Metamath Proof Explorer


Theorem aks6d1c6lem2

Description: Every primitive root is root of G(u)-G(v). (Contributed by metakunt, 8-May-2025)

Ref Expression
Hypotheses aks6d1c6.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c6.2 P = chr K
aks6d1c6.3 φ K Field
aks6d1c6.4 φ P
aks6d1c6.5 φ R
aks6d1c6.6 φ N
aks6d1c6.7 φ P N
aks6d1c6.8 φ N gcd R = 1
aks6d1c6.9 φ A < P
aks6d1c6.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
aks6d1c6.11 φ A 0
aks6d1c6.12 E = k 0 , l 0 P k N P l
aks6d1c6.13 L = ℤRHom /R
aks6d1c6.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
aks6d1c6.15 φ x Base K P mulGrp K x K RingIso K
aks6d1c6.16 φ M mulGrp K PrimRoots R
aks6d1c6.17 H = h 0 0 A eval 1 K G h M
aks6d1c6.18 D = L E 0 × 0
aks6d1c6.19 S = s 0 0 A | t = 0 A s t D 1
aks6d1c6lem2.1 φ U S
aks6d1c6lem2.2 φ V S
aks6d1c6lem2.3 φ H S U = H S V
aks6d1c6lem2.4 φ U V
aks6d1c6lem2.5 J = j 0 × 0 E j mulGrp K M
aks6d1c6lem2.6 φ L E 0 × 0 J 0 × 0
Assertion aks6d1c6lem2 φ D eval 1 K G U - Poly 1 K G V -1 0 K

Proof

Step Hyp Ref Expression
1 aks6d1c6.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c6.2 P = chr K
3 aks6d1c6.3 φ K Field
4 aks6d1c6.4 φ P
5 aks6d1c6.5 φ R
6 aks6d1c6.6 φ N
7 aks6d1c6.7 φ P N
8 aks6d1c6.8 φ N gcd R = 1
9 aks6d1c6.9 φ A < P
10 aks6d1c6.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
11 aks6d1c6.11 φ A 0
12 aks6d1c6.12 E = k 0 , l 0 P k N P l
13 aks6d1c6.13 L = ℤRHom /R
14 aks6d1c6.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
15 aks6d1c6.15 φ x Base K P mulGrp K x K RingIso K
16 aks6d1c6.16 φ M mulGrp K PrimRoots R
17 aks6d1c6.17 H = h 0 0 A eval 1 K G h M
18 aks6d1c6.18 D = L E 0 × 0
19 aks6d1c6.19 S = s 0 0 A | t = 0 A s t D 1
20 aks6d1c6lem2.1 φ U S
21 aks6d1c6lem2.2 φ V S
22 aks6d1c6lem2.3 φ H S U = H S V
23 aks6d1c6lem2.4 φ U V
24 aks6d1c6lem2.5 J = j 0 × 0 E j mulGrp K M
25 aks6d1c6lem2.6 φ L E 0 × 0 J 0 × 0
26 fvexd φ ℤRHom /R V
27 13 26 eqeltrid φ L V
28 27 imaexd φ L E 0 × 0 V
29 hashxrcl L E 0 × 0 V L E 0 × 0 *
30 28 29 syl φ L E 0 × 0 *
31 18 30 eqeltrid φ D *
32 24 a1i φ J = j 0 × 0 E j mulGrp K M
33 nn0ex 0 V
34 33 a1i φ 0 V
35 34 34 xpexd φ 0 × 0 V
36 35 mptexd φ j 0 × 0 E j mulGrp K M V
37 32 36 eqeltrd φ J V
38 37 imaexd φ J 0 × 0 V
39 hashxrcl J 0 × 0 V J 0 × 0 *
40 38 39 syl φ J 0 × 0 *
41 fvexd φ eval 1 K G U - Poly 1 K G V V
