| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } | 
						
							| 2 |  | aks6d1c6.2 |  |-  P = ( chr ` K ) | 
						
							| 3 |  | aks6d1c6.3 |  |-  ( ph -> K e. Field ) | 
						
							| 4 |  | aks6d1c6.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | aks6d1c6.5 |  |-  ( ph -> R e. NN ) | 
						
							| 6 |  | aks6d1c6.6 |  |-  ( ph -> N e. NN ) | 
						
							| 7 |  | aks6d1c6.7 |  |-  ( ph -> P || N ) | 
						
							| 8 |  | aks6d1c6.8 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 9 |  | aks6d1c6.9 |  |-  ( ph -> A < P ) | 
						
							| 10 |  | aks6d1c6.10 |  |-  G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c6.11 |  |-  ( ph -> A e. NN0 ) | 
						
							| 12 |  | aks6d1c6.12 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 13 |  | aks6d1c6.13 |  |-  L = ( ZRHom ` ( Z/nZ ` R ) ) | 
						
							| 14 |  | aks6d1c6.14 |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 15 |  | aks6d1c6.15 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 16 |  | aks6d1c6.16 |  |-  ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 17 |  | aks6d1c6.17 |  |-  H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) | 
						
							| 18 |  | aks6d1c6.18 |  |-  D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 19 |  | aks6d1c6.19 |  |-  S = { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } | 
						
							| 20 |  | aks6d1c6lem2.1 |  |-  ( ph -> U e. S ) | 
						
							| 21 |  | aks6d1c6lem2.2 |  |-  ( ph -> V e. S ) | 
						
							| 22 |  | aks6d1c6lem2.3 |  |-  ( ph -> ( ( H |` S ) ` U ) = ( ( H |` S ) ` V ) ) | 
						
							| 23 |  | aks6d1c6lem2.4 |  |-  ( ph -> U =/= V ) | 
						
							| 24 |  | aks6d1c6lem2.5 |  |-  J = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 25 |  | aks6d1c6lem2.6 |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( # ` ( J " ( NN0 X. NN0 ) ) ) ) | 
						
							| 26 |  | fvexd |  |-  ( ph -> ( ZRHom ` ( Z/nZ ` R ) ) e. _V ) | 
						
							| 27 | 13 26 | eqeltrid |  |-  ( ph -> L e. _V ) | 
						
							| 28 | 27 | imaexd |  |-  ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) e. _V ) | 
						
							| 29 |  | hashxrcl |  |-  ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. _V -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR* ) | 
						
							| 30 | 28 29 | syl |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR* ) | 
						
							| 31 | 18 30 | eqeltrid |  |-  ( ph -> D e. RR* ) | 
						
							| 32 | 24 | a1i |  |-  ( ph -> J = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 33 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 34 | 33 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 35 | 34 34 | xpexd |  |-  ( ph -> ( NN0 X. NN0 ) e. _V ) | 
						
							| 36 | 35 | mptexd |  |-  ( ph -> ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) e. _V ) | 
						
							| 37 | 32 36 | eqeltrd |  |-  ( ph -> J e. _V ) | 
						
							| 38 | 37 | imaexd |  |-  ( ph -> ( J " ( NN0 X. NN0 ) ) e. _V ) | 
						
							| 39 |  | hashxrcl |  |-  ( ( J " ( NN0 X. NN0 ) ) e. _V -> ( # ` ( J " ( NN0 X. NN0 ) ) ) e. RR* ) | 
						
							| 40 | 38 39 | syl |  |-  ( ph -> ( # ` ( J " ( NN0 X. NN0 ) ) ) e. RR* ) | 
						
							| 41 |  | fvexd |  |-  ( ph -> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. _V ) | 
						
							| 42 |  | cnvexg |  |-  ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. _V -> `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. _V ) | 
						
							| 43 | 41 42 | syl |  |-  ( ph -> `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. _V ) | 
						
							| 44 | 43 | imaexd |  |-  ( ph -> ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) e. _V ) | 
						
							| 45 |  | hashxrcl |  |-  ( ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) e. _V -> ( # ` ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) e. RR* ) | 
						
							| 46 | 44 45 | syl |  |-  ( ph -> ( # ` ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) e. RR* ) | 
						
							| 47 | 18 | a1i |  |-  ( ph -> D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 48 | 47 25 | eqbrtrd |  |-  ( ph -> D <_ ( # ` ( J " ( NN0 X. NN0 ) ) ) ) | 
						
