| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6.1 | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } | 
						
							| 2 |  | aks6d1c6.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks6d1c6.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks6d1c6.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks6d1c6.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks6d1c6.6 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | aks6d1c6.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks6d1c6.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks6d1c6.9 | ⊢ ( 𝜑  →  𝐴  <  𝑃 ) | 
						
							| 10 |  | aks6d1c6.10 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c6.11 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 12 |  | aks6d1c6.12 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 13 |  | aks6d1c6.13 | ⊢ 𝐿  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 14 |  | aks6d1c6.14 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 15 |  | aks6d1c6.15 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 16 |  | aks6d1c6.16 | ⊢ ( 𝜑  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 17 |  | aks6d1c6.17 | ⊢ 𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) | 
						
							| 18 |  | aks6d1c6.18 | ⊢ 𝐷  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 19 |  | aks6d1c6.19 | ⊢ 𝑆  =  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } | 
						
							| 20 |  | aks6d1c6lem2.1 | ⊢ ( 𝜑  →  𝑈  ∈  𝑆 ) | 
						
							| 21 |  | aks6d1c6lem2.2 | ⊢ ( 𝜑  →  𝑉  ∈  𝑆 ) | 
						
							| 22 |  | aks6d1c6lem2.3 | ⊢ ( 𝜑  →  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑈 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑉 ) ) | 
						
							| 23 |  | aks6d1c6lem2.4 | ⊢ ( 𝜑  →  𝑈  ≠  𝑉 ) | 
						
							| 24 |  | aks6d1c6lem2.5 | ⊢ 𝐽  =  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 25 |  | aks6d1c6lem2.6 | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≤  ( ♯ ‘ ( 𝐽  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 26 |  | fvexd | ⊢ ( 𝜑  →  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  ∈  V ) | 
						
							| 27 | 13 26 | eqeltrid | ⊢ ( 𝜑  →  𝐿  ∈  V ) | 
						
							| 28 | 27 | imaexd | ⊢ ( 𝜑  →  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  V ) | 
						
							| 29 |  | hashxrcl | ⊢ ( ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  V  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℝ* ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℝ* ) | 
						
							| 31 | 18 30 | eqeltrid | ⊢ ( 𝜑  →  𝐷  ∈  ℝ* ) | 
						
							| 32 | 24 | a1i | ⊢ ( 𝜑  →  𝐽  =  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 33 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 35 | 34 34 | xpexd | ⊢ ( 𝜑  →  ( ℕ0  ×  ℕ0 )  ∈  V ) | 
						
							| 36 | 35 | mptexd | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  V ) | 
						
							| 37 | 32 36 | eqeltrd | ⊢ ( 𝜑  →  𝐽  ∈  V ) | 
						
							| 38 | 37 | imaexd | ⊢ ( 𝜑  →  ( 𝐽  “  ( ℕ0  ×  ℕ0 ) )  ∈  V ) | 
						
							| 39 |  | hashxrcl | ⊢ ( ( 𝐽  “  ( ℕ0  ×  ℕ0 ) )  ∈  V  →  ( ♯ ‘ ( 𝐽  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  ℝ* ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐽  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  ℝ* ) | 
						
							| 41 |  | fvexd | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  ∈  V ) | 
						
							| 42 |  | cnvexg | ⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  ∈  V  →  ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  ∈  V ) | 
						
							| 43 | 41 42 | syl | ⊢ ( 𝜑  →  ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  ∈  V ) | 
						
							| 44 | 43 | imaexd | ⊢ ( 𝜑  →  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } )  ∈  V ) | 
						
							| 45 |  | hashxrcl | ⊢ ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } )  ∈  V  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℝ* ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℝ* ) | 
						
							| 47 | 18 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 48 | 47 25 | eqbrtrd | ⊢ ( 𝜑  →  𝐷  ≤  ( ♯ ‘ ( 𝐽  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 49 | 44 | elexd | ⊢ ( 𝜑  →  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } )  ∈  V ) | 
						
							| 50 |  | nfv | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 51 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  V ) | 
						
