Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
2 |
|
aks6d1c6.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks6d1c6.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks6d1c6.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks6d1c6.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks6d1c6.6 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
7 |
|
aks6d1c6.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks6d1c6.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks6d1c6.9 |
⊢ ( 𝜑 → 𝐴 < 𝑃 ) |
10 |
|
aks6d1c6.10 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
11 |
|
aks6d1c6.11 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
12 |
|
aks6d1c6.12 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
13 |
|
aks6d1c6.13 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
14 |
|
aks6d1c6.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
15 |
|
aks6d1c6.15 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
16 |
|
aks6d1c6.16 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
17 |
|
aks6d1c6.17 |
⊢ 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) |
18 |
|
aks6d1c6.18 |
⊢ 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
19 |
|
aks6d1c6.19 |
⊢ 𝑆 = { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } |
20 |
|
aks6d1c6lem2.1 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
21 |
|
aks6d1c6lem2.2 |
⊢ ( 𝜑 → 𝑉 ∈ 𝑆 ) |
22 |
|
aks6d1c6lem2.3 |
⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑈 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑉 ) ) |
23 |
|
aks6d1c6lem2.4 |
⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) |
24 |
|
aks6d1c6lem2.5 |
⊢ 𝐽 = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
25 |
|
aks6d1c6lem2.6 |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ♯ ‘ ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ) ) |
26 |
|
fvexd |
⊢ ( 𝜑 → ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ∈ V ) |
27 |
13 26
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
28 |
27
|
imaexd |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V ) |
29 |
|
hashxrcl |
⊢ ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ* ) |
30 |
28 29
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℝ* ) |
31 |
18 30
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
32 |
24
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
33 |
|
nn0ex |
⊢ ℕ0 ∈ V |
34 |
33
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
35 |
34 34
|
xpexd |
⊢ ( 𝜑 → ( ℕ0 × ℕ0 ) ∈ V ) |
36 |
35
|
mptexd |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ V ) |
37 |
32 36
|
eqeltrd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
38 |
37
|
imaexd |
⊢ ( 𝜑 → ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ∈ V ) |
39 |
|
hashxrcl |
⊢ ( ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ∈ V → ( ♯ ‘ ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ) ∈ ℝ* ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ) ∈ ℝ* ) |
41 |
|
fvexd |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ∈ V ) |
42 |
|
cnvexg |
⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ∈ V → ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ∈ V ) |
43 |
41 42
|
syl |
⊢ ( 𝜑 → ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ∈ V ) |
44 |
43
|
imaexd |
⊢ ( 𝜑 → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ) |
45 |
|
hashxrcl |
⊢ ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ* ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ* ) |
47 |
18
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
48 |
47 25
|
eqbrtrd |
⊢ ( 𝜑 → 𝐷 ≤ ( ♯ ‘ ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ) ) |
49 |
44
|
elexd |
⊢ ( 𝜑 → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ) |
50 |
|
nfv |
⊢ Ⅎ 𝑤 𝜑 |
51 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ V ) |
52 |
51 24
|
fmptd |
⊢ ( 𝜑 → 𝐽 : ( ℕ0 × ℕ0 ) ⟶ V ) |
53 |
|
ffun |
⊢ ( 𝐽 : ( ℕ0 × ℕ0 ) ⟶ V → Fun 𝐽 ) |
54 |
52 53
|
syl |
⊢ ( 𝜑 → Fun 𝐽 ) |
55 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝐽 = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
56 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑗 = 𝑤 ) → 𝑗 = 𝑤 ) |
57 |
56
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑗 = 𝑤 ) → ( 𝐸 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑤 ) ) |
58 |
57
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑗 = 𝑤 ) → ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝑤 ∈ ( ℕ0 × ℕ0 ) ) |
60 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ V ) |
61 |
55 58 59 60
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐽 ‘ 𝑤 ) = ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
62 |
|
eqid |
⊢ ( eval1 ‘ 𝐾 ) = ( eval1 ‘ 𝐾 ) |
63 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
64 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
