Metamath Proof Explorer


Theorem aks6d1c6lem3

Description: Claim 6 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf TODO, eliminate hypothesis. (Contributed by metakunt, 8-May-2025)

Ref Expression
Hypotheses aks6d1c6.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c6.2 P = chr K
aks6d1c6.3 φ K Field
aks6d1c6.4 φ P
aks6d1c6.5 φ R
aks6d1c6.6 φ N
aks6d1c6.7 φ P N
aks6d1c6.8 φ N gcd R = 1
aks6d1c6.9 φ A < P
aks6d1c6.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
aks6d1c6.11 φ A 0
aks6d1c6.12 E = k 0 , l 0 P k N P l
aks6d1c6.13 L = ℤRHom /R
aks6d1c6.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
aks6d1c6.15 φ x Base K P mulGrp K x K RingIso K
aks6d1c6.16 φ M mulGrp K PrimRoots R
aks6d1c6.17 H = h 0 0 A eval 1 K G h M
aks6d1c6.18 D = L E 0 × 0
aks6d1c6.19 S = s 0 0 A | t = 0 A s t D 1
aks6d1c6lem3.1 J = j 0 × 0 E j mulGrp K M
aks6d1c6lem3.2 φ L E 0 × 0 J 0 × 0
Assertion aks6d1c6lem3 φ ( D + A D 1 ) H 0 0 A

Proof

Step Hyp Ref Expression
1 aks6d1c6.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c6.2 P = chr K
3 aks6d1c6.3 φ K Field
4 aks6d1c6.4 φ P
5 aks6d1c6.5 φ R
6 aks6d1c6.6 φ N
7 aks6d1c6.7 φ P N
8 aks6d1c6.8 φ N gcd R = 1
9 aks6d1c6.9 φ A < P
10 aks6d1c6.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
11 aks6d1c6.11 φ A 0
12 aks6d1c6.12 E = k 0 , l 0 P k N P l
13 aks6d1c6.13 L = ℤRHom /R
14 aks6d1c6.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
15 aks6d1c6.15 φ x Base K P mulGrp K x K RingIso K
16 aks6d1c6.16 φ M mulGrp K PrimRoots R
17 aks6d1c6.17 H = h 0 0 A eval 1 K G h M
18 aks6d1c6.18 D = L E 0 × 0
19 aks6d1c6.19 S = s 0 0 A | t = 0 A s t D 1
20 aks6d1c6lem3.1 J = j 0 × 0 E j mulGrp K M
21 aks6d1c6lem3.2 φ L E 0 × 0 J 0 × 0
22 eqid /R = /R
23 6 4 7 5 8 12 13 22 hashscontpowcl φ L E 0 × 0 0
24 18 23 eqeltrid φ D 0
25 24 nn0zd φ D
26 25 zcnd φ D
27 1cnd φ 1
28 11 nn0cnd φ A
29 26 27 28 nppcan3d φ D 1 + A + 1 = D + A
30 29 eqcomd φ D + A = D 1 + A + 1
31 hashfz0 A 0 0 A = A + 1
32 11 31 syl φ 0 A = A + 1
33 32 eqcomd φ A + 1 = 0 A
34 33 oveq2d φ D 1 + A + 1 = D - 1 + 0 A
35 30 34 eqtrd φ D + A = D - 1 + 0 A
36 1zzd φ 1
37 25 36 zsubcld φ D 1
38 0p1e1 0 + 1 = 1
39 38 a1i φ 0 + 1 = 1
40 fvexd φ ℤRHom /R V
41 13 40 eqeltrid φ L V
42 41 imaexd φ L E 0 × 0 V
43 11 ne0d φ 0
44 43 43 jca φ 0 0
45 xpnz 0 0 0 × 0
46 44 45 sylib φ 0 × 0
47 ovexd φ k 0 l 0 P k N P l V
48 47 ralrimiva φ k 0 l 0 P k N P l V
49 48 ralrimiva φ k 0 l 0 P k N P l V
50 12 fnmpo k 0 l 0 P k N P l V E Fn 0 × 0
51 49 50 syl φ E Fn 0 × 0
52 ssidd φ 0 × 0 0 × 0
53 fnimaeq0 E Fn 0 × 0 0 × 0 0 × 0 E 0 × 0 = 0 × 0 =
54 51 52 53 syl2anc φ E 0 × 0 = 0 × 0 =
55 54 necon3bid φ E 0 × 0 0 × 0
56 46 55 mpbird φ E 0 × 0
57 5 nnnn0d φ R 0
58 22 zncrng R 0 /R CRing
59 57 58 syl φ /R CRing
60 crngring /R CRing /R Ring
61 13 zrhrhm /R Ring L ring RingHom /R
62 zringbas = Base ring
63 eqid Base /R = Base /R
64 62 63 rhmf L ring RingHom /R L : Base /R
65 59 60 61 64 4syl φ L : Base /R
66 65 ffnd φ L Fn
67 12 a1i φ x 0 y 0 E = k 0 , l 0 P k N P l
68 simprl φ x 0 y 0 k = x l = y k = x
69 68 oveq2d φ x 0 y 0 k = x l = y P k = P x
70 simprr φ x 0 y 0 k = x l = y l = y
71 70 oveq2d φ x 0 y 0 k = x l = y N P l = N P y
72 69 71 oveq12d φ x 0 y 0 k = x l = y P k N P l = P x N P y
73 simplr φ x 0 y 0 x 0