42 cnvexg eval 1 K G U - Poly 1 K G V V eval 1 K G U - Poly 1 K G V -1 V
43 41 42 syl φ eval 1 K G U - Poly 1 K G V -1 V
44 43 imaexd φ eval 1 K G U - Poly 1 K G V -1 0 K V
45 hashxrcl eval 1 K G U - Poly 1 K G V -1 0 K V eval 1 K G U - Poly 1 K G V -1 0 K *
46 44 45 syl φ eval 1 K G U - Poly 1 K G V -1 0 K *
47 18 a1i φ D = L E 0 × 0
48 47 25 eqbrtrd φ D J 0 × 0
49 44 elexd φ eval 1 K G U - Poly 1 K G V -1 0 K V
50 nfv w φ
51 ovexd φ j 0 × 0 E j mulGrp K M V
52 51 24 fmptd φ J : 0 × 0 V
53 ffun J : 0 × 0 V Fun J
54 52 53 syl φ Fun J
55 24 a1i φ w 0 × 0 J = j 0 × 0 E j mulGrp K M
56 simpr φ w 0 × 0 j = w j = w
57 56 fveq2d φ w 0 × 0 j = w E j = E w
58 57 oveq1d φ w 0 × 0 j = w E j mulGrp K M = E w mulGrp K M
59 simpr φ w 0 × 0 w 0 × 0
60 ovexd φ w 0 × 0 E w mulGrp K M V
61 55 58 59 60 fvmptd φ w 0 × 0 J w = E w mulGrp K M
62 eqid eval 1 K = eval 1 K
63 eqid Poly 1 K = Poly 1 K
64 eqid Base K = Base K
65 eqid Base Poly 1 K = Base Poly 1 K
66 3 fldcrngd φ K CRing
67 66 adantr φ w 0 × 0 K CRing
68 eqid mulGrp K = mulGrp K
69 68 64 mgpbas Base K = Base mulGrp K
70 eqid mulGrp K = mulGrp K
71 66 crngringd φ K Ring
72 68 ringmgp K Ring mulGrp K Mnd
73 71 72 syl φ mulGrp K Mnd
74 73 adantr φ w 0 × 0 mulGrp K Mnd
75 6 4 7 12 aks6d1c2p1 φ E : 0 × 0
76 75 ffvelcdmda φ w 0 × 0 E w
77 76 nnnn0d φ w 0 × 0 E w 0
78 68 crngmgp K CRing mulGrp K CMnd
79 66 78 syl φ mulGrp K CMnd
80 5 nnnn0d φ R 0
81 79 80 70 isprimroot φ M mulGrp K PrimRoots R M Base mulGrp K R mulGrp K M = 0 mulGrp K o 0 o mulGrp K M = 0 mulGrp K R o
82 16 81 mpbid φ M Base mulGrp K R mulGrp K M = 0 mulGrp K o 0 o mulGrp K M = 0 mulGrp K R o
83 82 simp1d φ M Base mulGrp K
84 83 69 eleqtrrdi φ M Base K
85 84 adantr φ w 0 × 0 M Base K
86 69 70 74 77 85 mulgnn0cld φ w 0 × 0 E w mulGrp K M Base K
87 eqid var 1 K = var 1 K
88 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
89 3 4 2 11 9 87 88 10 aks6d1c5lem0 φ G : 0 0 A Base Poly 1 K
90 19 eleq2i U S U s 0 0 A | t = 0 A s t D 1
91 20 90 sylib φ U s 0 0 A | t = 0 A s t D 1
92 elrabi U s 0 0 A | t = 0 A s t D 1 U 0 0 A
93 92 a1i φ U s 0 0 A | t = 0 A s t D 1 U 0 0 A
94 91 93 mpd φ U 0 0 A
95 89 94 ffvelcdmd φ G U Base Poly 1 K
96 95 adantr φ w 0 × 0 G U Base Poly 1 K
97 eqidd φ w 0 × 0 eval 1 K G U E w mulGrp K M = eval 1 K G U E w mulGrp K M