65 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
66 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝐾 ∈ CRing ) |
68 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
69 |
68 64
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
70 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
71 |
66
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
72 |
68
|
ringmgp |
⊢ ( 𝐾 ∈ Ring → ( mulGrp ‘ 𝐾 ) ∈ Mnd ) |
73 |
71 72
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ Mnd ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( mulGrp ‘ 𝐾 ) ∈ Mnd ) |
75 |
6 4 7 12
|
aks6d1c2p1 |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ) |
76 |
75
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸 ‘ 𝑤 ) ∈ ℕ ) |
77 |
76
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸 ‘ 𝑤 ) ∈ ℕ0 ) |
78 |
68
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
79 |
66 78
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
80 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
81 |
79 80 70
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑜 ∈ ℕ0 ( ( 𝑜 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑜 ) ) ) ) |
82 |
16 81
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑜 ∈ ℕ0 ( ( 𝑜 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑜 ) ) ) |
83 |
82
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
84 |
83 69
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
86 |
69 70 74 77 85
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ ( Base ‘ 𝐾 ) ) |
87 |
|
eqid |
⊢ ( var1 ‘ 𝐾 ) = ( var1 ‘ 𝐾 ) |
88 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
89 |
3 4 2 11 9 87 88 10
|
aks6d1c5lem0 |
⊢ ( 𝜑 → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
90 |
19
|
eleq2i |
⊢ ( 𝑈 ∈ 𝑆 ↔ 𝑈 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ) |
91 |
20 90
|
sylib |
⊢ ( 𝜑 → 𝑈 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ) |
92 |
|
elrabi |
⊢ ( 𝑈 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑈 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
93 |
92
|
a1i |
⊢ ( 𝜑 → ( 𝑈 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑈 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
94 |
91 93
|
mpd |
⊢ ( 𝜑 → 𝑈 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
95 |
89 94
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑈 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐺 ‘ 𝑈 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
97 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
98 |
96 97
|
jca |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐺 ‘ 𝑈 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) |
99 |
19
|
eleq2i |
⊢ ( 𝑉 ∈ 𝑆 ↔ 𝑉 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ) |
100 |
21 99
|
sylib |
⊢ ( 𝜑 → 𝑉 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ) |
101 |
|
elrabi |
⊢ ( 𝑉 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑉 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
102 |
101
|
a1i |
⊢ ( 𝜑 → ( 𝑉 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑉 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
103 |
100 102
|
mpd |
⊢ ( 𝜑 → 𝑉 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
104 |
89 103
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑉 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐺 ‘ 𝑉 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
106 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
107 |
105 106
|
jca |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐺 ‘ 𝑉 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) |
108 |
|
eqid |
⊢ ( -g ‘ ( Poly1 ‘ 𝐾 ) ) = ( -g ‘ ( Poly1 ‘ 𝐾 ) ) |
109 |
|
eqid |
⊢ ( -g ‘ 𝐾 ) = ( -g ‘ 𝐾 ) |
110 |
62 63 64 65 67 86 98 107 108 109
|
evl1subd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) ) |
111 |
110
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) |
112 |
|
fveq2 |
⊢ ( 𝑦 = 𝑀 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑦 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) |
113 |
112
|
oveq2d |
⊢ ( 𝑦 = 𝑀 → ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑦 ) ) = ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) ) |
114 |
|
oveq2 |
⊢ ( 𝑦 = 𝑀 → ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) = ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
115 |
114
|
fveq2d |
⊢ ( 𝑦 = 𝑀 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
116 |
113 115
|
eqeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ↔ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) |
117 |
|
vex |
⊢ 𝑘 ∈ V |
118 |
|
vex |
⊢ 𝑙 ∈ V |
119 |
117 118
|
op1std |
⊢ ( 𝑠 = 〈 𝑘 , 𝑙 〉 → ( 1st ‘ 𝑠 ) = 𝑘 ) |
120 |
119
|
oveq2d |
⊢ ( 𝑠 = 〈 𝑘 , 𝑙 〉 → ( 𝑃 ↑ ( 1st ‘ 𝑠 ) ) = ( 𝑃 ↑ 𝑘 ) ) |
121 |
117 118
|
op2ndd |
⊢ ( 𝑠 = 〈 𝑘 , 𝑙 〉 → ( 2nd ‘ 𝑠 ) = 𝑙 ) |
122 |
121
|
