Metamath Proof Explorer


Theorem aks6d1c6lem4

Description: Claim 6 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf Add hypothesis on coprimality, lift function to the integers so that group operations may be applied. Inline definition. (Contributed by metakunt, 14-May-2025)

Ref Expression
Hypotheses aks6d1c6lem4.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c6lem4.2 P = chr K
aks6d1c6lem4.3 φ K Field
aks6d1c6lem4.4 φ P
aks6d1c6lem4.5 φ R
aks6d1c6lem4.6 φ N
aks6d1c6lem4.7 φ P N
aks6d1c6lem4.8 φ N gcd R = 1
aks6d1c6lem4.9 φ b 1 A b gcd N = 1
aks6d1c6lem4.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
aks6d1c6lem4.11 A = ϕ R log 2 N
aksaks6dlem4.12 E = k 0 , l 0 P k N P l
aks6d1c6lem4.13 L = ℤRHom /R
aks6d1c6lem4.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
aks6d1c6lem4.15 φ x Base K P mulGrp K x K RingIso K
aks6d1c6lem4.16 φ M mulGrp K PrimRoots R
aks6d1c6lem4.17 H = h 0 0 A eval 1 K G h M
aks6d1c6lem4.18 D = L E 0 × 0
aks6d1c6lem4.19 S = s 0 0 A | t = 0 A s t D 1
aks6d1c6lem4.20 J = j j mulGrp K 𝑠 U M
aks6d1c6lem4.21 φ L E 0 × 0 J E 0 × 0
aks6d1c6lem4.22 U = m Base mulGrp K | n Base mulGrp K n + mulGrp K m = 0 mulGrp K
Assertion aks6d1c6lem4 φ ( D + A D 1 ) H 0 0 A

Proof

Step Hyp Ref Expression
1 aks6d1c6lem4.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c6lem4.2 P = chr K
3 aks6d1c6lem4.3 φ K Field
4 aks6d1c6lem4.4 φ P
5 aks6d1c6lem4.5 φ R
6 aks6d1c6lem4.6 φ N
7 aks6d1c6lem4.7 φ P N
8 aks6d1c6lem4.8 φ N gcd R = 1
9 aks6d1c6lem4.9 φ b 1 A b gcd N = 1
10 aks6d1c6lem4.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
11 aks6d1c6lem4.11 A = ϕ R log 2 N
12 aksaks6dlem4.12 E = k 0 , l 0 P k N P l
13 aks6d1c6lem4.13 L = ℤRHom /R
14 aks6d1c6lem4.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
15 aks6d1c6lem4.15 φ x Base K P mulGrp K x K RingIso K
16 aks6d1c6lem4.16 φ M mulGrp K PrimRoots R
17 aks6d1c6lem4.17 H = h 0 0 A eval 1 K G h M
18 aks6d1c6lem4.18 D = L E 0 × 0
19 aks6d1c6lem4.19 S = s 0 0 A | t = 0 A s t D 1
20 aks6d1c6lem4.20 J = j j mulGrp K 𝑠 U M
21 aks6d1c6lem4.21 φ L E 0 × 0 J E 0 × 0
22 aks6d1c6lem4.22 U = m Base mulGrp K | n Base mulGrp K n + mulGrp K m = 0 mulGrp K
23 simpr φ A < P A < P
24 prmnn P P
25 4 24 syl φ P
26 25 nnred φ P
27 5 phicld φ ϕ R
28 27 nnred φ ϕ R
29 27 nnnn0d φ ϕ R 0
30 29 nn0ge0d φ 0 ϕ R
31 28 30 resqrtcld φ ϕ R
32 2re 2
33 32 a1i φ 2
34 2pos 0 < 2
35 34 a1i φ 0 < 2