98 96 97 jca φ w 0 × 0 G U Base Poly 1 K eval 1 K G U E w mulGrp K M = eval 1 K G U E w mulGrp K M
99 19 eleq2i V S V s 0 0 A | t = 0 A s t D 1
100 21 99 sylib φ V s 0 0 A | t = 0 A s t D 1
101 elrabi V s 0 0 A | t = 0 A s t D 1 V 0 0 A
102 101 a1i φ V s 0 0 A | t = 0 A s t D 1 V 0 0 A
103 100 102 mpd φ V 0 0 A
104 89 103 ffvelcdmd φ G V Base Poly 1 K
105 104 adantr φ w 0 × 0 G V Base Poly 1 K
106 eqidd φ w 0 × 0 eval 1 K G V E w mulGrp K M = eval 1 K G V E w mulGrp K M
107 105 106 jca φ w 0 × 0 G V Base Poly 1 K eval 1 K G V E w mulGrp K M = eval 1 K G V E w mulGrp K M
108 eqid - Poly 1 K = - Poly 1 K
109 eqid - K = - K
110 62 63 64 65 67 86 98 107 108 109 evl1subd φ w 0 × 0 G U - Poly 1 K G V Base Poly 1 K eval 1 K G U - Poly 1 K G V E w mulGrp K M = eval 1 K G U E w mulGrp K M - K eval 1 K G V E w mulGrp K M
111 110 simprd φ w 0 × 0 eval 1 K G U - Poly 1 K G V E w mulGrp K M = eval 1 K G U E w mulGrp K M - K eval 1 K G V E w mulGrp K M
112 fveq2 y = M eval 1 K G U y = eval 1 K G U M
113 112 oveq2d y = M E w mulGrp K eval 1 K G U y = E w mulGrp K eval 1 K G U M
114 oveq2 y = M E w mulGrp K y = E w mulGrp K M
115 114 fveq2d y = M eval 1 K G U E w mulGrp K y = eval 1 K G U E w mulGrp K M
116 113 115 eqeq12d y = M E w mulGrp K eval 1 K G U y = eval 1 K G U E w mulGrp K y E w mulGrp K eval 1 K G U M = eval 1 K G U E w mulGrp K M
117 vex k V
118 vex l V
119 117 118 op1std s = k l 1 st s = k
120 119 oveq2d s = k l P 1 st s = P k
121 117 118 op2ndd s = k l 2 nd s = l
122 121 oveq2d s = k l N P 2 nd s = N P l
123 120 122 oveq12d s = k l P 1 st s N P 2 nd s = P k N P l
124 123 mpompt s 0 × 0 P 1 st s N P 2 nd s = k 0 , l 0 P k N P l
125 12 eqcomi k 0 , l 0 P k N P l = E
126 124 125 eqtri s 0 × 0 P 1 st s N P 2 nd s = E
127 126 eqcomi E = s 0 × 0 P 1 st s N P 2 nd s
128 127 a1i φ w 0 × 0 E = s 0 × 0 P 1 st s N P 2 nd s
129 simpr φ w 0 × 0 s = w s = w
130 129 fveq2d φ w 0 × 0 s = w 1 st s = 1 st w
131 130 oveq2d φ w 0 × 0 s = w P 1 st s = P 1 st w
132 129 fveq2d φ w 0 × 0 s = w 2 nd s = 2 nd w
133 132 oveq2d φ w 0 × 0 s = w N P 2 nd s = N P 2 nd w
134 131 133 oveq12d φ w 0 × 0 s = w P 1 st s N P 2 nd s = P 1 st w N P 2 nd w
135 ovexd φ w 0 × 0 P 1 st w N P 2 nd w V
136 128 134 59 135 fvmptd φ w 0 × 0 E w = P 1 st w N P 2 nd w
137 3 adantr φ w 0 × 0 K Field
138 4 adantr φ w 0 × 0 P
139 5 adantr φ w 0 × 0 R
140 6 adantr φ w 0 × 0 N