oveq2d |
⊢ ( 𝑠 = 〈 𝑘 , 𝑙 〉 → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑠 ) ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) |
123 |
120 122
|
oveq12d |
⊢ ( 𝑠 = 〈 𝑘 , 𝑙 〉 → ( ( 𝑃 ↑ ( 1st ‘ 𝑠 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑠 ) ) ) = ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
124 |
123
|
mpompt |
⊢ ( 𝑠 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑠 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑠 ) ) ) ) = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
125 |
12
|
eqcomi |
⊢ ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) = 𝐸 |
126 |
124 125
|
eqtri |
⊢ ( 𝑠 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑠 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑠 ) ) ) ) = 𝐸 |
127 |
126
|
eqcomi |
⊢ 𝐸 = ( 𝑠 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑠 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑠 ) ) ) ) |
128 |
127
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝐸 = ( 𝑠 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝑃 ↑ ( 1st ‘ 𝑠 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑠 ) ) ) ) ) |
129 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑠 = 𝑤 ) → 𝑠 = 𝑤 ) |
130 |
129
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑠 = 𝑤 ) → ( 1st ‘ 𝑠 ) = ( 1st ‘ 𝑤 ) ) |
131 |
130
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑠 = 𝑤 ) → ( 𝑃 ↑ ( 1st ‘ 𝑠 ) ) = ( 𝑃 ↑ ( 1st ‘ 𝑤 ) ) ) |
132 |
129
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑠 = 𝑤 ) → ( 2nd ‘ 𝑠 ) = ( 2nd ‘ 𝑤 ) ) |
133 |
132
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑠 = 𝑤 ) → ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑠 ) ) = ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑤 ) ) ) |
134 |
131 133
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) ∧ 𝑠 = 𝑤 ) → ( ( 𝑃 ↑ ( 1st ‘ 𝑠 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑠 ) ) ) = ( ( 𝑃 ↑ ( 1st ‘ 𝑤 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑤 ) ) ) ) |
135 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑃 ↑ ( 1st ‘ 𝑤 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑤 ) ) ) ∈ V ) |
136 |
128 134 59 135
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸 ‘ 𝑤 ) = ( ( 𝑃 ↑ ( 1st ‘ 𝑤 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑤 ) ) ) ) |
137 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝐾 ∈ Field ) |
138 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝑃 ∈ ℙ ) |
139 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝑅 ∈ ℕ ) |
140 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝑁 ∈ ℕ ) |
141 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝑃 ∥ 𝑁 ) |
142 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
143 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ V ) |
144 |
34 143
|
elmapd |
⊢ ( 𝜑 → ( 𝑈 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
145 |
94 144
|
mpbid |
⊢ ( 𝜑 → 𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
147 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝐴 ∈ ℕ0 ) |
148 |
|
xp1st |
⊢ ( 𝑤 ∈ ( ℕ0 × ℕ0 ) → ( 1st ‘ 𝑤 ) ∈ ℕ0 ) |
149 |
148
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 1st ‘ 𝑤 ) ∈ ℕ0 ) |
150 |
|
xp2nd |
⊢ ( 𝑤 ∈ ( ℕ0 × ℕ0 ) → ( 2nd ‘ 𝑤 ) ∈ ℕ0 ) |
151 |
150
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 2nd ‘ 𝑤 ) ∈ ℕ0 ) |
152 |
|
eqid |
⊢ ( ( 𝑃 ↑ ( 1st ‘ 𝑤 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑤 ) ) ) = ( ( 𝑃 ↑ ( 1st ‘ 𝑤 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑤 ) ) ) |
153 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
154 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
155 |
1 2 137 138 139 140 141 142 146 10 147 149 151 152 153 154
|
aks6d1c1rh |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑃 ↑ ( 1st ‘ 𝑤 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑤 ) ) ) ∼ ( 𝐺 ‘ 𝑈 ) ) |
156 |
136 155
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸 ‘ 𝑤 ) ∼ ( 𝐺 ‘ 𝑈 ) ) |
157 |
1 96 76
|
aks6d1c1p1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑤 ) ∼ ( 𝐺 ‘ 𝑈 ) ↔ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) ) |
158 |
156 157
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) |
159 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
160 |
116 158 159
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
161 |
160
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) ) |
162 |
17
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) |
163 |
162
|
reseq1d |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑆 ) = ( ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ↾ 𝑆 ) ) |
164 |
19
|
a1i |
⊢ ( 𝜑 → 𝑆 = { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ) |
165 |
|
ssrab2 |
⊢ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) |
166 |
165
|
a1i |