74 simpr φ x 0 y 0 y 0
75 ovexd φ x 0 y 0 P x N P y V
76 67 72 73 74 75 ovmpod φ x 0 y 0 x E y = P x N P y
77 4 ad2antrr φ x 0 y 0 P
78 prmnn P P
79 77 78 syl φ x 0 y 0 P
80 79 nnzd φ x 0 y 0 P
81 80 73 zexpcld φ x 0 y 0 P x
82 7 ad2antrr φ x 0 y 0 P N
83 79 nnne0d φ x 0 y 0 P 0
84 6 nnzd φ N
85 84 adantr φ x 0 N
86 85 adantr φ x 0 y 0 N
87 dvdsval2 P P 0 N P N N P
88 80 83 86 87 syl3anc φ x 0 y 0 P N N P
89 82 88 mpbid φ x 0 y 0 N P
90 89 74 zexpcld φ x 0 y 0 N P y
91 81 90 zmulcld φ x 0 y 0 P x N P y
92 76 91 eqeltrd φ x 0 y 0 x E y
93 92 ralrimiva φ x 0 y 0 x E y
94 93 ralrimiva φ x 0 y 0 x E y
95 51 94 jca φ E Fn 0 × 0 x 0 y 0 x E y
96 ffnov E : 0 × 0 E Fn 0 × 0 x 0 y 0 x E y
97 95 96 sylibr φ E : 0 × 0
98 frn E : 0 × 0 ran E
99 97 98 syl φ ran E
100 fnima E Fn 0 × 0 E 0 × 0 = ran E
101 51 100 syl φ E 0 × 0 = ran E
102 101 sseq1d φ E 0 × 0 ran E
103 99 102 mpbird φ E 0 × 0
104 fnimaeq0 L Fn E 0 × 0 L E 0 × 0 = E 0 × 0 =
105 66 103 104 syl2anc φ L E 0 × 0 = E 0 × 0 =
106 105 necon3bid φ L E 0 × 0 E 0 × 0
107 56 106 mpbird φ L E 0 × 0
108 hashge1 L E 0 × 0 V L E 0 × 0 1 L E 0 × 0
109 18 eqcomi L E 0 × 0 = D
110 109 a1i L E 0 × 0 V L E 0 × 0 L E 0 × 0 = D
111 108 110 breqtrd L E 0 × 0 V L E 0 × 0 1 D
112 42 107 111 syl2anc φ 1 D
113 39 112 eqbrtrd φ 0 + 1 D
114 0red φ 0
115 1red φ 1
116 24 nn0red φ D
117 leaddsub 0 1 D 0 + 1 D 0 D 1
118 114 115 116 117 syl3anc φ 0 + 1 D 0 D 1
119 113 118 mpbid φ 0 D 1
120 37 119 jca φ D 1 0 D 1
121 elnn0z D 1 0 D 1 0 D 1
122 120 121 sylibr φ D 1 0
123 fzfid φ 0 A Fin
124 hashcl 0 A Fin 0 A 0
125 123 124 syl φ 0 A 0
126 122 125 nn0addcld φ D - 1 + 0 A 0
127 35 126 eqeltrd φ D + A 0
128 bccl D + A 0 D 1 ( D + A D 1 ) 0
129 127 37 128 syl2anc φ ( D + A D 1 ) 0
130 129 nn0red φ ( D + A D 1 )
131 130 rexrd φ ( D + A D 1 ) *
132 ovexd φ 0 0 A V
133 132 mptexd φ h 0 0 A eval 1 K G h M V
134 17 133 eqeltrid φ H V
135 134 imaexd φ H 0 0 A V
136 simprl φ w 0 0 A t = 0 A w t D 1 w 0 0 A
137 136 ex φ w 0 0 A t = 0 A w t D 1 w 0 0 A
138 simpl s = w t 0 A s = w
139 138 fveq1d s = w t 0 A s t = w t
140 139 sumeq2dv s = w t = 0 A s t = t = 0 A w t
141 140 breq1d s = w t = 0 A s t D 1 t = 0 A w t D 1
142 141 elrab w s 0 0 A | t = 0 A s t D 1 w 0 0 A t = 0 A w t D 1
143 142 a1i φ w s 0 0 A | t = 0 A s t D 1 w 0 0 A t = 0 A w t D 1
144 143 biimpd φ w s 0 0 A | t = 0 A s t D 1 w 0 0 A t = 0 A w t D 1
145 144 imim1d φ w 0 0 A t = 0 A w t D 1 w 0 0 A w s 0 0 A | t = 0 A s t D 1 w 0 0 A
146 137 145 mpd φ w s 0 0 A | t = 0 A s t D 1 w 0 0 A
147 146 ssrdv φ s 0 0 A | t = 0 A s t D 1 0 0 A
148 19 a1i φ S = s 0 0 A | t = 0 A s t D 1
149 148 sseq1d φ S 0 0 A s 0 0 A | t = 0 A s t D 1 0 0 A
150 147 149 mpbird φ S 0 0 A
151 imass2 S 0 0 A H S H 0 0 A
152 150 151 syl φ H S H 0 0 A
153 135 152 ssexd φ H S V
154 hashxnn0 H S V H S 0 *
155 153 154 syl φ H S 0 *
156 xnn0xr H S 0 * H S *
157 155 156 syl φ H S *
158 hashxnn0 H 0 0 A V H 0 0 A 0 *
159 135 158 syl φ H 0 0 A 0 *
160 xnn0xr H 0 0 A 0 * H 0 0 A *
161 159 160 syl φ H 0 0 A *
162 122 nn0cnd φ D 1
163 125 nn0cnd φ 0 A
164 162 163 pncand φ D 1 + 0 A - 0 A = D 1
165 164 eqcomd φ D 1 = D 1 + 0 A - 0 A
166 35 165 oveq12d φ ( D + A D 1 ) = ( D - 1 + 0 A D 1 + 0 A - 0 A )
167 11 nn0ge0d φ 0 A
168 0zd φ 0
169 11 nn0zd φ A