141 7 adantr φ w 0 × 0 P N
142 8 adantr φ w 0 × 0 N gcd R = 1
143 ovexd φ 0 A V
144 34 143 elmapd φ U 0 0 A U : 0 A 0
145 94 144 mpbid φ U : 0 A 0
146 145 adantr φ w 0 × 0 U : 0 A 0
147 11 adantr φ w 0 × 0 A 0
148 xp1st w 0 × 0 1 st w 0
149 148 adantl φ w 0 × 0 1 st w 0
150 xp2nd w 0 × 0 2 nd w 0
151 150 adantl φ w 0 × 0 2 nd w 0
152 eqid P 1 st w N P 2 nd w = P 1 st w N P 2 nd w
153 14 adantr φ w 0 × 0 a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
154 15 adantr φ w 0 × 0 x Base K P mulGrp K x K RingIso K
155 1 2 137 138 139 140 141 142 146 10 147 149 151 152 153 154 aks6d1c1rh φ w 0 × 0 P 1 st w N P 2 nd w ˙ G U
156 136 155 eqbrtrd φ w 0 × 0 E w ˙ G U
157 1 96 76 aks6d1c1p1 φ w 0 × 0 E w ˙ G U y mulGrp K PrimRoots R E w mulGrp K eval 1 K G U y = eval 1 K G U E w mulGrp K y
158 156 157 mpbid φ w 0 × 0 y mulGrp K PrimRoots R E w mulGrp K eval 1 K G U y = eval 1 K G U E w mulGrp K y
159 16 adantr φ w 0 × 0 M mulGrp K PrimRoots R
160 116 158 159 rspcdva φ w 0 × 0 E w mulGrp K eval 1 K G U M = eval 1 K G U E w mulGrp K M
161 160 eqcomd φ w 0 × 0 eval 1 K G U E w mulGrp K M = E w mulGrp K eval 1 K G U M
162 17 a1i φ H = h 0 0 A eval 1 K G h M
163 162 reseq1d φ H S = h 0 0 A eval 1 K G h M S
164 19 a1i φ S = s 0 0 A | t = 0 A s t D 1
165 ssrab2 s 0 0 A | t = 0 A s t D 1 0 0 A
166 165 a1i φ s 0 0 A | t = 0 A s t D 1 0 0 A
167 164 166 eqsstrd φ S 0 0 A
168 167 resmptd φ h 0 0 A eval 1 K G h M S = h S eval 1 K G h M
169 163 168 eqtrd φ H S = h S eval 1 K G h M
170 simpr φ h = U h = U
171 170 fveq2d φ h = U G h = G U
172 171 fveq2d φ h = U eval 1 K G h = eval 1 K G U
173 172 fveq1d φ h = U eval 1 K G h M = eval 1 K G U M
174 fvexd φ eval 1 K G U M V
175 169 173 20 174 fvmptd φ H S U = eval 1 K G U M
176 175 eqcomd φ eval 1 K G U M = H S U
177 simpr φ h = V h = V
178 177 fveq2d φ h = V G h = G V
179 178 fveq2d φ h = V eval 1 K G h = eval 1 K G V
180 179 fveq1d φ h = V eval 1 K G h M = eval 1 K G V M
181 fvexd φ eval 1 K G V M V
182 169 180 21 181 fvmptd φ H S V = eval 1 K G V M
183 176 22 182 3eqtrd φ eval 1 K G U M = eval 1 K G V M
184 183 adantr φ w 0 × 0 eval 1 K G U M = eval 1 K G V M
185 184 oveq2d φ w 0 × 0 E w mulGrp K eval 1 K G U M = E w mulGrp K eval 1 K G V M
186 161 185 eqtrd φ w 0 × 0 eval 1 K G U E w mulGrp K M = E w mulGrp K eval 1 K G V M