36 6 nnred φ N
37 6 nngt0d φ 0 < N
38 1red φ 1
39 1lt2 1 < 2
40 39 a1i φ 1 < 2
41 38 40 ltned φ 1 2
42 41 necomd φ 2 1
43 33 35 36 37 42 relogbcld φ log 2 N
44 31 43 remulcld φ ϕ R log 2 N
45 44 flcld φ ϕ R log 2 N
46 28 30 sqrtge0d φ 0 ϕ R
47 33 recnd φ 2
48 35 gt0ne0d φ 2 0
49 logb1 2 2 0 2 1 log 2 1 = 0
50 47 48 42 49 syl3anc φ log 2 1 = 0
51 50 eqcomd φ 0 = log 2 1
52 2z 2
53 52 a1i φ 2
54 33 leidd φ 2 2
55 0lt1 0 < 1
56 55 a1i φ 0 < 1
57 6 nnge1d φ 1 N
58 53 54 38 56 36 37 57 logblebd φ log 2 1 log 2 N
59 51 58 eqbrtrd φ 0 log 2 N
60 31 43 46 59 mulge0d φ 0 ϕ R log 2 N
61 0zd φ 0
62 flge ϕ R log 2 N 0 0 ϕ R log 2 N 0 ϕ R log 2 N
63 44 61 62 syl2anc φ 0 ϕ R log 2 N 0 ϕ R log 2 N
64 60 63 mpbid φ 0 ϕ R log 2 N
65 45 64 jca φ ϕ R log 2 N 0 ϕ R log 2 N
66 elnn0z ϕ R log 2 N 0 ϕ R log 2 N 0 ϕ R log 2 N
67 65 66 sylibr φ ϕ R log 2 N 0
68 11 67 eqeltrid φ A 0
69 68 nn0red φ A
70 26 69 lenltd φ P A ¬ A < P
71 70 biimpar φ ¬ A < P P A
72 oveq1 b = P b gcd N = P gcd N
73 72 eqeq1d b = P b gcd N = 1 P gcd N = 1
74 9 adantr φ P A b 1 A b gcd N = 1
75 1zzd φ P A 1
76 11 45 eqeltrid φ A
77 76 adantr φ P A A
78 25 nnzd φ P
79 78 adantr φ P A P
80 25 nnge1d φ 1 P
81 80 adantr φ P A 1 P
82 simpr φ P A P A
83 75 77 79 81 82 elfzd φ P A P 1 A
84 73 74 83 rspcdva φ P A P gcd N = 1
85 84 ex φ P A P gcd N = 1
86 85 adantr φ ¬ A < P P A P gcd N = 1
87 71 86 mpd φ ¬ A < P P gcd N = 1
88 6 nnzd φ N
89 coprm P N ¬ P N P gcd N = 1
90 4 88 89 syl2anc φ ¬ P N P gcd N = 1
91 90 con1bid φ ¬ P gcd N = 1 P N
92 91 bicomd φ P N ¬ P gcd N = 1
93 92 biimpd φ P N ¬ P gcd N = 1
94 7 93 mpd φ ¬ P gcd N = 1
95 94 neqned φ P gcd N 1
96 95 adantr φ ¬ A < P P gcd N 1
97 96 neneqd φ ¬ A < P ¬ P gcd N = 1
98 87 97 pm2.21dd φ ¬ A < P A < P
99 23 98 pm2.61dan φ A < P
100 eqid j 0 × 0 E j mulGrp K M = j 0 × 0 E j mulGrp K M
101 imaco J E 0 × 0 = J E 0 × 0
102 101 eqcomi J E 0 × 0 = J E 0 × 0
103 resima J E 0 × 0 0 × 0 = J E 0 × 0
104 103 eqcomi J E 0 × 0 = J E 0 × 0 0 × 0
105 104 a1i φ J E 0 × 0 = J E 0 × 0 0 × 0
106 78 adantr φ v 0 × 0 P
107 xp1st v 0 × 0 1 st v 0
108 107 adantl φ v 0 × 0 1 st v 0
109 106 108 zexpcld φ v 0 × 0 P 1 st v
110 25 nnne0d φ P 0
111 dvdsval2 P P 0 N P N N P
112 78 110 88 111 syl3anc φ P N N P
113 7 112 mpbid φ N P
114 113 adantr φ v 0 × 0 N P
115 xp2nd v 0 × 0 2 nd v 0
116 115 adantl φ v 0 × 0 2 nd v 0
117 114 116 zexpcld φ v 0 × 0 N P 2 nd v
118 109 117 zmulcld φ v 0 × 0 P 1 st v N P 2 nd v