							| 49 | 44 | elexd |  |-  ( ph -> ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) e. _V ) | 
						
							| 50 |  | nfv |  |-  F/ w ph | 
						
							| 51 |  | ovexd |  |-  ( ( ph /\ j e. ( NN0 X. NN0 ) ) -> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) e. _V ) | 
						
							| 52 | 51 24 | fmptd |  |-  ( ph -> J : ( NN0 X. NN0 ) --> _V ) | 
						
							| 53 |  | ffun |  |-  ( J : ( NN0 X. NN0 ) --> _V -> Fun J ) | 
						
							| 54 | 52 53 | syl |  |-  ( ph -> Fun J ) | 
						
							| 55 | 24 | a1i |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> J = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 56 |  | simpr |  |-  ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ j = w ) -> j = w ) | 
						
							| 57 | 56 | fveq2d |  |-  ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ j = w ) -> ( E ` j ) = ( E ` w ) ) | 
						
							| 58 | 57 | oveq1d |  |-  ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ j = w ) -> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 59 |  | simpr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> w e. ( NN0 X. NN0 ) ) | 
						
							| 60 |  | ovexd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. _V ) | 
						
							| 61 | 55 58 59 60 | fvmptd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( J ` w ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 62 |  | eqid |  |-  ( eval1 ` K ) = ( eval1 ` K ) | 
						
							| 63 |  | eqid |  |-  ( Poly1 ` K ) = ( Poly1 ` K ) | 
						
							| 64 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 65 |  | eqid |  |-  ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) | 
						
							| 66 | 3 | fldcrngd |  |-  ( ph -> K e. CRing ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> K e. CRing ) | 
						
							| 68 |  | eqid |  |-  ( mulGrp ` K ) = ( mulGrp ` K ) | 
						
							| 69 | 68 64 | mgpbas |  |-  ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) | 
						
							| 70 |  | eqid |  |-  ( .g ` ( mulGrp ` K ) ) = ( .g ` ( mulGrp ` K ) ) | 
						
							| 71 | 66 | crngringd |  |-  ( ph -> K e. Ring ) | 
						
							| 72 | 68 | ringmgp |  |-  ( K e. Ring -> ( mulGrp ` K ) e. Mnd ) | 
						
							| 73 | 71 72 | syl |  |-  ( ph -> ( mulGrp ` K ) e. Mnd ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( mulGrp ` K ) e. Mnd ) | 
						
							| 75 | 6 4 7 12 | aks6d1c2p1 |  |-  ( ph -> E : ( NN0 X. NN0 ) --> NN ) | 
						
							| 76 | 75 | ffvelcdmda |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( E ` w ) e. NN ) | 
						
							| 77 | 76 | nnnn0d |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( E ` w ) e. NN0 ) | 
						
							| 78 | 68 | crngmgp |  |-  ( K e. CRing -> ( mulGrp ` K ) e. CMnd ) | 
						
							| 79 | 66 78 | syl |  |-  ( ph -> ( mulGrp ` K ) e. CMnd ) | 
						
							| 80 | 5 | nnnn0d |  |-  ( ph -> R e. NN0 ) | 
						
							| 81 | 79 80 70 | isprimroot |  |-  ( ph -> ( M e. ( ( mulGrp ` K ) PrimRoots R ) <-> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. o e. NN0 ( ( o ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || o ) ) ) ) | 
						
							| 82 | 16 81 | mpbid |  |-  ( ph -> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. o e. NN0 ( ( o ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || o ) ) ) | 
						
							| 83 | 82 | simp1d |  |-  ( ph -> M e. ( Base ` ( mulGrp ` K ) ) ) | 
						
							| 84 | 83 69 | eleqtrrdi |  |-  ( ph -> M e. ( Base ` K ) ) | 
						
							| 85 | 84 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> M e. ( Base ` K ) ) | 
						
							| 86 | 69 70 74 77 85 | mulgnn0cld |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. ( Base ` K ) ) | 
						
							| 87 |  | eqid |  |-  ( var1 ` K ) = ( var1 ` K ) | 
						
							| 88 |  | eqid |  |-  ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 89 | 3 4 2 11 9 87 88 10 | aks6d1c5lem0 |  |-  ( ph -> G : ( NN0 ^m ( 0 ... A ) ) --> ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 90 | 19 | eleq2i |  |-  ( U e. S <-> U e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } ) | 
						