170 eluz 0 A A 0 0 A
171 168 169 170 syl2anc φ A 0 0 A
172 167 171 mpbird φ A 0
173 fzn0 0 A A 0
174 172 173 sylibr φ 0 A
175 122 123 174 19 sticksstones23 φ S = ( D - 1 + 0 A 0 A)
176 125 nn0zd φ 0 A
177 bccmpl D - 1 + 0 A 0 0 A ( D - 1 + 0 A 0 A) = ( D - 1 + 0 A D 1 + 0 A - 0 A )
178 126 176 177 syl2anc φ ( D - 1 + 0 A 0 A) = ( D - 1 + 0 A D 1 + 0 A - 0 A )
179 175 178 eqtrd φ S = ( D - 1 + 0 A D 1 + 0 A - 0 A )
180 179 eqcomd φ ( D - 1 + 0 A D 1 + 0 A - 0 A ) = S
181 166 180 eqtrd φ ( D + A D 1 ) = S
182 181 adantr φ H S : S 1-1 H S ( D + A D 1 ) = S
183 17 a1i φ H S : S 1-1 H S H = h 0 0 A eval 1 K G h M
184 ovexd φ H S : S 1-1 H S 0 0 A V
185 184 mptexd φ H S : S 1-1 H S h 0 0 A eval 1 K G h M V
186 183 185 eqeltrd φ H S : S 1-1 H S H V
187 186 resexd φ H S : S 1-1 H S H S V
188 186 imaexd φ H S : S 1-1 H S H S V
189 simpr φ H S : S 1-1 H S H S : S 1-1 H S
190 hashf1dmcdm H S V H S V H S : S 1-1 H S S H S
191 187 188 189 190 syl3anc φ H S : S 1-1 H S S H S
192 182 191 eqbrtrd φ H S : S 1-1 H S ( D + A D 1 ) H S
193 17 a1i φ j S H = h 0 0 A eval 1 K G h M
194 simpr φ j S h = j h = j
195 194 fveq2d φ j S h = j G h = G j
196 195 fveq2d φ j S h = j eval 1 K G h = eval 1 K G j
197 196 fveq1d φ j S h = j eval 1 K G h M = eval 1 K G j M
198 simp2 φ s 0 0 A t = 0 A s t D 1 s 0 0 A
199 198 rabssdv φ s 0 0 A | t = 0 A s t D 1 0 0 A
200 19 199 eqsstrid φ S 0 0 A
201 200 sselda φ j S j 0 0 A
202 fvexd φ j S eval 1 K G j M V
203 193 197 201 202 fvmptd φ j S H j = eval 1 K G j M
204 eqid eval 1 K = eval 1 K
205 eqid Poly 1 K = Poly 1 K
206 eqid Base K = Base K
207 eqid Base Poly 1 K = Base Poly 1 K
208 3 fldcrngd φ K CRing
209 208 adantr φ j S K CRing
210 eqid mulGrp K = mulGrp K
211 210 crngmgp K CRing mulGrp K CMnd
212 208 211 syl φ mulGrp K CMnd
213 eqid mulGrp K = mulGrp K
214 212 57 213 isprimroot φ M mulGrp K PrimRoots R M Base mulGrp K R mulGrp K M = 0 mulGrp K v 0 v mulGrp K M = 0 mulGrp K R v
215 214 biimpd φ M mulGrp K PrimRoots R M Base mulGrp K R mulGrp K M = 0 mulGrp K v 0 v mulGrp K M = 0 mulGrp K R v
216 16 215 mpd φ M Base mulGrp K R mulGrp K M = 0 mulGrp K v 0 v mulGrp K M = 0 mulGrp K R v
217 216 simp1d φ M Base mulGrp K
218 210 206 mgpbas Base K = Base mulGrp K
219 218 eqcomi Base mulGrp K = Base K
220 217 219 eleqtrdi φ M Base K
221 220 adantr φ j S M Base K
222 eqid var 1 K = var 1 K
223 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
224 3 4 2 11 9 222 223 10 aks6d1c5lem0 φ G : 0 0 A Base Poly 1 K
225 224 adantr φ j S G : 0 0 A Base Poly 1 K
226 225 201 ffvelcdmd φ j S G j Base Poly 1 K
227 204 205 206 207 209 221 226 fveval1fvcl φ j S eval 1 K G j M Base K
228 203 227 eqeltrd φ j S H j Base K
229 eqid j S H j = j S H j
230 228 229 fmptd φ j S H j : S Base K
231 fvexd φ h 0 0 A eval 1 K G h M V
232 231 17 fmptd φ H : 0 0 A V
233 232 200 feqresmpt φ H S = j S H j
234 233 feq1d φ H S : S Base K j S H j : S Base K
235 230 234 mpbird φ H S : S Base K
236 ffrn H S : S Base K H S : S ran H S
237 235 236 syl φ H S : S ran H S
238 df-ima H S = ran H S
239 238 a1i φ H S = ran H S
240 239 feq3d φ H S : S H S H S : S ran H S
241 237 240 mpbird φ H S : S H S
242 241 notnotd φ ¬ ¬ H S : S H S
243 242 a1d φ ¬ ( D + A D 1 ) H S ¬ ¬ H S : S H S
244 243 con4d φ ¬ H S : S H S ( D + A D 1 ) H S
245 df-an H S u = H S v ¬ u = v ¬ H S u = H S v ¬ ¬ u = v
246 245 a1i φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ H S u = H S v ¬ ¬ u = v
247 eqid deg 1 K = deg 1 K
248 eqid 0 K = 0 K
249 eqid 0 Poly 1 K = 0 Poly 1 K
250 fldidom K Field K IDomn
251 3 250 syl φ K IDomn
252 251 ad4antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v K IDomn
253 205 ply1crng K CRing Poly 1 K CRing
254 crngring Poly 1 K CRing Poly 1 K Ring
255 ringgrp Poly 1 K Ring Poly 1 K Grp
256 208 253 254 255 4syl φ Poly 1 K Grp
257 256 ad4antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v Poly 1 K Grp
258 3 4 2 11 9 222 223 10 aks6d1c5 φ G : 0 0 A 1-1 Base Poly 1 K
259 258 ad4antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v G : 0 0 A 1-1 Base Poly 1 K
260 f1f G : 0 0 A 1-1 Base Poly 1 K G : 0 0 A Base Poly 1 K
261 259 260 syl φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v G : 0 0 A Base Poly 1 K
262 19 eleq2i u S u s 0 0 A | t = 0 A s t D 1
263 simpl s = u t 0 A s = u
264 263 fveq1d s = u t 0 A s t = u t
265 264 sumeq2dv s = u t = 0 A s t = t = 0 A u t
266 265 breq1d s = u t = 0 A s t D 1 t = 0 A u t D 1
267 266 elrab u s 0 0 A | t = 0 A s t D 1 u 0 0 A t = 0 A u t D 1
268 267 simplbi u s 0 0 A | t = 0 A s t D 1 u 0 0 A
269 262 268 sylbi u S u 0 0 A
270 269 adantl φ x S y S ¬ H S x = H S y x = y u S u 0 0 A
271 270 adantr φ x S y S ¬ H S x = H S y x = y u S v S u 0 0 A
272 271 adantr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v u 0 0 A
273 261 272 ffvelcdmd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v G u Base Poly 1 K
274 19 eleq2i v S v s 0 0 A | t = 0 A s t D 1
275 elrabi v s 0 0 A | t = 0 A s t D 1 v 0 0 A
276 274 275 sylbi v S v 0 0 A
277 276 adantl φ x S y S ¬ H S x = H S y x = y u S v S v 0 0 A
278 277 adantr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v v 0 0 A
279 261 278 ffvelcdmd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v G v Base Poly 1 K
280 eqid - Poly 1 K = - Poly 1 K
281 207 280 grpsubcl Poly 1 K Grp G u Base Poly 1 K G v Base Poly 1 K G u - Poly 1 K G v Base Poly 1 K
282 257 273 279 281 syl3anc φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v G u - Poly 1 K G v Base Poly 1 K
283 neqne ¬ u = v u v
284 283 adantl H S u = H S v ¬ u = v u v
285 284 adantl φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v u v
286 272 278 jca φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v u 0 0 A v 0 0 A
287 f1fveq G : 0 0 A 1-1 Base Poly 1 K u 0 0 A v 0 0 A G u = G v u = v
288 259 286 287 syl2anc φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v G u = G v u = v
289 288 bicomd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v u = v G u = G v
290 289 necon3bid φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v u v G u G v
291 290 biimpd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v u v G u G v
292 285 291 mpd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v G u G v
293 207 249 280 grpsubeq0 Poly 1 K Grp G u Base Poly 1 K G v Base Poly 1 K G u - Poly 1 K G v = 0 Poly 1 K G u = G v
294 293 necon3bid Poly 1 K Grp G u Base Poly 1 K G v Base Poly 1 K G u - Poly 1 K G v 0 Poly 1 K G u G v
295 257 273 279 294 syl3anc φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v G u - Poly 1 K G v 0 Poly 1 K G u G v