187 fveq2 y = M eval 1 K G V y = eval 1 K G V M
188 187 oveq2d y = M E w mulGrp K eval 1 K G V y = E w mulGrp K eval 1 K G V M
189 114 fveq2d y = M eval 1 K G V E w mulGrp K y = eval 1 K G V E w mulGrp K M
190 188 189 eqeq12d y = M E w mulGrp K eval 1 K G V y = eval 1 K G V E w mulGrp K y E w mulGrp K eval 1 K G V M = eval 1 K G V E w mulGrp K M
191 34 143 elmapd φ V 0 0 A V : 0 A 0
192 103 191 mpbid φ V : 0 A 0
193 192 adantr φ w 0 × 0 V : 0 A 0
194 1 2 137 138 139 140 141 142 193 10 147 149 151 152 153 154 aks6d1c1rh φ w 0 × 0 P 1 st w N P 2 nd w ˙ G V
195 136 194 eqbrtrd φ w 0 × 0 E w ˙ G V
196 1 105 76 aks6d1c1p1 φ w 0 × 0 E w ˙ G V y mulGrp K PrimRoots R E w mulGrp K eval 1 K G V y = eval 1 K G V E w mulGrp K y
197 195 196 mpbid φ w 0 × 0 y mulGrp K PrimRoots R E w mulGrp K eval 1 K G V y = eval 1 K G V E w mulGrp K y
198 190 197 159 rspcdva φ w 0 × 0 E w mulGrp K eval 1 K G V M = eval 1 K G V E w mulGrp K M
199 186 198 eqtrd φ w 0 × 0 eval 1 K G U E w mulGrp K M = eval 1 K G V E w mulGrp K M
200 66 crnggrpd φ K Grp
201 200 adantr φ w 0 × 0 K Grp
202 62 63 64 65 67 86 96 fveval1fvcl φ w 0 × 0 eval 1 K G U E w mulGrp K M Base K
203 62 63 64 65 67 86 105 fveval1fvcl φ w 0 × 0 eval 1 K G V E w mulGrp K M Base K
204 eqid 0 K = 0 K
205 64 204 109 grpsubeq0 K Grp eval 1 K G U E w mulGrp K M Base K eval 1 K G V E w mulGrp K M Base K eval 1 K G U E w mulGrp K M - K eval 1 K G V E w mulGrp K M = 0 K eval 1 K G U E w mulGrp K M = eval 1 K G V E w mulGrp K M
206 201 202 203 205 syl3anc φ w 0 × 0 eval 1 K G U E w mulGrp K M - K eval 1 K G V E w mulGrp K M = 0 K eval 1 K G U E w mulGrp K M = eval 1 K G V E w mulGrp K M
207 199 206 mpbird φ w 0 × 0 eval 1 K G U E w mulGrp K M - K eval 1 K G V E w mulGrp K M = 0 K
208 111 207 eqtrd φ w 0 × 0 eval 1 K G U - Poly 1 K G V E w mulGrp K M = 0 K
209 fvexd φ w 0 × 0 eval 1 K G U - Poly 1 K G V E w mulGrp K M V
210 elsng eval 1 K G U - Poly 1 K G V E w mulGrp K M V eval 1 K G U - Poly 1 K G V E w mulGrp K M 0 K eval 1 K G U - Poly 1 K G V E w mulGrp K M = 0 K
211 209 210 syl φ w 0 × 0 eval 1 K G U - Poly 1 K G V E w mulGrp K M 0 K eval 1 K G U - Poly 1 K G V E w mulGrp K M = 0 K
212 208 211 mpbird φ w 0 × 0 eval 1 K G U - Poly 1 K G V E w mulGrp K M 0 K
213 eqid K 𝑠 Base K = K 𝑠 Base K
214 62 63 213 64 evl1rhm K CRing eval 1 K Poly 1 K RingHom K 𝑠 Base K
215 66 214 syl φ eval 1 K Poly 1 K RingHom K 𝑠 Base K
216 eqid Base K 𝑠 Base K = Base K 𝑠 Base K
217 65 216 rhmf eval 1 K Poly 1 K RingHom K 𝑠 Base K eval 1 K : Base Poly 1 K Base K 𝑠 Base K
218 215 217 syl φ eval 1 K : Base Poly 1 K Base K 𝑠 Base K
219 fvexd φ Base K V
220 213 64 pwsbas K Field Base K V Base K Base K = Base K 𝑠 Base K
221 3 219 220 syl2anc φ Base K Base K = Base K 𝑠 Base K
222 221 feq3d φ eval 1 K : Base Poly 1 K Base K Base K eval 1 K : Base Poly 1 K Base K 𝑠 Base K
223 218 222 mpbird φ eval 1 K : Base Poly 1 K Base K Base K
224 63 ply1ring K Ring Poly 1 K Ring
225 71 224 syl φ Poly 1 K Ring
226 ringgrp Poly 1 K Ring Poly 1 K Grp
227 225 226 syl φ Poly 1 K Grp
228 65 108 grpsubcl Poly 1 K Grp G U Base Poly 1 K G V Base Poly 1 K G U - Poly 1 K G V Base Poly 1 K
229 227 95 104 228 syl3anc φ G U - Poly 1 K G V Base Poly 1 K
230 223 229 ffvelcdmd φ eval 1 K G U - Poly 1 K G V Base K Base K
231 219 219 elmapd φ eval 1 K G U - Poly 1 K G V Base K Base K eval 1 K G U - Poly 1 K G V : Base K Base K
232 230 231 mpbid φ eval 1 K G U - Poly 1 K G V : Base K Base K
233 232 ffund φ Fun eval 1 K G U - Poly 1 K G V
234 233 adantr φ w 0 × 0 Fun eval 1 K G U - Poly 1 K G V
235 232 ffnd φ eval 1 K G U - Poly 1 K G V Fn Base K
236 235 adantr φ w 0 × 0 eval 1 K G U - Poly 1 K G V Fn Base K
237 236 fndmd φ w 0 × 0 dom eval 1 K G U - Poly 1 K G V = Base K
238 237 eqcomd φ w 0 × 0 Base K = dom eval 1 K G U - Poly 1 K G V
239 86 238 eleqtrd φ w 0 × 0 E w mulGrp K M dom eval 1 K G U - Poly 1 K G V
240 fvimacnv Fun eval 1 K G U - Poly 1 K G V E w mulGrp K M dom eval 1 K G U - Poly 1 K G V eval 1 K G U - Poly 1 K G V E w mulGrp K M 0 K E w mulGrp K M eval 1 K G U - Poly 1 K G V -1 0 K
241 234 239 240 syl2anc φ w 0 × 0 eval 1 K G U - Poly 1 K G V E w mulGrp K M 0 K E w mulGrp K M eval 1 K G U - Poly 1 K G V -1 0 K
242 212 241 mpbid φ w 0 × 0 E w mulGrp K M eval 1 K G U - Poly 1 K G V -1 0 K
243 61 242 eqeltrd φ w 0 × 0 J w eval 1 K G U - Poly 1 K G V -1 0 K
244 50 54 243 funimassd φ J 0 × 0 eval 1 K G U - Poly 1 K G V -1 0 K
245 hashss eval 1 K G U - Poly 1 K G V -1 0 K V J 0 × 0 eval 1 K G U - Poly 1 K G V -1 0 K J 0 × 0 eval 1 K G U - Poly 1 K G V -1 0 K
246 49 244 245 syl2anc φ J 0 × 0 eval 1 K G U - Poly 1 K G V -1 0 K
247 31 40 46 48 246 xrletrd φ D eval 1 K G U - Poly 1 K G V -1 0 K