							| 91 | 20 90 | sylib |  |-  ( ph -> U e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } ) | 
						
							| 92 |  | elrabi |  |-  ( U e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } -> U e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 93 | 92 | a1i |  |-  ( ph -> ( U e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } -> U e. ( NN0 ^m ( 0 ... A ) ) ) ) | 
						
							| 94 | 91 93 | mpd |  |-  ( ph -> U e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 95 | 89 94 | ffvelcdmd |  |-  ( ph -> ( G ` U ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( G ` U ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 97 |  | eqidd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 98 | 96 97 | jca |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( G ` U ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) | 
						
							| 99 | 19 | eleq2i |  |-  ( V e. S <-> V e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } ) | 
						
							| 100 | 21 99 | sylib |  |-  ( ph -> V e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } ) | 
						
							| 101 |  | elrabi |  |-  ( V e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } -> V e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 102 | 101 | a1i |  |-  ( ph -> ( V e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } -> V e. ( NN0 ^m ( 0 ... A ) ) ) ) | 
						
							| 103 | 100 102 | mpd |  |-  ( ph -> V e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 104 | 89 103 | ffvelcdmd |  |-  ( ph -> ( G ` V ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( G ` V ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 106 |  | eqidd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 107 | 105 106 | jca |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( G ` V ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) | 
						
							| 108 |  | eqid |  |-  ( -g ` ( Poly1 ` K ) ) = ( -g ` ( Poly1 ` K ) ) | 
						
							| 109 |  | eqid |  |-  ( -g ` K ) = ( -g ` K ) | 
						
							| 110 | 62 63 64 65 67 86 98 107 108 109 | evl1subd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) ) | 
						
							| 111 | 110 | simprd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) | 
						
							| 112 |  | fveq2 |  |-  ( y = M -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` y ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) | 
						
							| 113 | 112 | oveq2d |  |-  ( y = M -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` y ) ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) ) | 
						
							| 114 |  | oveq2 |  |-  ( y = M -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 115 | 114 | fveq2d |  |-  ( y = M -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 116 | 113 115 | eqeq12d |  |-  ( y = M -> ( ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) <-> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) | 
						
							| 117 |  | vex |  |-  k e. _V | 
						
							| 118 |  | vex |  |-  l e. _V | 
						
							| 119 | 117 118 | op1std |  |-  ( s = <. k , l >. -> ( 1st ` s ) = k ) | 
						
							| 120 | 119 | oveq2d |  |-  ( s = <. k , l >. -> ( P ^ ( 1st ` s ) ) = ( P ^ k ) ) | 
						
							| 121 | 117 118 | op2ndd |  |-  ( s = <. k , l >. -> ( 2nd ` s ) = l ) | 
						
							| 122 | 121 | oveq2d |  |-  ( s = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` s ) ) = ( ( N / P ) ^ l ) ) | 
						
							| 123 | 120 122 | oveq12d |  |-  ( s = <. k , l >. -> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 124 | 123 | mpompt |  |-  ( s e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 125 | 12 | eqcomi |  |-  ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = E | 
						
							| 126 | 124 125 | eqtri |  |-  ( s e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) ) = E | 
						
							| 127 | 126 | eqcomi |  |-  E = ( s e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) ) | 
						
							| 128 | 127 | a1i |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> E = ( s e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) ) ) | 
						
							| 129 |  | simpr |  |-  ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> s = w ) | 
						
							| 130 | 129 | fveq2d |  |-  ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> ( 1st ` s ) = ( 1st ` w ) ) | 
						
							| 131 | 130 | oveq2d |  |-  ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> ( P ^ ( 1st ` s ) ) = ( P ^ ( 1st ` w ) ) ) | 
						
							| 132 | 129 | fveq2d |  |-  ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> ( 2nd ` s ) = ( 2nd ` w ) ) | 
						
							| 133 | 132 | oveq2d |  |-  ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> ( ( N / P ) ^ ( 2nd ` s ) ) = ( ( N / P ) ^ ( 2nd ` w ) ) ) | 
						
							| 134 | 131 133 | oveq12d |  |-  ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) = ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) ) | 
						
							| 135 |  | ovexd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) e. _V ) | 
						
							| 136 | 128 134 59 135 | fvmptd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( E ` w ) = ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) ) | 
						
							| 137 | 3 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> K e. Field ) | 
						
							| 138 | 4 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> P e. Prime ) | 
						
							| 139 | 5 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> R e. NN ) | 
						
							| 140 | 6 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> N e. NN ) | 
						
							| 141 | 7 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> P || N ) | 
						
							| 142 | 8 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( N gcd R ) = 1 ) | 
						
							| 143 |  | ovexd |  |-  ( ph -> ( 0 ... A ) e. _V ) | 
						
							| 144 | 34 143 | elmapd |  |-  ( ph -> ( U e. ( NN0 ^m ( 0 ... A ) ) <-> U : ( 0 ... A ) --> NN0 ) ) | 
						
							| 145 | 94 144 | mpbid |  |-  ( ph -> U : ( 0 ... A ) --> NN0 ) | 
						
							| 146 | 145 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> U : ( 0 ... A ) --> NN0 ) | 
						
							| 147 | 11 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> A e. NN0 ) | 
						
							| 148 |  | xp1st |  |-  ( w e. ( NN0 X. NN0 ) -> ( 1st ` w ) e. NN0 ) | 
						
							| 149 | 148 | adantl |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( 1st ` w ) e. NN0 ) | 
						
							| 150 |  | xp2nd |  |-  ( w e. ( NN0 X. NN0 ) -> ( 2nd ` w ) e. NN0 ) | 
						
							| 151 | 150 | adantl |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( 2nd ` w ) e. NN0 ) | 
						
							| 152 |  | eqid |  |-  ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) = ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) | 
						
							| 153 | 14 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 154 | 15 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 155 | 1 2 137 138 139 140 141 142 146 10 147 149 151 152 153 154 | aks6d1c1rh |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) .~ ( G ` U ) ) | 
						
							| 156 | 136 155 | eqbrtrd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( E ` w ) .~ ( G ` U ) ) | 
						
							| 157 | 1 96 76 | aks6d1c1p1 |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) .~ ( G ` U ) <-> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) ) ) | 
						
							| 158 | 156 157 | mpbid |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) ) | 
						
							| 159 | 16 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 160 | 116 158 159 | rspcdva |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 161 | 160 | eqcomd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) ) | 
						
							| 162 | 17 | a1i |  |-  ( ph -> H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) ) | 
						
							| 163 | 162 | reseq1d |  |-  ( ph -> ( H |` S ) = ( ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |` S ) ) | 
						
							| 164 | 19 | a1i |  |-  ( ph -> S = { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } ) | 
						
							| 165 |  | ssrab2 |  |-  { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } C_ ( NN0 ^m ( 0 ... A ) ) | 
						
							| 166 | 165 | a1i |  |-  ( ph -> { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } C_ ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 167 | 164 166 | eqsstrd |  |-  ( ph -> S C_ ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 168 | 167 | resmptd |  |-  ( ph -> ( ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |` S ) = ( h e. S |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) ) | 
						
							| 169 | 163 168 | eqtrd |  |-  ( ph -> ( H |` S ) = ( h e. S |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) ) | 
						
							| 170 |  | simpr |  |-  ( ( ph /\ h = U ) -> h = U ) | 
						
							| 171 | 170 | fveq2d |  |-  ( ( ph /\ h = U ) -> ( G ` h ) = ( G ` U ) ) | 
						
							| 172 | 171 | fveq2d |  |-  ( ( ph /\ h = U ) -> ( ( eval1 ` K ) ` ( G ` h ) ) = ( ( eval1 ` K ) ` ( G ` U ) ) ) | 
						
							| 173 | 172 | fveq1d |  |-  ( ( ph /\ h = U ) -> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) | 
						
							| 174 |  | fvexd |  |-  ( ph -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) e. _V ) | 
						
							| 175 | 169 173 20 174 | fvmptd |  |-  ( ph -> ( ( H |` S ) ` U ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) | 
						
							| 176 | 175 | eqcomd |  |-  ( ph -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) = ( ( H |` S ) ` U ) ) | 
						
							| 177 |  | simpr |  |-  ( ( ph /\ h = V ) -> h = V ) | 
						
							| 178 | 177 | fveq2d |  |-  ( ( ph /\ h = V ) -> ( G ` h ) = ( G ` V ) ) | 
						
							| 179 | 178 | fveq2d |  |-  ( ( ph /\ h = V ) -> ( ( eval1 ` K ) ` ( G ` h ) ) = ( ( eval1 ` K ) ` ( G ` V ) ) ) | 
						
