 
						
							| 54 | 33 | leidd | ⊢ ( 𝜑  →  2  ≤  2 ) | 
						
							| 55 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 56 | 55 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 57 | 6 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑁 ) | 
						
							| 58 | 53 54 38 56 36 37 57 | logblebd | ⊢ ( 𝜑  →  ( 2  logb  1 )  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 59 | 51 58 | eqbrtrd | ⊢ ( 𝜑  →  0  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 60 | 31 43 46 59 | mulge0d | ⊢ ( 𝜑  →  0  ≤  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) | 
						
							| 61 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 62 |  | flge | ⊢ ( ( ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ∈  ℝ  ∧  0  ∈  ℤ )  →  ( 0  ≤  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ↔  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 63 | 44 61 62 | syl2anc | ⊢ ( 𝜑  →  ( 0  ≤  ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) )  ↔  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 64 | 60 63 | mpbid | ⊢ ( 𝜑  →  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) | 
						
							| 65 | 45 64 | jca | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 66 |  | elnn0z | ⊢ ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℕ0  ↔  ( ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℤ  ∧  0  ≤  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) ) ) ) | 
						
							| 67 | 65 66 | sylibr | ⊢ ( 𝜑  →  ( ⌊ ‘ ( ( √ ‘ ( ϕ ‘ 𝑅 ) )  ·  ( 2  logb  𝑁 ) ) )  ∈  ℕ0 ) | 
						
							| 68 | 11 67 | eqeltrid | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 69 | 68 | nn0red | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 70 | 26 69 | lenltd | ⊢ ( 𝜑  →  ( 𝑃  ≤  𝐴  ↔  ¬  𝐴  <  𝑃 ) ) | 
						
							| 71 | 70 | biimpar | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  𝑃 )  →  𝑃  ≤  𝐴 ) | 
						
							| 72 |  | oveq1 | ⊢ ( 𝑏  =  𝑃  →  ( 𝑏  gcd  𝑁 )  =  ( 𝑃  gcd  𝑁 ) ) | 
						
							| 73 | 72 | eqeq1d | ⊢ ( 𝑏  =  𝑃  →  ( ( 𝑏  gcd  𝑁 )  =  1  ↔  ( 𝑃  gcd  𝑁 )  =  1 ) ) | 
						
							| 74 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≤  𝐴 )  →  ∀ 𝑏  ∈  ( 1 ... 𝐴 ) ( 𝑏  gcd  𝑁 )  =  1 ) | 
						
							| 75 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑃  ≤  𝐴 )  →  1  ∈  ℤ ) | 
						
							| 76 | 11 45 | eqeltrid | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≤  𝐴 )  →  𝐴  ∈  ℤ ) | 
						
							| 78 | 25 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≤  𝐴 )  →  𝑃  ∈  ℤ ) | 
						
							| 80 | 25 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑃 ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  ≤  𝐴 )  →  1  ≤  𝑃 ) | 
						
							| 82 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑃  ≤  𝐴 )  →  𝑃  ≤  𝐴 ) | 
						
							| 83 | 75 77 79 81 82 | elfzd | ⊢ ( ( 𝜑  ∧  𝑃  ≤  𝐴 )  →  𝑃  ∈  ( 1 ... 𝐴 ) ) | 
						
							| 84 | 73 74 83 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑃  ≤  𝐴 )  →  ( 𝑃  gcd  𝑁 )  =  1 ) | 
						
							| 85 | 84 | ex | ⊢ ( 𝜑  →  ( 𝑃  ≤  𝐴  →  ( 𝑃  gcd  𝑁 )  =  1 ) ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  𝑃 )  →  ( 𝑃  ≤  𝐴  →  ( 𝑃  gcd  𝑁 )  =  1 ) ) | 
						
							| 87 | 71 86 | mpd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  𝑃 )  →  ( 𝑃  gcd  𝑁 )  =  1 ) | 
						
							| 88 | 6 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 89 |  | coprm | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ )  →  ( ¬  𝑃  ∥  𝑁  ↔  ( 𝑃  gcd  𝑁 )  =  1 ) ) | 
						