							| 52 | 51 24 | fmptd | ⊢ ( 𝜑  →  𝐽 : ( ℕ0  ×  ℕ0 ) ⟶ V ) | 
						
							| 53 |  | ffun | ⊢ ( 𝐽 : ( ℕ0  ×  ℕ0 ) ⟶ V  →  Fun  𝐽 ) | 
						
							| 54 | 52 53 | syl | ⊢ ( 𝜑  →  Fun  𝐽 ) | 
						
							| 55 | 24 | a1i | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝐽  =  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 56 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑗  =  𝑤 )  →  𝑗  =  𝑤 ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑗  =  𝑤 )  →  ( 𝐸 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑤 ) ) | 
						
							| 58 | 57 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑗  =  𝑤 )  →  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 59 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑤  ∈  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 60 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  V ) | 
						
							| 61 | 55 58 59 60 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐽 ‘ 𝑤 )  =  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 62 |  | eqid | ⊢ ( eval1 ‘ 𝐾 )  =  ( eval1 ‘ 𝐾 ) | 
						
							| 63 |  | eqid | ⊢ ( Poly1 ‘ 𝐾 )  =  ( Poly1 ‘ 𝐾 ) | 
						
							| 64 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 65 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 66 | 3 | fldcrngd | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝐾  ∈  CRing ) | 
						
							| 68 |  | eqid | ⊢ ( mulGrp ‘ 𝐾 )  =  ( mulGrp ‘ 𝐾 ) | 
						
							| 69 | 68 64 | mgpbas | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 70 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( .g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 71 | 66 | crngringd | ⊢ ( 𝜑  →  𝐾  ∈  Ring ) | 
						
							| 72 | 68 | ringmgp | ⊢ ( 𝐾  ∈  Ring  →  ( mulGrp ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 73 | 71 72 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( mulGrp ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 75 | 6 4 7 12 | aks6d1c2p1 | ⊢ ( 𝜑  →  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℕ ) | 
						
							| 76 | 75 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐸 ‘ 𝑤 )  ∈  ℕ ) | 
						
							| 77 | 76 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐸 ‘ 𝑤 )  ∈  ℕ0 ) | 
						
							| 78 | 68 | crngmgp | ⊢ ( 𝐾  ∈  CRing  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 79 | 66 78 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 80 | 5 | nnnn0d | ⊢ ( 𝜑  →  𝑅  ∈  ℕ0 ) | 
						
							| 81 | 79 80 70 | isprimroot | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  ↔  ( 𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ∀ 𝑜  ∈  ℕ0 ( ( 𝑜 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑅  ∥  𝑜 ) ) ) ) | 
						
							| 82 | 16 81 | mpbid | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ∀ 𝑜  ∈  ℕ0 ( ( 𝑜 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑅  ∥  𝑜 ) ) ) | 
						
							| 83 | 82 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 84 | 83 69 | eleqtrrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑀  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 86 | 69 70 74 77 85 | mulgnn0cld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 87 |  | eqid | ⊢ ( var1 ‘ 𝐾 )  =  ( var1 ‘ 𝐾 ) | 
						
							| 88 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 89 | 3 4 2 11 9 87 88 10 | aks6d1c5lem0 | ⊢ ( 𝜑  →  𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 90 | 19 | eleq2i | ⊢ ( 𝑈  ∈  𝑆  ↔  𝑈  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } ) | 
						
							| 91 | 20 90 | sylib | ⊢ ( 𝜑  →  𝑈  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } ) | 
						
							| 92 |  | elrabi | ⊢ ( 𝑈  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  →  𝑈  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 93 | 92 | a1i | ⊢ ( 𝜑  →  ( 𝑈  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  →  𝑈  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) | 
						
							| 94 | 91 93 | mpd | ⊢ ( 𝜑  →  𝑈  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 95 | 89 94 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑈 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐺 ‘ 𝑈 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 97 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 98 | 96 97 | jca | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐺 ‘ 𝑈 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) | 
						
							| 99 | 19 | eleq2i | ⊢ ( 𝑉  ∈  𝑆  ↔  𝑉  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } ) | 
						
							| 100 | 21 99 | sylib | ⊢ ( 𝜑  →  𝑉  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } ) | 
						
							| 101 |  | elrabi | ⊢ ( 𝑉  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  →  𝑉  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 102 | 101 | a1i | ⊢ ( 𝜑  →  ( 𝑉  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  →  𝑉  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) | 
						
							| 103 | 100 102 | mpd | ⊢ ( 𝜑  →  𝑉  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 104 | 89 103 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑉 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐺 ‘ 𝑉 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 106 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 107 | 105 106 | jca | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐺 ‘ 𝑉 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) | 
						
							| 108 |  | eqid | ⊢ ( -g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( -g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 109 |  | eqid | ⊢ ( -g ‘ 𝐾 )  =  ( -g ‘ 𝐾 ) | 
						
							| 110 | 62 63 64 65 67 86 98 107 108 109 | evl1subd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) ) | 
						
							| 111 | 110 | simprd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) | 
						
							| 112 |  | fveq2 | ⊢ ( 𝑦  =  𝑀  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑦 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) | 
						
							| 113 | 112 | oveq2d | ⊢ ( 𝑦  =  𝑀  →  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑦 ) )  =  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) ) | 
						
							| 114 |  | oveq2 | ⊢ ( 𝑦  =  𝑀  →  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 )  =  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 115 | 114 | fveq2d | ⊢ ( 𝑦  =  𝑀  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 116 | 113 115 | eqeq12d | ⊢ ( 𝑦  =  𝑀  →  ( ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) )  ↔  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) | 
						
							| 117 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 118 |  | vex | ⊢ 𝑙  ∈  V | 
						
							| 119 | 117 118 | op1std | ⊢ ( 𝑠  =  〈 𝑘 ,  𝑙 〉  →  ( 1st  ‘ 𝑠 )  =  𝑘 ) | 
						
							| 120 | 119 | oveq2d | ⊢ ( 𝑠  =  〈 𝑘 ,  𝑙 〉  →  ( 𝑃 ↑ ( 1st  ‘ 𝑠 ) )  =  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 121 | 117 118 | op2ndd | ⊢ ( 𝑠  =  〈 𝑘 ,  𝑙 〉  →  ( 2nd  ‘ 𝑠 )  =  𝑙 ) | 
						
							| 122 | 121 | oveq2d | ⊢ ( 𝑠  =  〈 𝑘 ,  𝑙 〉  →  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑠 ) )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) | 
						
							| 123 | 120 122 | oveq12d | ⊢ ( 𝑠  =  〈 𝑘 ,  𝑙 〉  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑠 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑠 ) ) )  =  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 124 | 123 | mpompt | ⊢ ( 𝑠  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑠 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑠 ) ) ) )  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 125 | 12 | eqcomi | ⊢ ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) )  =  𝐸 | 
						
							| 126 | 124 125 | eqtri | ⊢ ( 𝑠  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑠 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑠 ) ) ) )  =  𝐸 | 
						
							| 127 | 126 | eqcomi | ⊢ 𝐸  =  ( 𝑠  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑠 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑠 ) ) ) ) | 
						
							| 128 | 127 | a1i | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝐸  =  ( 𝑠  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝑃 ↑ ( 1st  ‘ 𝑠 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑠 ) ) ) ) ) | 
						
							| 129 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑠  =  𝑤 )  →  𝑠  =  𝑤 ) | 
						
							| 130 | 129 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑠  =  𝑤 )  →  ( 1st  ‘ 𝑠 )  =  ( 1st  ‘ 𝑤 ) ) | 
						
							| 131 | 130 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑠  =  𝑤 )  →  ( 𝑃 ↑ ( 1st  ‘ 𝑠 ) )  =  ( 𝑃 ↑ ( 1st  ‘ 𝑤 ) ) ) | 
						
							| 132 | 129 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑠  =  𝑤 )  →  ( 2nd  ‘ 𝑠 )  =  ( 2nd  ‘ 𝑤 ) ) | 
						
							| 133 | 132 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑠  =  𝑤 )  →  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑠 ) )  =  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑤 ) ) ) | 
						
							| 134 | 131 133 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  ∧  𝑠  =  𝑤 )  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑠 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑠 ) ) )  =  ( ( 𝑃 ↑ ( 1st  ‘ 𝑤 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑤 ) ) ) ) | 
						
							| 135 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑤 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑤 ) ) )  ∈  V ) | 
						
							| 136 | 128 134 59 135 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐸 ‘ 𝑤 )  =  ( ( 𝑃 ↑ ( 1st  ‘ 𝑤 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑤 ) ) ) ) | 
						
							| 137 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝐾  ∈  Field ) | 
						
							| 138 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 139 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑅  ∈  ℕ ) | 
						
							| 140 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 141 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑃  ∥  𝑁 ) | 
						
							| 142 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 143 |  | ovexd | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ∈  V ) | 
						
							| 144 | 34 143 | elmapd | ⊢ ( 𝜑  →  ( 𝑈  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 145 | 94 144 | mpbid | ⊢ ( 𝜑  →  𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 146 | 145 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 147 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 148 |  | xp1st | ⊢ ( 𝑤  ∈  ( ℕ0  ×  ℕ0 )  →  ( 1st  ‘ 𝑤 )  ∈  ℕ0 ) | 
						
							| 149 | 148 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 1st  ‘ 𝑤 )  ∈  ℕ0 ) | 
						
							| 150 |  | xp2nd | ⊢ ( 𝑤  ∈  ( ℕ0  ×  ℕ0 )  →  ( 2nd  ‘ 𝑤 )  ∈  ℕ0 ) | 
						
							| 151 | 150 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 2nd  ‘ 𝑤 )  ∈  ℕ0 ) | 
						
							| 152 |  | eqid | ⊢ ( ( 𝑃 ↑ ( 1st  ‘ 𝑤 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑤 ) ) )  =  ( ( 𝑃 ↑ ( 1st  ‘ 𝑤 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑤 ) ) ) | 
						
							| 153 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 154 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 155 | 1 2 137 138 139 140 141 142 146 10 147 149 151 152 153 154 | aks6d1c1rh | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑤 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑤 ) ) )  ∼  ( 𝐺 ‘ 𝑈 ) ) | 
						
							| 156 | 136 155 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐸 ‘ 𝑤 )  ∼  ( 𝐺 ‘ 𝑈 ) ) | 
						
							| 157 | 1 96 76 | aks6d1c1p1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑤 )  ∼  ( 𝐺 ‘ 𝑈 )  ↔  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) ) | 
						
							| 158 | 156 157 | mpbid | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) | 
						
							| 159 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 160 | 116 158 159 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 161 | 160 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) ) | 
						
							| 162 | 17 | a1i | ⊢ ( 𝜑  →  𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) | 
						
							| 163 | 162 | reseq1d | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑆 )  =  ( ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) )  ↾  𝑆 ) ) | 
						
							| 164 | 19 | a1i | ⊢ ( 𝜑  →  𝑆  =  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } ) | 
						
							| 165 |  | ssrab2 | ⊢ { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  ⊆  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) | 
						
							| 166 | 165 | a1i | ⊢ ( 𝜑  →  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  ⊆  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 167 | 164 166 | eqsstrd | ⊢ ( 𝜑  →  𝑆  ⊆  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 168 | 167 | resmptd | ⊢ ( 𝜑  →  ( ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) )  ↾  𝑆 )  =  ( ℎ  ∈  𝑆  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) | 
						
							| 169 | 163 168 | eqtrd | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑆 )  =  ( ℎ  ∈  𝑆  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) | 
						
							| 170 |  | simpr | ⊢ ( ( 𝜑  ∧  ℎ  =  𝑈 )  →  ℎ  =  𝑈 ) | 
						
							| 171 | 170 | fveq2d | ⊢ ( ( 𝜑  ∧  ℎ  =  𝑈 )  →  ( 𝐺 ‘ ℎ )  =  ( 𝐺 ‘ 𝑈 ) ) | 
						
							| 172 | 171 | fveq2d | ⊢ ( ( 𝜑  ∧  ℎ  =  𝑈 )  →  ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) )  =  ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ) | 
						
							| 173 | 172 | fveq1d | ⊢ ( ( 𝜑  ∧  ℎ  =  𝑈 )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) | 
						
							| 174 |  | fvexd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 )  ∈  V ) | 
						
							| 175 | 169 173 20 174 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑈 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) | 
						
							| 176 | 175 | eqcomd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑈 ) ) | 
						
							| 177 |  | simpr | ⊢ ( ( 𝜑  ∧  ℎ  =  𝑉 )  →  ℎ  =  𝑉 ) | 
						
							| 178 | 177 | fveq2d | ⊢ ( ( 𝜑  ∧  ℎ  =  𝑉 )  →  ( 𝐺 ‘ ℎ )  =  ( 𝐺 ‘ 𝑉 ) ) | 
						
							| 179 | 178 | fveq2d | ⊢ ( ( 𝜑  ∧  ℎ  =  𝑉 )  →  ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) )  =  ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ) | 
						
							| 180 | 179 | fveq1d | ⊢ ( ( 𝜑  ∧  ℎ  =  𝑉 )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) | 
						
							| 181 |  | fvexd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 )  ∈  V ) | 
						
							| 182 | 169 180 21 181 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑉 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) | 
						
							| 183 | 176 22 182 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) | 
						
							| 184 | 183 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) | 
						
							| 185 | 184 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) )  =  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) ) | 
						
							| 186 | 161 185 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) ) | 
						
							| 187 |  | fveq2 | ⊢ ( 𝑦  =  𝑀  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑦 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) | 
						
							| 188 | 187 | oveq2d | ⊢ ( 𝑦  =  𝑀  →  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑦 ) )  =  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) ) | 
						
							| 189 | 114 | fveq2d | ⊢ ( 𝑦  =  𝑀  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 190 | 188 189 | eqeq12d | ⊢ ( 𝑦  =  𝑀  →  ( ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) )  ↔  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) | 
						
							| 191 | 34 143 | elmapd | ⊢ ( 𝜑  →  ( 𝑉  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑉 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 192 | 103 191 | mpbid | ⊢ ( 𝜑  →  𝑉 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 193 | 192 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝑉 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 194 | 1 2 137 138 139 140 141 142 193 10 147 149 151 152 153 154 | aks6d1c1rh | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝑃 ↑ ( 1st  ‘ 𝑤 ) )  ·  ( ( 𝑁  /  𝑃 ) ↑ ( 2nd  ‘ 𝑤 ) ) )  ∼  ( 𝐺 ‘ 𝑉 ) ) | 
						
							| 195 | 136 194 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐸 ‘ 𝑤 )  ∼  ( 𝐺 ‘ 𝑉 ) ) | 
						
							| 196 | 1 105 76 | aks6d1c1p1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑤 )  ∼  ( 𝐺 ‘ 𝑉 )  ↔  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) ) | 
						
							| 197 | 195 196 | mpbid | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) | 
						
							| 198 | 190 197 159 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 199 | 186 198 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) | 
						
							| 200 | 66 | crnggrpd | ⊢ ( 𝜑  →  𝐾  ∈  Grp ) | 
						
							| 201 | 200 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  𝐾  ∈  Grp ) | 
						
							| 202 | 62 63 64 65 67 86 96 | fveval1fvcl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 203 | 62 63 64 65 67 86 105 | fveval1fvcl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 204 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 205 | 64 204 109 | grpsubeq0 | ⊢ ( ( 𝐾  ∈  Grp  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) )  =  ( 0g ‘ 𝐾 )  ↔  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) | 
						
							| 206 | 201 202 203 205 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) )  =  ( 0g ‘ 𝐾 )  ↔  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) | 
						
							| 207 | 199 206 | mpbird | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 208 | 111 207 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 209 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  V ) | 
						
							| 210 |  | elsng | ⊢ ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  V  →  ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  { ( 0g ‘ 𝐾 ) }  ↔  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 211 | 209 210 | syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  { ( 0g ‘ 𝐾 ) }  ↔  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 212 | 208 211 | mpbird | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  { ( 0g ‘ 𝐾 ) } ) | 
						
							| 213 |  | eqid | ⊢ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) )  =  ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) | 
						
							| 214 | 62 63 213 64 | evl1rhm | ⊢ ( 𝐾  ∈  CRing  →  ( eval1 ‘ 𝐾 )  ∈  ( ( Poly1 ‘ 𝐾 )  RingHom  ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 215 | 66 214 | syl | ⊢ ( 𝜑  →  ( eval1 ‘ 𝐾 )  ∈  ( ( Poly1 ‘ 𝐾 )  RingHom  ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 216 |  | eqid | ⊢ ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) )  =  ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) | 
						
							| 217 | 65 216 | rhmf | ⊢ ( ( eval1 ‘ 𝐾 )  ∈  ( ( Poly1 ‘ 𝐾 )  RingHom  ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) )  →  ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 218 | 215 217 | syl | ⊢ ( 𝜑  →  ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 219 |  | fvexd | ⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  ∈  V ) | 
						
							| 220 | 213 64 | pwsbas | ⊢ ( ( 𝐾  ∈  Field  ∧  ( Base ‘ 𝐾 )  ∈  V )  →  ( ( Base ‘ 𝐾 )  ↑m  ( Base ‘ 𝐾 ) )  =  ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 221 | 3 219 220 | syl2anc | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐾 )  ↑m  ( Base ‘ 𝐾 ) )  =  ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 222 | 221 | feq3d | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( ( Base ‘ 𝐾 )  ↑m  ( Base ‘ 𝐾 ) )  ↔  ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾  ↑s  ( Base ‘ 𝐾 ) ) ) ) ) | 
						
							| 223 | 218 222 | mpbird | ⊢ ( 𝜑  →  ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( ( Base ‘ 𝐾 )  ↑m  ( Base ‘ 𝐾 ) ) ) | 
						
							| 224 | 63 | ply1ring | ⊢ ( 𝐾  ∈  Ring  →  ( Poly1 ‘ 𝐾 )  ∈  Ring ) | 
						
							| 225 | 71 224 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Ring ) | 
						
							| 226 |  | ringgrp | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  Ring  →  ( Poly1 ‘ 𝐾 )  ∈  Grp ) | 
						
							| 227 | 225 226 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Grp ) | 
						
							| 228 | 65 108 | grpsubcl | ⊢ ( ( ( Poly1 ‘ 𝐾 )  ∈  Grp  ∧  ( 𝐺 ‘ 𝑈 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( 𝐺 ‘ 𝑉 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 229 | 227 95 104 228 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 230 | 223 229 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  ∈  ( ( Base ‘ 𝐾 )  ↑m  ( Base ‘ 𝐾 ) ) ) | 
						
							| 231 | 219 219 | elmapd | ⊢ ( 𝜑  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  ∈  ( ( Base ‘ 𝐾 )  ↑m  ( Base ‘ 𝐾 ) )  ↔  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) ) | 
						
							| 232 | 230 231 | mpbid | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 233 | 232 | ffund | ⊢ ( 𝜑  →  Fun  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ) | 
						
							| 234 | 233 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  Fun  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ) | 
						
							| 235 | 232 | ffnd | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  Fn  ( Base ‘ 𝐾 ) ) | 
						
							| 236 | 235 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  Fn  ( Base ‘ 𝐾 ) ) | 
						
							| 237 | 236 | fndmd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  dom  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  =  ( Base ‘ 𝐾 ) ) | 
						
							| 238 | 237 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( Base ‘ 𝐾 )  =  dom  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ) | 
						
							| 239 | 86 238 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  dom  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ) | 
						
							| 240 |  | fvimacnv | ⊢ ( ( Fun  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  ∧  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  dom  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) )  →  ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  { ( 0g ‘ 𝐾 ) }  ↔  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 241 | 234 239 240 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) )  ∈  { ( 0g ‘ 𝐾 ) }  ↔  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 242 | 212 241 | mpbid | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  ∈  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) | 
						
							| 243 | 61 242 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( ℕ0  ×  ℕ0 ) )  →  ( 𝐽 ‘ 𝑤 )  ∈  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) | 
						
							| 244 | 50 54 243 | funimassd | ⊢ ( 𝜑  →  ( 𝐽  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) | 
						
							| 245 |  | hashss | ⊢ ( ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } )  ∈  V  ∧  ( 𝐽  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  →  ( ♯ ‘ ( 𝐽  “  ( ℕ0  ×  ℕ0 ) ) )  ≤  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 246 | 49 244 245 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐽  “  ( ℕ0  ×  ℕ0 ) ) )  ≤  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 247 | 31 40 46 48 246 | xrletrd | ⊢ ( 𝜑  →  𝐷  ≤  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) ) |