							| 180 | 179 | fveq1d |  |-  ( ( ph /\ h = V ) -> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) | 
						
							| 181 |  | fvexd |  |-  ( ph -> ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) e. _V ) | 
						
							| 182 | 169 180 21 181 | fvmptd |  |-  ( ph -> ( ( H |` S ) ` V ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) | 
						
							| 183 | 176 22 182 | 3eqtrd |  |-  ( ph -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) | 
						
							| 184 | 183 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) | 
						
							| 185 | 184 | oveq2d |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) ) | 
						
							| 186 | 161 185 | eqtrd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) ) | 
						
							| 187 |  | fveq2 |  |-  ( y = M -> ( ( ( eval1 ` K ) ` ( G ` V ) ) ` y ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) | 
						
							| 188 | 187 | oveq2d |  |-  ( y = M -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` y ) ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) ) | 
						
							| 189 | 114 | fveq2d |  |-  ( y = M -> ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 190 | 188 189 | eqeq12d |  |-  ( y = M -> ( ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) <-> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) | 
						
							| 191 | 34 143 | elmapd |  |-  ( ph -> ( V e. ( NN0 ^m ( 0 ... A ) ) <-> V : ( 0 ... A ) --> NN0 ) ) | 
						
							| 192 | 103 191 | mpbid |  |-  ( ph -> V : ( 0 ... A ) --> NN0 ) | 
						
							| 193 | 192 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> V : ( 0 ... A ) --> NN0 ) | 
						
							| 194 | 1 2 137 138 139 140 141 142 193 10 147 149 151 152 153 154 | aks6d1c1rh |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) .~ ( G ` V ) ) | 
						
							| 195 | 136 194 | eqbrtrd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( E ` w ) .~ ( G ` V ) ) | 
						
							| 196 | 1 105 76 | aks6d1c1p1 |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) .~ ( G ` V ) <-> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) ) ) | 
						
							| 197 | 195 196 | mpbid |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) ) | 
						
							| 198 | 190 197 159 | rspcdva |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 199 | 186 198 | eqtrd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 200 | 66 | crnggrpd |  |-  ( ph -> K e. Grp ) | 
						
							| 201 | 200 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> K e. Grp ) | 
						
							| 202 | 62 63 64 65 67 86 96 | fveval1fvcl |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. ( Base ` K ) ) | 
						
							| 203 | 62 63 64 65 67 86 105 | fveval1fvcl |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. ( Base ` K ) ) | 
						
							| 204 |  | eqid |  |-  ( 0g ` K ) = ( 0g ` K ) | 
						
							| 205 | 64 204 109 | grpsubeq0 |  |-  ( ( K e. Grp /\ ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. ( Base ` K ) /\ ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. ( Base ` K ) ) -> ( ( ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) = ( 0g ` K ) <-> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) | 
						
							| 206 | 201 202 203 205 | syl3anc |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) = ( 0g ` K ) <-> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) | 
						
							| 207 | 199 206 | mpbird |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) = ( 0g ` K ) ) | 
						
							| 208 | 111 207 | eqtrd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( 0g ` K ) ) | 
						
							| 209 |  | fvexd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. _V ) | 
						
							| 210 |  | elsng |  |-  ( ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. _V -> ( ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. { ( 0g ` K ) } <-> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( 0g ` K ) ) ) | 
						
							| 211 | 209 210 | syl |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. { ( 0g ` K ) } <-> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( 0g ` K ) ) ) | 
						
							| 212 | 208 211 | mpbird |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. { ( 0g ` K ) } ) | 
						
							| 213 |  | eqid |  |-  ( K ^s ( Base ` K ) ) = ( K ^s ( Base ` K ) ) | 
						
							| 214 | 62 63 213 64 | evl1rhm |  |-  ( K e. CRing -> ( eval1 ` K ) e. ( ( Poly1 ` K ) RingHom ( K ^s ( Base ` K ) ) ) ) | 
						
							| 215 | 66 214 | syl |  |-  ( ph -> ( eval1 ` K ) e. ( ( Poly1 ` K ) RingHom ( K ^s ( Base ` K ) ) ) ) | 
						
							| 216 |  | eqid |  |-  ( Base ` ( K ^s ( Base ` K ) ) ) = ( Base ` ( K ^s ( Base ` K ) ) ) | 
						
							| 217 | 65 216 | rhmf |  |-  ( ( eval1 ` K ) e. ( ( Poly1 ` K ) RingHom ( K ^s ( Base ` K ) ) ) -> ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( Base ` ( K ^s ( Base ` K ) ) ) ) | 
						