119 vex k V
120 vex l V
121 119 120 op1std v = k l 1 st v = k
122 121 oveq2d v = k l P 1 st v = P k
123 119 120 op2ndd v = k l 2 nd v = l
124 123 oveq2d v = k l N P 2 nd v = N P l
125 122 124 oveq12d v = k l P 1 st v N P 2 nd v = P k N P l
126 125 mpompt v 0 × 0 P 1 st v N P 2 nd v = k 0 , l 0 P k N P l
127 12 126 eqtr4i E = v 0 × 0 P 1 st v N P 2 nd v
128 127 a1i φ E = v 0 × 0 P 1 st v N P 2 nd v
129 20 a1i φ J = j j mulGrp K 𝑠 U M
130 oveq1 j = P 1 st v N P 2 nd v j mulGrp K 𝑠 U M = P 1 st v N P 2 nd v mulGrp K 𝑠 U M
131 118 128 129 130 fmptco φ J E = v 0 × 0 P 1 st v N P 2 nd v mulGrp K 𝑠 U M
132 131 reseq1d φ J E 0 × 0 = v 0 × 0 P 1 st v N P 2 nd v mulGrp K 𝑠 U M 0 × 0
133 ssidd φ 0 × 0 0 × 0
134 133 resmptd φ v 0 × 0 P 1 st v N P 2 nd v mulGrp K 𝑠 U M 0 × 0 = v 0 × 0 P 1 st v N P 2 nd v mulGrp K 𝑠 U M
135 128 118 fvmpt2d φ v 0 × 0 E v = P 1 st v N P 2 nd v
136 135 oveq1d φ v 0 × 0 E v mulGrp K 𝑠 U M = P 1 st v N P 2 nd v mulGrp K 𝑠 U M
137 136 mpteq2dva φ v 0 × 0 E v mulGrp K 𝑠 U M = v 0 × 0 P 1 st v N P 2 nd v mulGrp K 𝑠 U M
138 137 eqcomd φ v 0 × 0 P 1 st v N P 2 nd v mulGrp K 𝑠 U M = v 0 × 0 E v mulGrp K 𝑠 U M
139 ovexd φ v 0 × 0 E v mulGrp K 𝑠 U M V
140 eqid v 0 × 0 E v mulGrp K 𝑠 U M = v 0 × 0 E v mulGrp K 𝑠 U M
141 139 140 fmptd φ v 0 × 0 E v mulGrp K 𝑠 U M : 0 × 0 V
142 ffn v 0 × 0 E v mulGrp K 𝑠 U M : 0 × 0 V v 0 × 0 E v mulGrp K 𝑠 U M Fn 0 × 0
143 141 142 syl φ v 0 × 0 E v mulGrp K 𝑠 U M Fn 0 × 0
144 ovexd φ j 0 × 0 E j mulGrp K M V
145 144 100 fmptd φ j 0 × 0 E j mulGrp K M : 0 × 0 V
146 ffn j 0 × 0 E j mulGrp K M : 0 × 0 V j 0 × 0 E j mulGrp K M Fn 0 × 0
147 145 146 syl φ j 0 × 0 E j mulGrp K M Fn 0 × 0
148 eqidd φ c 0 × 0 v 0 × 0 E v mulGrp K 𝑠 U M = v 0 × 0 E v mulGrp K 𝑠 U M
149 simpr φ c 0 × 0 v = c v = c
150 149 fveq2d φ c 0 × 0 v = c E v = E c
151 150 oveq1d φ c 0 × 0 v = c E v mulGrp K 𝑠 U M = E c mulGrp K 𝑠 U M
152 simpr φ c 0 × 0 c 0 × 0
153 ovexd φ c 0 × 0 E c mulGrp K 𝑠 U M V
154 148 151 152 153 fvmptd φ c 0 × 0 v 0 × 0 E v mulGrp K 𝑠 U M c = E c mulGrp K 𝑠 U M
155 eqid mulGrp K 𝑠 U = mulGrp K 𝑠 U
156 22 ssrab3 U Base mulGrp K
157 156 a1i φ U Base mulGrp K
158 157 adantr φ c 0 × 0 U Base mulGrp K
159 3 fldcrngd φ K CRing
160 eqid mulGrp K = mulGrp K
161 160 crngmgp K CRing mulGrp K CMnd
162 159 161 syl φ mulGrp K CMnd
163 162 5 22 primrootsunit φ mulGrp K PrimRoots R = mulGrp K 𝑠 U PrimRoots R mulGrp K 𝑠 U Abel