296 292 295 mpbird φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v G u - Poly 1 K G v 0 Poly 1 K
297 205 207 247 204 248 249 252 282 296 fta1g φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v eval 1 K G u - Poly 1 K G v -1 0 K deg 1 K G u - Poly 1 K G v
298 247 205 207 deg1xrcl G u - Poly 1 K G v Base Poly 1 K deg 1 K G u - Poly 1 K G v *
299 282 298 syl φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u - Poly 1 K G v *
300 116 ad4antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v D
301 1red φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v 1
302 300 301 resubcld φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v D 1
303 302 rexrd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v D 1 *
304 simp-4l φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v φ
305 fvexd φ eval 1 K G u - Poly 1 K G v V
306 cnvexg eval 1 K G u - Poly 1 K G v V eval 1 K G u - Poly 1 K G v -1 V
307 305 306 syl φ eval 1 K G u - Poly 1 K G v -1 V
308 307 imaexd φ eval 1 K G u - Poly 1 K G v -1 0 K V
309 hashxnn0 eval 1 K G u - Poly 1 K G v -1 0 K V eval 1 K G u - Poly 1 K G v -1 0 K 0 *
310 xnn0xr eval 1 K G u - Poly 1 K G v -1 0 K 0 * eval 1 K G u - Poly 1 K G v -1 0 K *
311 304 308 309 310 4syl φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v eval 1 K G u - Poly 1 K G v -1 0 K *
312 247 205 207 deg1xrcl G v Base Poly 1 K deg 1 K G v *
313 279 312 syl φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G v *
314 247 205 207 deg1xrcl G u Base Poly 1 K deg 1 K G u *
315 273 314 syl φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u *
316 313 315 ifcld φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v if deg 1 K G u deg 1 K G v deg 1 K G v deg 1 K G u *
317 252 idomringd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v K Ring
318 205 247 317 207 280 273 279 deg1suble φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u - Poly 1 K G v if deg 1 K G u deg 1 K G v deg 1 K G v deg 1 K G u
319 id deg 1 K G v = if deg 1 K G u deg 1 K G v deg 1 K G v deg 1 K G u deg 1 K G v = if deg 1 K G u deg 1 K G v deg 1 K G v deg 1 K G u
320 319 breq1d deg 1 K G v = if deg 1 K G u deg 1 K G v deg 1 K G v deg 1 K G u deg 1 K G v D 1 if deg 1 K G u deg 1 K G v deg 1 K G v deg 1 K G u D 1
321 id deg 1 K G u = if deg 1 K G u deg 1 K G v deg 1 K G v deg 1 K G u deg 1 K G u = if deg 1 K G u deg 1 K G v deg 1 K G v deg 1 K G u
322 321 breq1d deg 1 K G u = if deg 1 K G u deg 1 K G v deg 1 K G v deg 1 K G u deg 1 K G u D 1 if deg 1 K G u deg 1 K G v deg 1 K G v deg 1 K G u D 1
323 3 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v K Field
324 4 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v P
325 5 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v R
326 6 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v N
327 7 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v P N
328 8 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v N gcd R = 1
329 9 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v A < P
330 11 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v A 0
331 14 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
332 15 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v x Base K P mulGrp K x K RingIso K
333 16 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v M mulGrp K PrimRoots R
334 simpllr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v v S
335 334 276 syl φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v v 0 0 A
336 1 2 323 324 325 326 327 328 329 10 330 12 13 331 332 333 17 18 19 335 aks6d1c6lem1 φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v deg 1 K G v = t = 0 A v t
337 simpl s = v t 0 A s = v
338 337 fveq1d s = v t 0 A s t = v t
339 338 sumeq2dv s = v t = 0 A s t = t = 0 A v t
340 339 breq1d s = v t = 0 A s t D 1 t = 0 A v t D 1
341 340 elrab v s 0 0 A | t = 0 A s t D 1 v 0 0 A t = 0 A v t D 1
342 274 341 bitri v S v 0 0 A t = 0 A v t D 1
343 334 342 sylib φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v v 0 0 A t = 0 A v t D 1
344 343 simprd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v t = 0 A v t D 1
345 336 344 eqbrtrd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u deg 1 K G v deg 1 K G v D 1
346 3 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v K Field
347 4 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v P
348 5 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v R
349 6 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v N
350 7 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v P N
351 8 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v N gcd R = 1
352 9 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v A < P
353 11 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v A 0
354 14 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
355 15 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v x Base K P mulGrp K x K RingIso K
356 16 ad5antr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v M mulGrp K PrimRoots R
357 272 adantr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v u 0 0 A
358 1 2 346 347 348 349 350 351 352 10 353 12 13 354 355 356 17 18 19 357 aks6d1c6lem1 φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v deg 1 K G u = t = 0 A u t
359 simp-4r φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v u S
360 262 267 bitri u S u 0 0 A t = 0 A u t D 1
361 359 360 sylib φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v u 0 0 A t = 0 A u t D 1
362 361 simprd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v t = 0 A u t D 1
363 358 362 eqbrtrd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ deg 1 K G u deg 1 K G v deg 1 K G u D 1
364 320 322 345 363 ifbothda φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v if deg 1 K G u deg 1 K G v deg 1 K G v deg 1 K G u D 1
365 299 316 303 318 364 xrletrd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u - Poly 1 K G v D 1
366 300 rexrd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v D *
367 300 ltm1d φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v D 1 < D
368 simpllr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v u S
369 simplr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v v S
370 304 368 369 jca31 φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v φ u S v S
371 simpr φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v H S u = H S v ¬ u = v
372 370 371 jca φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v φ u S v S H S u = H S v ¬ u = v
373 3 ad3antrrr φ u S v S H S u = H S v ¬ u = v K Field
374 4 ad3antrrr φ u S v S H S u = H S v ¬ u = v P
375 5 ad3antrrr φ u S v S H S u = H S v ¬ u = v R
376 6 ad3antrrr φ u S v S H S u = H S v ¬ u = v N
377 7 ad3antrrr φ u S v S H S u = H S v ¬ u = v P N
378 8 ad3antrrr φ u S v S H S u = H S v ¬ u = v N gcd R = 1
379 9 ad3antrrr φ u S v S H S u = H S v ¬ u = v A < P
380 11 ad3antrrr φ u S v S H S u = H S v ¬ u = v A 0
381 14 ad3antrrr φ u S v S H S u = H S v ¬ u = v a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
382 15 ad3antrrr φ u S v S H S u = H S v ¬ u = v x Base K P mulGrp K x K RingIso K
383 16 ad3antrrr φ u S v S H S u = H S v ¬ u = v M mulGrp K PrimRoots R
384 simpllr φ u S v S H S u = H S v ¬ u = v u S
385 simplr φ u S v S H S u = H S v ¬ u = v v S
386 simprl φ u S v S H S u = H S v ¬ u = v H S u = H S v
387 284 adantl φ u S v S H S u = H S v ¬ u = v u v
388 21 ad3antrrr φ u S v S H S u = H S v ¬ u = v L E 0 × 0 J 0 × 0
389 1 2 373 374 375 376 377 378 379 10 380 12 13 381 382 383 17 18 19 384 385 386 387 20 388 aks6d1c6lem2 φ u S v S H S u = H S v ¬ u = v D eval 1 K G u - Poly 1 K G v -1 0 K
390 372 389 syl φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v D eval 1 K G u - Poly 1 K G v -1 0 K
391 303 366 311 367 390 xrltletrd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v D 1 < eval 1 K G u - Poly 1 K G v -1 0 K
392 299 303 311 365 391 xrlelttrd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u - Poly 1 K G v < eval 1 K G u - Poly 1 K G v -1 0 K
393 247 205 249 207 deg1nn0clb K Ring G u - Poly 1 K G v Base Poly 1 K G u - Poly 1 K G v 0 Poly 1 K deg 1 K G u - Poly 1 K G v 0
394 317 282 393 syl2anc φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v G u - Poly 1 K G v 0 Poly 1 K deg 1 K G u - Poly 1 K G v 0
395 296 394 mpbid φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u - Poly 1 K G v 0
396 395 nn0red φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u - Poly 1 K G v
397 396 rexrd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u - Poly 1 K G v *
398 fvexd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v eval 1 K G u - Poly 1 K G v V
399 398 306 syl φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v eval 1 K G u - Poly 1 K G v -1 V
400 399 imaexd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v eval 1 K G u - Poly 1 K G v -1 0 K V
401 400 309 syl φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v eval 1 K G u - Poly 1 K G v -1 0 K 0 *
402 401 310 syl φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v eval 1 K G u - Poly 1 K G v -1 0 K *
403 xrltnle deg 1 K G u - Poly 1 K G v * eval 1 K G u - Poly 1 K G v -1 0 K * deg 1 K G u - Poly 1 K G v < eval 1 K G u - Poly 1 K G v -1 0 K ¬ eval 1 K G u - Poly 1 K G v -1 0 K deg 1 K G u - Poly 1 K G v
404 397 402 403 syl2anc φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v deg 1 K G u - Poly 1 K G v < eval 1 K G u - Poly 1 K G v -1 0 K ¬ eval 1 K G u - Poly 1 K G v -1 0 K deg 1 K G u - Poly 1 K G v
405 392 404 mpbid φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ¬ eval 1 K G u - Poly 1 K G v -1 0 K deg 1 K G u - Poly 1 K G v
406 297 405 pm2.21dd φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ( D + A D 1 ) H S
407 406 ex φ x S y S ¬ H S x = H S y x = y u S v S H S u = H S v ¬ u = v ( D + A D 1 ) H S
408 246 407 sylbird φ x S y S ¬ H S x = H S y x = y u S v S ¬ H S u = H S v ¬ ¬ u = v ( D + A D 1 ) H S
409 biidd H S u = H S v u = v u = v
410 409 necon3abid H S u = H S v u v ¬ u = v
411 410 necon1bbid H S u = H S v ¬ ¬ u = v u = v
412 411 pm5.74i H S u = H S v ¬ ¬ u = v H S u = H S v u = v
413 412 notbii ¬ H S u = H S v ¬ ¬ u = v ¬ H S u = H S v u = v
414 413 a1i φ x S y S ¬ H S x = H S y x = y u S v S ¬ H S u = H S v ¬ ¬ u = v ¬ H S u = H S v u = v
415 414 imbi1d φ x S y S ¬ H S x = H S y x = y u S v S ¬ H S u = H S v ¬ ¬ u = v ( D + A D 1 ) H S ¬ H S u = H S v u = v ( D + A D 1 ) H S
416 408 415 mpbid φ x S y S ¬ H S x = H S y x = y u S v S ¬ H S u = H S v u = v ( D + A D 1 ) H S
417 416 imp φ x S y S ¬ H S x = H S y x = y u S v S ¬ H S u = H S v u = v ( D + A D 1 ) H S
418 fveqeq2 x = u H S x = H S y H S u = H S y
419 equequ1 x = u x = y u = y
420 418 419 imbi12d x = u H S x = H S y x = y H S u = H S y u = y
421 420 notbid x = u ¬ H S x = H S y x = y ¬ H S u = H S y u = y
422 fveq2 y = v H S y = H S v
423 422 eqeq2d y = v H S u = H S y H S u = H S v
424 equequ2 y = v u = y u = v
425 423 424 imbi12d y = v H S u = H S y u = y H S u = H S v u = v
426 425 notbid y = v ¬ H S u = H S y u = y ¬ H S u = H S v u = v
427 421 426 cbvrex2vw x S y S ¬ H S x = H S y x = y u S v S ¬ H S u = H S v u = v
428 427 biimpi x S y S ¬ H S x = H S y x = y u S v S ¬ H S u = H S v u = v
429 428 adantl φ x S y S ¬ H S x = H S y x = y u S v S ¬ H S u = H S v u = v
430 417 429 r19.29vva φ x S y S ¬ H S x = H S y x = y ( D + A D 1 ) H S
431 430 ex φ x S y S ¬ H S x = H S y x = y ( D + A D 1 ) H S
432 rexnal2 x S y S ¬ H S x = H S y x = y ¬ x S y S H S x = H S y x = y
433 432 a1i φ x S y S ¬ H S x = H S y x = y ¬ x S y S H S x = H S y x = y
434 433 imbi1d φ x S y S ¬ H S x = H S y x = y ( D + A D 1 ) H S ¬ x S y S H S x = H S y x = y ( D + A D 1 ) H S
435 431 434 mpbid φ ¬ x S y S H S x = H S y x = y ( D + A D 1 ) H S
436 244 435 jaod φ ¬ H S : S H S ¬ x S y S H S x = H S y x = y ( D + A D 1 ) H S
437 ianor ¬ H S : S H S x S y S H S x = H S y x = y ¬ H S : S H S ¬ x S y S H S x = H S y x = y
438 437 a1i φ ¬ H S : S H S x S y S H S x = H S y x = y ¬ H S : S H S ¬ x S y S H S x = H S y x = y
439 438 biimpd φ ¬ H S : S H S x S y S H S x = H S y x = y ¬ H S : S H S ¬ x S y S H S x = H S y x = y
440 439 imim1d φ ¬ H S : S H S ¬ x S y S H S x = H S y x = y ( D + A D 1 ) H S ¬ H S : S H S x S y S H S x = H S y x = y ( D + A D 1 ) H S
441 436 440 mpd φ ¬ H S : S H S x S y S H S x = H S y x = y ( D + A D 1 ) H S
442 dff13 H S : S 1-1 H S H S : S H S x S y S H S x = H S y x = y
443 442 a1i φ H S : S 1-1 H S H S : S H S x S y S H S x = H S y x = y
444 443 notbid φ ¬ H S : S 1-1 H S ¬ H S : S H S x S y S H S x = H S y x = y
445 444 biimpd φ ¬ H S : S 1-1 H S ¬ H S : S H S x S y S H S x = H S y x = y
446 445 imim1d φ ¬ H S : S H S x S y S H S x = H S y x = y ( D + A D 1 ) H S ¬ H S : S 1-1 H S ( D + A D 1 ) H S
447 441 446 mpd φ ¬ H S : S 1-1 H S ( D + A D 1 ) H S
448 447 imp φ ¬ H S : S 1-1 H S ( D + A D 1 ) H S
449 192 448 pm2.61dan φ ( D + A D 1 ) H S
450 hashss H 0 0 A V H S H 0 0 A H S H 0 0 A
451 135 152 450 syl2anc φ H S H 0 0 A
452 131 157 161 449 451 xrletrd φ ( D + A D 1 ) H 0 0 A