							| 218 | 215 217 | syl |  |-  ( ph -> ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( Base ` ( K ^s ( Base ` K ) ) ) ) | 
						
							| 219 |  | fvexd |  |-  ( ph -> ( Base ` K ) e. _V ) | 
						
							| 220 | 213 64 | pwsbas |  |-  ( ( K e. Field /\ ( Base ` K ) e. _V ) -> ( ( Base ` K ) ^m ( Base ` K ) ) = ( Base ` ( K ^s ( Base ` K ) ) ) ) | 
						
							| 221 | 3 219 220 | syl2anc |  |-  ( ph -> ( ( Base ` K ) ^m ( Base ` K ) ) = ( Base ` ( K ^s ( Base ` K ) ) ) ) | 
						
							| 222 | 221 | feq3d |  |-  ( ph -> ( ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( ( Base ` K ) ^m ( Base ` K ) ) <-> ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( Base ` ( K ^s ( Base ` K ) ) ) ) ) | 
						
							| 223 | 218 222 | mpbird |  |-  ( ph -> ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( ( Base ` K ) ^m ( Base ` K ) ) ) | 
						
							| 224 | 63 | ply1ring |  |-  ( K e. Ring -> ( Poly1 ` K ) e. Ring ) | 
						
							| 225 | 71 224 | syl |  |-  ( ph -> ( Poly1 ` K ) e. Ring ) | 
						
							| 226 |  | ringgrp |  |-  ( ( Poly1 ` K ) e. Ring -> ( Poly1 ` K ) e. Grp ) | 
						
							| 227 | 225 226 | syl |  |-  ( ph -> ( Poly1 ` K ) e. Grp ) | 
						
							| 228 | 65 108 | grpsubcl |  |-  ( ( ( Poly1 ` K ) e. Grp /\ ( G ` U ) e. ( Base ` ( Poly1 ` K ) ) /\ ( G ` V ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 229 | 227 95 104 228 | syl3anc |  |-  ( ph -> ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 230 | 223 229 | ffvelcdmd |  |-  ( ph -> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. ( ( Base ` K ) ^m ( Base ` K ) ) ) | 
						
							| 231 | 219 219 | elmapd |  |-  ( ph -> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. ( ( Base ` K ) ^m ( Base ` K ) ) <-> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) : ( Base ` K ) --> ( Base ` K ) ) ) | 
						
							| 232 | 230 231 | mpbid |  |-  ( ph -> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) : ( Base ` K ) --> ( Base ` K ) ) | 
						
							| 233 | 232 | ffund |  |-  ( ph -> Fun ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ) | 
						
							| 234 | 233 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> Fun ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ) | 
						
							| 235 | 232 | ffnd |  |-  ( ph -> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) Fn ( Base ` K ) ) | 
						
							| 236 | 235 | adantr |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) Fn ( Base ` K ) ) | 
						
							| 237 | 236 | fndmd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> dom ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) = ( Base ` K ) ) | 
						
							| 238 | 237 | eqcomd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( Base ` K ) = dom ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ) | 
						
							| 239 | 86 238 | eleqtrd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. dom ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ) | 
						
							| 240 |  | fvimacnv |  |-  ( ( Fun ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) /\ ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. dom ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ) -> ( ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. { ( 0g ` K ) } <-> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) ) | 
						
							| 241 | 234 239 240 | syl2anc |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. { ( 0g ` K ) } <-> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) ) | 
						
							| 242 | 212 241 | mpbid |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) | 
						
							| 243 | 61 242 | eqeltrd |  |-  ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( J ` w ) e. ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) | 
						
							| 244 | 50 54 243 | funimassd |  |-  ( ph -> ( J " ( NN0 X. NN0 ) ) C_ ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) | 
						
							| 245 |  | hashss |  |-  ( ( ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) e. _V /\ ( J " ( NN0 X. NN0 ) ) C_ ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) -> ( # ` ( J " ( NN0 X. NN0 ) ) ) <_ ( # ` ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) ) | 
						
							| 246 | 49 244 245 | syl2anc |  |-  ( ph -> ( # ` ( J " ( NN0 X. NN0 ) ) ) <_ ( # ` ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) ) | 
						
							| 247 | 31 40 46 48 246 | xrletrd |  |-  ( ph -> D <_ ( # ` ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) ) |