⊢ ( 𝜑 → { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
167 |
164 166
|
eqsstrd |
⊢ ( 𝜑 → 𝑆 ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
168 |
167
|
resmptd |
⊢ ( 𝜑 → ( ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ↾ 𝑆 ) = ( ℎ ∈ 𝑆 ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) |
169 |
163 168
|
eqtrd |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑆 ) = ( ℎ ∈ 𝑆 ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) |
170 |
|
simpr |
⊢ ( ( 𝜑 ∧ ℎ = 𝑈 ) → ℎ = 𝑈 ) |
171 |
170
|
fveq2d |
⊢ ( ( 𝜑 ∧ ℎ = 𝑈 ) → ( 𝐺 ‘ ℎ ) = ( 𝐺 ‘ 𝑈 ) ) |
172 |
171
|
fveq2d |
⊢ ( ( 𝜑 ∧ ℎ = 𝑈 ) → ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ) |
173 |
172
|
fveq1d |
⊢ ( ( 𝜑 ∧ ℎ = 𝑈 ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) |
174 |
|
fvexd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ∈ V ) |
175 |
169 173 20 174
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑈 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) |
176 |
175
|
eqcomd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑈 ) ) |
177 |
|
simpr |
⊢ ( ( 𝜑 ∧ ℎ = 𝑉 ) → ℎ = 𝑉 ) |
178 |
177
|
fveq2d |
⊢ ( ( 𝜑 ∧ ℎ = 𝑉 ) → ( 𝐺 ‘ ℎ ) = ( 𝐺 ‘ 𝑉 ) ) |
179 |
178
|
fveq2d |
⊢ ( ( 𝜑 ∧ ℎ = 𝑉 ) → ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ) |
180 |
179
|
fveq1d |
⊢ ( ( 𝜑 ∧ ℎ = 𝑉 ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) |
181 |
|
fvexd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ∈ V ) |
182 |
169 180 21 181
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑉 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) |
183 |
176 22 182
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) |
184 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) |
185 |
184
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ 𝑀 ) ) = ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) ) |
186 |
161 185
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) ) |
187 |
|
fveq2 |
⊢ ( 𝑦 = 𝑀 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑦 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) |
188 |
187
|
oveq2d |
⊢ ( 𝑦 = 𝑀 → ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑦 ) ) = ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) ) |
189 |
114
|
fveq2d |
⊢ ( 𝑦 = 𝑀 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
190 |
188 189
|
eqeq12d |
⊢ ( 𝑦 = 𝑀 → ( ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ↔ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) |
191 |
34 143
|
elmapd |
⊢ ( 𝜑 → ( 𝑉 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑉 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
192 |
103 191
|
mpbid |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
193 |
192
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝑉 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
194 |
1 2 137 138 139 140 141 142 193 10 147 149 151 152 153 154
|
aks6d1c1rh |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝑃 ↑ ( 1st ‘ 𝑤 ) ) · ( ( 𝑁 / 𝑃 ) ↑ ( 2nd ‘ 𝑤 ) ) ) ∼ ( 𝐺 ‘ 𝑉 ) ) |
195 |
136 194
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐸 ‘ 𝑤 ) ∼ ( 𝐺 ‘ 𝑉 ) ) |
196 |
1 105 76
|
aks6d1c1p1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑤 ) ∼ ( 𝐺 ‘ 𝑉 ) ↔ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) ) |
197 |
195 196
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) |
198 |
190 197 159
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
199 |
186 198
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) |
200 |
66
|
crnggrpd |
⊢ ( 𝜑 → 𝐾 ∈ Grp ) |
201 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → 𝐾 ∈ Grp ) |
202 |
62 63 64 65 67 86 96
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ ( Base ‘ 𝐾 ) ) |
203 |
62 63 64 65 67 86 105
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ ( Base ‘ 𝐾 ) ) |
204 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
205 |
64 204 109
|
grpsubeq0 |
⊢ ( ( 𝐾 ∈ Grp ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) = ( 0g ‘ 𝐾 ) ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) |
206 |
201 202 203 205
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) = ( 0g ‘ 𝐾 ) ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) ) |
207 |
199 206
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ( -g ‘ 𝐾 ) ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑉 ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ) = ( 0g ‘ 𝐾 ) ) |
208 |
111 207
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( 0g ‘ 𝐾 ) ) |
209 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ V ) |
210 |
|
elsng |
⊢ ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ V → ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( 0g ‘ 𝐾 ) ) ) |
211 |
209 210
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) = ( 0g ‘ 𝐾 ) ) ) |
212 |
208 211
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ { ( 0g ‘ 𝐾 ) } ) |