							| 90 | 4 88 89 | syl2anc | ⊢ ( 𝜑  →  ( ¬  𝑃  ∥  𝑁  ↔  ( 𝑃  gcd  𝑁 )  =  1 ) ) | 
						
							| 91 | 90 | con1bid | ⊢ ( 𝜑  →  ( ¬  ( 𝑃  gcd  𝑁 )  =  1  ↔  𝑃  ∥  𝑁 ) ) | 
						
							| 92 | 91 | bicomd | ⊢ ( 𝜑  →  ( 𝑃  ∥  𝑁  ↔  ¬  ( 𝑃  gcd  𝑁 )  =  1 ) ) | 
						
							| 93 | 92 | biimpd | ⊢ ( 𝜑  →  ( 𝑃  ∥  𝑁  →  ¬  ( 𝑃  gcd  𝑁 )  =  1 ) ) | 
						
							| 94 | 7 93 | mpd | ⊢ ( 𝜑  →  ¬  ( 𝑃  gcd  𝑁 )  =  1 ) | 
						
							| 95 | 94 | neqned | ⊢ ( 𝜑  →  ( 𝑃  gcd  𝑁 )  ≠  1 ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  𝑃 )  →  ( 𝑃  gcd  𝑁 )  ≠  1 ) | 
						
							| 97 | 96 | neneqd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  𝑃 )  →  ¬  ( 𝑃  gcd  𝑁 )  =  1 ) | 
						
							| 98 | 87 97 | pm2.21dd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  𝑃 )  →  𝐴  <  𝑃 ) | 
						
							| 99 | 23 98 | pm2.61dan | ⊢ ( 𝜑  →  𝐴  <  𝑃 ) | 
						
							| 100 |  | eqid | ⊢ ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 101 |  | imaco | ⊢ ( ( 𝐽  ∘  𝐸 )  “  ( ℕ0  ×  ℕ0 ) )  =  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 102 | 101 | eqcomi | ⊢ ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  =  ( ( 𝐽  ∘  𝐸 )  “  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 103 |  | resima | ⊢ ( ( ( 𝐽  ∘  𝐸 )  ↾  ( ℕ0  ×  ℕ0 ) )  “  ( ℕ0  ×  ℕ0 ) )  =  ( ( 𝐽  ∘  𝐸 )  “  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 104 | 103 | eqcomi | ⊢ ( ( 𝐽  ∘  𝐸 )  “  ( ℕ0  ×  ℕ0 ) )  =  ( ( ( 𝐽  ∘  𝐸 )  ↾  ( ℕ0  ×  ℕ0 ) )  “  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 105 | 104 | a1i | ⊢ ( 𝜑  →  ( ( 𝐽  ∘  𝐸 )  “  ( ℕ0  ×  ℕ0 ) )  =  ( ( ( 𝐽  ∘  𝐸 )  ↾  ( ℕ0  ×  ℕ0 ) )  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 106 | 78 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑃  ∈  ℤ ) | 
						
							| 107 |  | xp1st | ⊢ ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  →  ( 1st  ‘ 𝑣 )  ∈  ℕ0 ) | 
						
							| 108 | 107 | adantl | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 1st  ‘ 𝑣 )  ∈  ℕ0 ) | 
						
							| 109 | 106 108 | zexpcld | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ∈  ℤ ) | 
						
							| 110 | 25 | nnne0d | ⊢ ( 𝜑  →  𝑃  ≠  0 ) | 
						
							| 111 |  | dvdsval2 | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑃  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝑃  ∥  𝑁  ↔  ( 𝑁  /  𝑃 )  ∈  ℤ ) ) | 
						
							| 112 | 78 110 88 111 | syl3anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  𝑁  ↔  ( 𝑁  /  𝑃 )  ∈  ℤ ) ) | 
						
							| 113 | 7 112 | mpbid | ⊢ ( 𝜑  →  ( 𝑁  /  𝑃 )  ∈  ℤ ) | 
						
							| 114 | 113 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝑁  /  𝑃 )  ∈  ℤ ) | 
						
							| 115 |  | xp2nd | ⊢ ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  →  ( 2nd  ‘ 𝑣 )  ∈  ℕ0 ) | 
						
							| 116 | 115 | adantl | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 2nd  ‘ 𝑣 )  ∈  ℕ0 ) | 
						
							| 117 | 114 116 | zexpcld | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) )  ∈  ℤ ) | 
						
							| 118 | 109 117 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) )  ∈  ℤ ) | 
						
							| 119 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 120 |  | vex | ⊢ 𝑙  ∈  V | 
						
							| 121 | 119 120 | op1std | ⊢ ( 𝑣  =  〈 𝑘 ,  𝑙 〉  →  ( 1st  ‘ 𝑣 )  =  𝑘 ) | 
						
							| 122 | 121 | oveq2d | ⊢ ( 𝑣  =  〈 𝑘 ,  𝑙 〉  →  ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  =  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 123 | 119 120 | op2ndd | ⊢ ( 𝑣  =  〈 𝑘 ,  𝑙 〉  →  ( 2nd  ‘ 𝑣 )  =  𝑙 ) | 
						
							| 124 | 123 | oveq2d | ⊢ ( 𝑣  =  〈 𝑘 ,  𝑙 〉  →  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) | 
						
							| 125 | 122 124 | oveq12d | ⊢ ( 𝑣  =  〈 𝑘 ,  𝑙 〉  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) )  =  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 126 | 125 | mpompt | ⊢ ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) )  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 127 | 12 126 | eqtr4i | ⊢ 𝐸  =  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ) | 
						
							| 128 | 127 | a1i | ⊢ ( 𝜑  →  𝐸  =  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ) ) | 
						
							| 129 | 20 | a1i | ⊢ ( 𝜑  →  𝐽  =  ( 𝑗  ∈  ℤ  ↦  ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 130 |  | oveq1 | ⊢ ( 𝑗  =  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) )  →  ( 𝑗 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 131 | 118 128 129 130 | fmptco | ⊢ ( 𝜑  →  ( 𝐽  ∘  𝐸 )  =  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 132 | 131 | reseq1d | ⊢ ( 𝜑  →  ( ( 𝐽  ∘  𝐸 )  ↾  ( ℕ0  ×  ℕ0 ) )  =  ( ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  ↾  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 133 |  | ssidd | ⊢ ( 𝜑  →  ( ℕ0  ×  ℕ0 )  ⊆  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 134 | 133 | resmptd | ⊢ ( 𝜑  →  ( ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  ↾  ( ℕ0  ×  ℕ0 ) )  =  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 135 | 128 118 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐸 ‘ 𝑣 )  =  ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ) | 
						
							| 136 | 135 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 137 | 136 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  =  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 138 | 137 | eqcomd | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  =  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 139 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  ∈  V ) | 
						
							| 140 |  | eqid | ⊢ ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  =  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 141 | 139 140 | fmptd | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) : ( ℕ0  ×  ℕ0 ) ⟶ V ) | 
						
							| 142 |  | ffn | ⊢ ( ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) : ( ℕ0  ×  ℕ0 ) ⟶ V  →  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  Fn  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 143 | 141 142 | syl | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  Fn  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 144 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  V ) | 
						
							| 145 | 144 100 | fmptd | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) : ( ℕ0  ×  ℕ0 ) ⟶ V ) | 
						
							| 146 |  | ffn | ⊢ ( ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) : ( ℕ0  ×  ℕ0 ) ⟶ V  →  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  Fn  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 147 | 145 146 | syl | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  Fn  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 148 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  =  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ) | 
						
							| 149 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑣  =  𝑐 )  →  𝑣  =  𝑐 ) | 
						
							| 150 | 149 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑣  =  𝑐 )  →  ( 𝐸 ‘ 𝑣 )  =  ( 𝐸 ‘ 𝑐 ) ) | 
						
							| 151 | 150 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑣  =  𝑐 )  →  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 152 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑐  ∈  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 153 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  ∈  V ) | 
						
							| 154 | 148 151 152 153 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ‘ 𝑐 )  =  ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) | 
						
							| 155 |  | eqid | ⊢ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  =  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) | 
						
							| 156 | 22 | ssrab3 | ⊢ 𝑈  ⊆  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 157 | 156 | a1i | ⊢ ( 𝜑  →  𝑈  ⊆  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 158 | 157 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑈  ⊆  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 159 | 3 | fldcrngd | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 160 |  | eqid | ⊢ ( mulGrp ‘ 𝐾 )  =  ( mulGrp ‘ 𝐾 ) | 
						
							| 161 | 160 | crngmgp | ⊢ ( 𝐾  ∈  CRing  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 162 | 159 161 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 163 | 162 5 22 | primrootsunit | ⊢ ( 𝜑  →  ( ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  =  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  PrimRoots  𝑅 )  ∧  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Abel ) ) | 
						
							| 164 | 163 | simpld | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  =  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  PrimRoots  𝑅 ) ) | 
						
							| 165 | 16 164 | eleqtrd | ⊢ ( 𝜑  →  𝑀  ∈  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  PrimRoots  𝑅 ) ) | 
						
							| 166 | 163 | simprd | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Abel ) | 
						
							| 167 |  | ablcmn | ⊢ ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  Abel  →  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  CMnd ) | 
						
							| 168 | 166 167 | syl | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  ∈  CMnd ) | 
						
							| 169 | 5 | nnnn0d | ⊢ ( 𝜑  →  𝑅  ∈  ℕ0 ) | 
						
							| 170 |  | eqid | ⊢ ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  =  ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) | 
						
							| 171 | 168 169 170 | isprimroot | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  PrimRoots  𝑅 )  ↔  ( 𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ∀ 𝑤  ∈  ℕ0 ( ( 𝑤 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  →  𝑅  ∥  𝑤 ) ) ) ) | 
						
							| 172 | 171 | biimpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 )  PrimRoots  𝑅 )  →  ( 𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ∀ 𝑤  ∈  ℕ0 ( ( 𝑤 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  →  𝑅  ∥  𝑤 ) ) ) ) | 
						
							| 173 | 165 172 | mpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ( 𝑅 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  ∧  ∀ 𝑤  ∈  ℕ0 ( ( 𝑤 ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) )  →  𝑅  ∥  𝑤 ) ) ) | 
						
							| 174 | 173 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 175 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 176 | 155 175 | ressbas2 | ⊢ ( 𝑈  ⊆  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑈  =  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 177 | 157 176 | syl | ⊢ ( 𝜑  →  𝑈  =  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) ) | 
						
							| 178 | 174 177 | eleqtrrd | ⊢ ( 𝜑  →  𝑀  ∈  𝑈 ) | 
						
							| 179 | 178 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑀  ∈  𝑈 ) | 
						
							| 180 | 6 4 7 12 | aks6d1c2p1 | ⊢ ( 𝜑  →  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℕ ) | 
						
							| 181 | 180 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐸 ‘ 𝑐 )  ∈  ℕ ) | 
						
							| 182 | 155 158 179 181 | ressmulgnnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 )  =  ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 183 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 184 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑗  =  𝑐 )  →  𝑗  =  𝑐 ) | 
						
							| 185 | 184 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑗  =  𝑐 )  →  ( 𝐸 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑐 ) ) | 
						
							| 186 | 185 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑗  =  𝑐 )  →  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 187 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  V ) | 
						
							| 188 | 183 186 152 187 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ‘ 𝑐 )  =  ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 189 | 188 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ‘ 𝑐 ) ) | 
						
							| 190 | 154 182 189 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) ) ‘ 𝑐 )  =  ( ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ‘ 𝑐 ) ) | 
						
							| 191 | 143 147 190 | eqfnfvd | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑣 ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  =  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 192 | 138 191 | eqtrd | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  =  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 193 | 134 192 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑣  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( ( 𝑃 ↑ ( 1st  ‘ 𝑣 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑣 ) ) ) ( .g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  𝑈 ) ) 𝑀 ) )  ↾  ( ℕ0  ×  ℕ0 ) )  =  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 194 | 132 193 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐽  ∘  𝐸 )  ↾  ( ℕ0  ×  ℕ0 ) )  =  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 195 | 194 | imaeq1d | ⊢ ( 𝜑  →  ( ( ( 𝐽  ∘  𝐸 )  ↾  ( ℕ0  ×  ℕ0 ) )  “  ( ℕ0  ×  ℕ0 ) )  =  ( ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 196 | 105 195 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐽  ∘  𝐸 )  “  ( ℕ0  ×  ℕ0 ) )  =  ( ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 197 | 102 196 | eqtrid | ⊢ ( 𝜑  →  ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  =  ( ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  “  ( ℕ0  ×  ℕ0 ) ) ) | 
						
							| 198 | 197 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐽  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  =  ( ♯ ‘ ( ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 199 | 21 198 | breqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≤  ( ♯ ‘ ( ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 200 | 1 2 3 4 5 6 7 8 99 10 68 12 13 14 15 16 17 18 19 100 199 | aks6d1c6lem3 | ⊢ ( 𝜑  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) ) |