164 163 simpld φ mulGrp K PrimRoots R = mulGrp K 𝑠 U PrimRoots R
165 16 164 eleqtrd φ M mulGrp K 𝑠 U PrimRoots R
166 163 simprd φ mulGrp K 𝑠 U Abel
167 ablcmn mulGrp K 𝑠 U Abel mulGrp K 𝑠 U CMnd
168 166 167 syl φ mulGrp K 𝑠 U CMnd
169 5 nnnn0d φ R 0
170 eqid mulGrp K 𝑠 U = mulGrp K 𝑠 U
171 168 169 170 isprimroot φ M mulGrp K 𝑠 U PrimRoots R M Base mulGrp K 𝑠 U R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U w 0 w mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U R w
172 171 biimpd φ M mulGrp K 𝑠 U PrimRoots R M Base mulGrp K 𝑠 U R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U w 0 w mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U R w
173 165 172 mpd φ M Base mulGrp K 𝑠 U R mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U w 0 w mulGrp K 𝑠 U M = 0 mulGrp K 𝑠 U R w
174 173 simp1d φ M Base mulGrp K 𝑠 U
175 eqid Base mulGrp K = Base mulGrp K
176 155 175 ressbas2 U Base mulGrp K U = Base mulGrp K 𝑠 U
177 157 176 syl φ U = Base mulGrp K 𝑠 U
178 174 177 eleqtrrd φ M U
179 178 adantr φ c 0 × 0 M U
180 6 4 7 12 aks6d1c2p1 φ E : 0 × 0
181 180 ffvelcdmda φ c 0 × 0 E c
182 155 158 179 181 ressmulgnnd φ c 0 × 0 E c mulGrp K 𝑠 U M = E c mulGrp K M
183 eqidd φ c 0 × 0 j 0 × 0 E j mulGrp K M = j 0 × 0 E j mulGrp K M
184 simpr φ c 0 × 0 j = c j = c
185 184 fveq2d φ c 0 × 0 j = c E j = E c
186 185 oveq1d φ c 0 × 0 j = c E j mulGrp K M = E c mulGrp K M
187 ovexd φ c 0 × 0 E c mulGrp K M V
188 183 186 152 187 fvmptd φ c 0 × 0 j 0 × 0 E j mulGrp K M c = E c mulGrp K M
189 188 eqcomd φ c 0 × 0 E c mulGrp K M = j 0 × 0 E j mulGrp K M c
190 154 182 189 3eqtrd φ c 0 × 0 v 0 × 0 E v mulGrp K 𝑠 U M c = j 0 × 0 E j mulGrp K M c
191 143 147 190 eqfnfvd φ v 0 × 0 E v mulGrp K 𝑠 U M = j 0 × 0 E j mulGrp K M
192 138 191 eqtrd φ v 0 × 0 P 1 st v N P 2 nd v mulGrp K 𝑠 U M = j 0 × 0 E j mulGrp K M
193 134 192 eqtrd φ v 0 × 0 P 1 st v N P 2 nd v mulGrp K 𝑠 U M 0 × 0 = j 0 × 0 E j mulGrp K M
194 132 193 eqtrd φ J E 0 × 0 = j 0 × 0 E j mulGrp K M
195 194 imaeq1d φ J E 0 × 0 0 × 0 = j 0 × 0 E j mulGrp K M 0 × 0
196 105 195 eqtrd φ J E 0 × 0 = j 0 × 0 E j mulGrp K M 0 × 0
197 102 196 eqtrid φ J E 0 × 0 = j 0 × 0 E j mulGrp K M 0 × 0
198 197 fveq2d φ J E 0 × 0 = j 0 × 0 E j mulGrp K M 0 × 0
199 21 198 breqtrd φ L E 0 × 0 j 0 × 0 E j mulGrp K M 0 × 0
200 1 2 3 4 5 6 7 8 99 10 68 12 13 14 15 16 17 18 19 100 199 aks6d1c6lem3 φ ( D + A D 1 ) H 0 0 A