213 |
|
eqid |
⊢ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) = ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) |
214 |
62 63 213 64
|
evl1rhm |
⊢ ( 𝐾 ∈ CRing → ( eval1 ‘ 𝐾 ) ∈ ( ( Poly1 ‘ 𝐾 ) RingHom ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
215 |
66 214
|
syl |
⊢ ( 𝜑 → ( eval1 ‘ 𝐾 ) ∈ ( ( Poly1 ‘ 𝐾 ) RingHom ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
216 |
|
eqid |
⊢ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) = ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) |
217 |
65 216
|
rhmf |
⊢ ( ( eval1 ‘ 𝐾 ) ∈ ( ( Poly1 ‘ 𝐾 ) RingHom ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) → ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
218 |
215 217
|
syl |
⊢ ( 𝜑 → ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
219 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) ∈ V ) |
220 |
213 64
|
pwsbas |
⊢ ( ( 𝐾 ∈ Field ∧ ( Base ‘ 𝐾 ) ∈ V ) → ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
221 |
3 219 220
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) |
222 |
221
|
feq3d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) ↔ ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( Base ‘ ( 𝐾 ↑s ( Base ‘ 𝐾 ) ) ) ) ) |
223 |
218 222
|
mpbird |
⊢ ( 𝜑 → ( eval1 ‘ 𝐾 ) : ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ⟶ ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) ) |
224 |
63
|
ply1ring |
⊢ ( 𝐾 ∈ Ring → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
225 |
71 224
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
226 |
|
ringgrp |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ Ring → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
227 |
225 226
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
228 |
65 108
|
grpsubcl |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Grp ∧ ( 𝐺 ‘ 𝑈 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝐺 ‘ 𝑉 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
229 |
227 95 104 228
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
230 |
223 229
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ∈ ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) ) |
231 |
219 219
|
elmapd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ∈ ( ( Base ‘ 𝐾 ) ↑m ( Base ‘ 𝐾 ) ) ↔ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) ) |
232 |
230 231
|
mpbid |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ) |
233 |
232
|
ffund |
⊢ ( 𝜑 → Fun ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ) |
234 |
233
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → Fun ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ) |
235 |
232
|
ffnd |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) Fn ( Base ‘ 𝐾 ) ) |
236 |
235
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) Fn ( Base ‘ 𝐾 ) ) |
237 |
236
|
fndmd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → dom ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) = ( Base ‘ 𝐾 ) ) |
238 |
237
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( Base ‘ 𝐾 ) = dom ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ) |
239 |
86 238
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ dom ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ) |
240 |
|
fvimacnv |
⊢ ( ( Fun ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ∧ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ dom ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
241 |
234 239 240
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) ‘ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) ∈ { ( 0g ‘ 𝐾 ) } ↔ ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
242 |
212 241
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 ‘ 𝑤 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ∈ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) |
243 |
61 242
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ℕ0 × ℕ0 ) ) → ( 𝐽 ‘ 𝑤 ) ∈ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) |
244 |
50 54 243
|
funimassd |
⊢ ( 𝜑 → ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ⊆ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) |
245 |
|
hashss |
⊢ ( ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ∧ ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ⊆ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) → ( ♯ ‘ ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ) ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
246 |
49 244 245
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ) ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
247 |
31 40 46 48 246
|
xrletrd |
⊢ ( 𝜑 → 𝐷 ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑈 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑉 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |