| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c6.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
| 2 |
|
aks6d1c6.2 |
|- P = ( chr ` K ) |
| 3 |
|
aks6d1c6.3 |
|- ( ph -> K e. Field ) |
| 4 |
|
aks6d1c6.4 |
|- ( ph -> P e. Prime ) |
| 5 |
|
aks6d1c6.5 |
|- ( ph -> R e. NN ) |
| 6 |
|
aks6d1c6.6 |
|- ( ph -> N e. NN ) |
| 7 |
|
aks6d1c6.7 |
|- ( ph -> P || N ) |
| 8 |
|
aks6d1c6.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
| 9 |
|
aks6d1c6.9 |
|- ( ph -> A < P ) |
| 10 |
|
aks6d1c6.10 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
| 11 |
|
aks6d1c6.11 |
|- ( ph -> A e. NN0 ) |
| 12 |
|
aks6d1c6.12 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
| 13 |
|
aks6d1c6.13 |
|- L = ( ZRHom ` ( Z/nZ ` R ) ) |
| 14 |
|
aks6d1c6.14 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
| 15 |
|
aks6d1c6.15 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
| 16 |
|
aks6d1c6.16 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
| 17 |
|
aks6d1c6.17 |
|- H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |
| 18 |
|
aks6d1c6.18 |
|- D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
| 19 |
|
aks6d1c6.19 |
|- S = { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } |
| 20 |
|
aks6d1c6lem2.1 |
|- ( ph -> U e. S ) |
| 21 |
|
aks6d1c6lem2.2 |
|- ( ph -> V e. S ) |
| 22 |
|
aks6d1c6lem2.3 |
|- ( ph -> ( ( H |` S ) ` U ) = ( ( H |` S ) ` V ) ) |
| 23 |
|
aks6d1c6lem2.4 |
|- ( ph -> U =/= V ) |
| 24 |
|
aks6d1c6lem2.5 |
|- J = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) |
| 25 |
|
aks6d1c6lem2.6 |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) <_ ( # ` ( J " ( NN0 X. NN0 ) ) ) ) |
| 26 |
|
fvexd |
|- ( ph -> ( ZRHom ` ( Z/nZ ` R ) ) e. _V ) |
| 27 |
13 26
|
eqeltrid |
|- ( ph -> L e. _V ) |
| 28 |
27
|
imaexd |
|- ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) e. _V ) |
| 29 |
|
hashxrcl |
|- ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. _V -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR* ) |
| 30 |
28 29
|
syl |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR* ) |
| 31 |
18 30
|
eqeltrid |
|- ( ph -> D e. RR* ) |
| 32 |
24
|
a1i |
|- ( ph -> J = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
| 33 |
|
nn0ex |
|- NN0 e. _V |
| 34 |
33
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 35 |
34 34
|
xpexd |
|- ( ph -> ( NN0 X. NN0 ) e. _V ) |
| 36 |
35
|
mptexd |
|- ( ph -> ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) e. _V ) |
| 37 |
32 36
|
eqeltrd |
|- ( ph -> J e. _V ) |
| 38 |
37
|
imaexd |
|- ( ph -> ( J " ( NN0 X. NN0 ) ) e. _V ) |
| 39 |
|
hashxrcl |
|- ( ( J " ( NN0 X. NN0 ) ) e. _V -> ( # ` ( J " ( NN0 X. NN0 ) ) ) e. RR* ) |
| 40 |
38 39
|
syl |
|- ( ph -> ( # ` ( J " ( NN0 X. NN0 ) ) ) e. RR* ) |
| 41 |
|
fvexd |
|- ( ph -> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. _V ) |
| 42 |
|
cnvexg |
|- ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. _V -> `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. _V ) |
| 43 |
41 42
|
syl |
|- ( ph -> `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. _V ) |
| 44 |
43
|
imaexd |
|- ( ph -> ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) e. _V ) |
| 45 |
|
hashxrcl |
|- ( ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) e. _V -> ( # ` ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) e. RR* ) |
| 46 |
44 45
|
syl |
|- ( ph -> ( # ` ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) e. RR* ) |
| 47 |
18
|
a1i |
|- ( ph -> D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
| 48 |
47 25
|
eqbrtrd |
|- ( ph -> D <_ ( # ` ( J " ( NN0 X. NN0 ) ) ) ) |
| 49 |
44
|
elexd |
|- ( ph -> ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) e. _V ) |
| 50 |
|
nfv |
|- F/ w ph |
| 51 |
|
ovexd |
|- ( ( ph /\ j e. ( NN0 X. NN0 ) ) -> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) e. _V ) |
| 52 |
51 24
|
fmptd |
|- ( ph -> J : ( NN0 X. NN0 ) --> _V ) |
| 53 |
|
ffun |
|- ( J : ( NN0 X. NN0 ) --> _V -> Fun J ) |
| 54 |
52 53
|
syl |
|- ( ph -> Fun J ) |
| 55 |
24
|
a1i |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> J = ( j e. ( NN0 X. NN0 ) |-> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
| 56 |
|
simpr |
|- ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ j = w ) -> j = w ) |
| 57 |
56
|
fveq2d |
|- ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ j = w ) -> ( E ` j ) = ( E ` w ) ) |
| 58 |
57
|
oveq1d |
|- ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ j = w ) -> ( ( E ` j ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) |
| 59 |
|
simpr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> w e. ( NN0 X. NN0 ) ) |
| 60 |
|
ovexd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. _V ) |
| 61 |
55 58 59 60
|
fvmptd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( J ` w ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) |
| 62 |
|
eqid |
|- ( eval1 ` K ) = ( eval1 ` K ) |
| 63 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
| 64 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 65 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
| 66 |
3
|
fldcrngd |
|- ( ph -> K e. CRing ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> K e. CRing ) |
| 68 |
|
eqid |
|- ( mulGrp ` K ) = ( mulGrp ` K ) |
| 69 |
68 64
|
mgpbas |
|- ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) |
| 70 |
|
eqid |
|- ( .g ` ( mulGrp ` K ) ) = ( .g ` ( mulGrp ` K ) ) |
| 71 |
66
|
crngringd |
|- ( ph -> K e. Ring ) |
| 72 |
68
|
ringmgp |
|- ( K e. Ring -> ( mulGrp ` K ) e. Mnd ) |
| 73 |
71 72
|
syl |
|- ( ph -> ( mulGrp ` K ) e. Mnd ) |
| 74 |
73
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( mulGrp ` K ) e. Mnd ) |
| 75 |
6 4 7 12
|
aks6d1c2p1 |
|- ( ph -> E : ( NN0 X. NN0 ) --> NN ) |
| 76 |
75
|
ffvelcdmda |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( E ` w ) e. NN ) |
| 77 |
76
|
nnnn0d |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( E ` w ) e. NN0 ) |
| 78 |
68
|
crngmgp |
|- ( K e. CRing -> ( mulGrp ` K ) e. CMnd ) |
| 79 |
66 78
|
syl |
|- ( ph -> ( mulGrp ` K ) e. CMnd ) |
| 80 |
5
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
| 81 |
79 80 70
|
isprimroot |
|- ( ph -> ( M e. ( ( mulGrp ` K ) PrimRoots R ) <-> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. o e. NN0 ( ( o ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || o ) ) ) ) |
| 82 |
16 81
|
mpbid |
|- ( ph -> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. o e. NN0 ( ( o ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || o ) ) ) |
| 83 |
82
|
simp1d |
|- ( ph -> M e. ( Base ` ( mulGrp ` K ) ) ) |
| 84 |
83 69
|
eleqtrrdi |
|- ( ph -> M e. ( Base ` K ) ) |
| 85 |
84
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> M e. ( Base ` K ) ) |
| 86 |
69 70 74 77 85
|
mulgnn0cld |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. ( Base ` K ) ) |
| 87 |
|
eqid |
|- ( var1 ` K ) = ( var1 ` K ) |
| 88 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 89 |
3 4 2 11 9 87 88 10
|
aks6d1c5lem0 |
|- ( ph -> G : ( NN0 ^m ( 0 ... A ) ) --> ( Base ` ( Poly1 ` K ) ) ) |
| 90 |
19
|
eleq2i |
|- ( U e. S <-> U e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } ) |
| 91 |
20 90
|
sylib |
|- ( ph -> U e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } ) |
| 92 |
|
elrabi |
|- ( U e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } -> U e. ( NN0 ^m ( 0 ... A ) ) ) |
| 93 |
92
|
a1i |
|- ( ph -> ( U e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } -> U e. ( NN0 ^m ( 0 ... A ) ) ) ) |
| 94 |
91 93
|
mpd |
|- ( ph -> U e. ( NN0 ^m ( 0 ... A ) ) ) |
| 95 |
89 94
|
ffvelcdmd |
|- ( ph -> ( G ` U ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( G ` U ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 97 |
|
eqidd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
| 98 |
96 97
|
jca |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( G ` U ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) |
| 99 |
19
|
eleq2i |
|- ( V e. S <-> V e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } ) |
| 100 |
21 99
|
sylib |
|- ( ph -> V e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } ) |
| 101 |
|
elrabi |
|- ( V e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } -> V e. ( NN0 ^m ( 0 ... A ) ) ) |
| 102 |
101
|
a1i |
|- ( ph -> ( V e. { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } -> V e. ( NN0 ^m ( 0 ... A ) ) ) ) |
| 103 |
100 102
|
mpd |
|- ( ph -> V e. ( NN0 ^m ( 0 ... A ) ) ) |
| 104 |
89 103
|
ffvelcdmd |
|- ( ph -> ( G ` V ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 105 |
104
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( G ` V ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 106 |
|
eqidd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
| 107 |
105 106
|
jca |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( G ` V ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) |
| 108 |
|
eqid |
|- ( -g ` ( Poly1 ` K ) ) = ( -g ` ( Poly1 ` K ) ) |
| 109 |
|
eqid |
|- ( -g ` K ) = ( -g ` K ) |
| 110 |
62 63 64 65 67 86 98 107 108 109
|
evl1subd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) ) |
| 111 |
110
|
simprd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) |
| 112 |
|
fveq2 |
|- ( y = M -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` y ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) |
| 113 |
112
|
oveq2d |
|- ( y = M -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` y ) ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) ) |
| 114 |
|
oveq2 |
|- ( y = M -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) |
| 115 |
114
|
fveq2d |
|- ( y = M -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
| 116 |
113 115
|
eqeq12d |
|- ( y = M -> ( ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) <-> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) |
| 117 |
|
vex |
|- k e. _V |
| 118 |
|
vex |
|- l e. _V |
| 119 |
117 118
|
op1std |
|- ( s = <. k , l >. -> ( 1st ` s ) = k ) |
| 120 |
119
|
oveq2d |
|- ( s = <. k , l >. -> ( P ^ ( 1st ` s ) ) = ( P ^ k ) ) |
| 121 |
117 118
|
op2ndd |
|- ( s = <. k , l >. -> ( 2nd ` s ) = l ) |
| 122 |
121
|
oveq2d |
|- ( s = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` s ) ) = ( ( N / P ) ^ l ) ) |
| 123 |
120 122
|
oveq12d |
|- ( s = <. k , l >. -> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
| 124 |
123
|
mpompt |
|- ( s e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
| 125 |
12
|
eqcomi |
|- ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = E |
| 126 |
124 125
|
eqtri |
|- ( s e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) ) = E |
| 127 |
126
|
eqcomi |
|- E = ( s e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) ) |
| 128 |
127
|
a1i |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> E = ( s e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) ) ) |
| 129 |
|
simpr |
|- ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> s = w ) |
| 130 |
129
|
fveq2d |
|- ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> ( 1st ` s ) = ( 1st ` w ) ) |
| 131 |
130
|
oveq2d |
|- ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> ( P ^ ( 1st ` s ) ) = ( P ^ ( 1st ` w ) ) ) |
| 132 |
129
|
fveq2d |
|- ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> ( 2nd ` s ) = ( 2nd ` w ) ) |
| 133 |
132
|
oveq2d |
|- ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> ( ( N / P ) ^ ( 2nd ` s ) ) = ( ( N / P ) ^ ( 2nd ` w ) ) ) |
| 134 |
131 133
|
oveq12d |
|- ( ( ( ph /\ w e. ( NN0 X. NN0 ) ) /\ s = w ) -> ( ( P ^ ( 1st ` s ) ) x. ( ( N / P ) ^ ( 2nd ` s ) ) ) = ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) ) |
| 135 |
|
ovexd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) e. _V ) |
| 136 |
128 134 59 135
|
fvmptd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( E ` w ) = ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) ) |
| 137 |
3
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> K e. Field ) |
| 138 |
4
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> P e. Prime ) |
| 139 |
5
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> R e. NN ) |
| 140 |
6
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> N e. NN ) |
| 141 |
7
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> P || N ) |
| 142 |
8
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( N gcd R ) = 1 ) |
| 143 |
|
ovexd |
|- ( ph -> ( 0 ... A ) e. _V ) |
| 144 |
34 143
|
elmapd |
|- ( ph -> ( U e. ( NN0 ^m ( 0 ... A ) ) <-> U : ( 0 ... A ) --> NN0 ) ) |
| 145 |
94 144
|
mpbid |
|- ( ph -> U : ( 0 ... A ) --> NN0 ) |
| 146 |
145
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> U : ( 0 ... A ) --> NN0 ) |
| 147 |
11
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> A e. NN0 ) |
| 148 |
|
xp1st |
|- ( w e. ( NN0 X. NN0 ) -> ( 1st ` w ) e. NN0 ) |
| 149 |
148
|
adantl |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( 1st ` w ) e. NN0 ) |
| 150 |
|
xp2nd |
|- ( w e. ( NN0 X. NN0 ) -> ( 2nd ` w ) e. NN0 ) |
| 151 |
150
|
adantl |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( 2nd ` w ) e. NN0 ) |
| 152 |
|
eqid |
|- ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) = ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) |
| 153 |
14
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
| 154 |
15
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
| 155 |
1 2 137 138 139 140 141 142 146 10 147 149 151 152 153 154
|
aks6d1c1rh |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) .~ ( G ` U ) ) |
| 156 |
136 155
|
eqbrtrd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( E ` w ) .~ ( G ` U ) ) |
| 157 |
1 96 76
|
aks6d1c1p1 |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) .~ ( G ` U ) <-> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) ) ) |
| 158 |
156 157
|
mpbid |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) ) |
| 159 |
16
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
| 160 |
116 158 159
|
rspcdva |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
| 161 |
160
|
eqcomd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) ) |
| 162 |
17
|
a1i |
|- ( ph -> H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) ) |
| 163 |
162
|
reseq1d |
|- ( ph -> ( H |` S ) = ( ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |` S ) ) |
| 164 |
19
|
a1i |
|- ( ph -> S = { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } ) |
| 165 |
|
ssrab2 |
|- { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } C_ ( NN0 ^m ( 0 ... A ) ) |
| 166 |
165
|
a1i |
|- ( ph -> { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } C_ ( NN0 ^m ( 0 ... A ) ) ) |
| 167 |
164 166
|
eqsstrd |
|- ( ph -> S C_ ( NN0 ^m ( 0 ... A ) ) ) |
| 168 |
167
|
resmptd |
|- ( ph -> ( ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |` S ) = ( h e. S |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) ) |
| 169 |
163 168
|
eqtrd |
|- ( ph -> ( H |` S ) = ( h e. S |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) ) |
| 170 |
|
simpr |
|- ( ( ph /\ h = U ) -> h = U ) |
| 171 |
170
|
fveq2d |
|- ( ( ph /\ h = U ) -> ( G ` h ) = ( G ` U ) ) |
| 172 |
171
|
fveq2d |
|- ( ( ph /\ h = U ) -> ( ( eval1 ` K ) ` ( G ` h ) ) = ( ( eval1 ` K ) ` ( G ` U ) ) ) |
| 173 |
172
|
fveq1d |
|- ( ( ph /\ h = U ) -> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) |
| 174 |
|
fvexd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) e. _V ) |
| 175 |
169 173 20 174
|
fvmptd |
|- ( ph -> ( ( H |` S ) ` U ) = ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) |
| 176 |
175
|
eqcomd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) = ( ( H |` S ) ` U ) ) |
| 177 |
|
simpr |
|- ( ( ph /\ h = V ) -> h = V ) |
| 178 |
177
|
fveq2d |
|- ( ( ph /\ h = V ) -> ( G ` h ) = ( G ` V ) ) |
| 179 |
178
|
fveq2d |
|- ( ( ph /\ h = V ) -> ( ( eval1 ` K ) ` ( G ` h ) ) = ( ( eval1 ` K ) ` ( G ` V ) ) ) |
| 180 |
179
|
fveq1d |
|- ( ( ph /\ h = V ) -> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) |
| 181 |
|
fvexd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) e. _V ) |
| 182 |
169 180 21 181
|
fvmptd |
|- ( ph -> ( ( H |` S ) ` V ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) |
| 183 |
176 22 182
|
3eqtrd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) |
| 184 |
183
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) |
| 185 |
184
|
oveq2d |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` U ) ) ` M ) ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) ) |
| 186 |
161 185
|
eqtrd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) ) |
| 187 |
|
fveq2 |
|- ( y = M -> ( ( ( eval1 ` K ) ` ( G ` V ) ) ` y ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) |
| 188 |
187
|
oveq2d |
|- ( y = M -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` y ) ) = ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) ) |
| 189 |
114
|
fveq2d |
|- ( y = M -> ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
| 190 |
188 189
|
eqeq12d |
|- ( y = M -> ( ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) <-> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) |
| 191 |
34 143
|
elmapd |
|- ( ph -> ( V e. ( NN0 ^m ( 0 ... A ) ) <-> V : ( 0 ... A ) --> NN0 ) ) |
| 192 |
103 191
|
mpbid |
|- ( ph -> V : ( 0 ... A ) --> NN0 ) |
| 193 |
192
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> V : ( 0 ... A ) --> NN0 ) |
| 194 |
1 2 137 138 139 140 141 142 193 10 147 149 151 152 153 154
|
aks6d1c1rh |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` w ) ) x. ( ( N / P ) ^ ( 2nd ` w ) ) ) .~ ( G ` V ) ) |
| 195 |
136 194
|
eqbrtrd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( E ` w ) .~ ( G ` V ) ) |
| 196 |
1 105 76
|
aks6d1c1p1 |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) .~ ( G ` V ) <-> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) ) ) |
| 197 |
195 196
|
mpbid |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) y ) ) ) |
| 198 |
190 197 159
|
rspcdva |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
| 199 |
186 198
|
eqtrd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
| 200 |
66
|
crnggrpd |
|- ( ph -> K e. Grp ) |
| 201 |
200
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> K e. Grp ) |
| 202 |
62 63 64 65 67 86 96
|
fveval1fvcl |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. ( Base ` K ) ) |
| 203 |
62 63 64 65 67 86 105
|
fveval1fvcl |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. ( Base ` K ) ) |
| 204 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
| 205 |
64 204 109
|
grpsubeq0 |
|- ( ( K e. Grp /\ ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. ( Base ` K ) /\ ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. ( Base ` K ) ) -> ( ( ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) = ( 0g ` K ) <-> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) |
| 206 |
201 202 203 205
|
syl3anc |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) = ( 0g ` K ) <-> ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) |
| 207 |
199 206
|
mpbird |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( ( eval1 ` K ) ` ( G ` U ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ( -g ` K ) ( ( ( eval1 ` K ) ` ( G ` V ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) ) = ( 0g ` K ) ) |
| 208 |
111 207
|
eqtrd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( 0g ` K ) ) |
| 209 |
|
fvexd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. _V ) |
| 210 |
|
elsng |
|- ( ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. _V -> ( ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. { ( 0g ` K ) } <-> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( 0g ` K ) ) ) |
| 211 |
209 210
|
syl |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. { ( 0g ` K ) } <-> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( 0g ` K ) ) ) |
| 212 |
208 211
|
mpbird |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. { ( 0g ` K ) } ) |
| 213 |
|
eqid |
|- ( K ^s ( Base ` K ) ) = ( K ^s ( Base ` K ) ) |
| 214 |
62 63 213 64
|
evl1rhm |
|- ( K e. CRing -> ( eval1 ` K ) e. ( ( Poly1 ` K ) RingHom ( K ^s ( Base ` K ) ) ) ) |
| 215 |
66 214
|
syl |
|- ( ph -> ( eval1 ` K ) e. ( ( Poly1 ` K ) RingHom ( K ^s ( Base ` K ) ) ) ) |
| 216 |
|
eqid |
|- ( Base ` ( K ^s ( Base ` K ) ) ) = ( Base ` ( K ^s ( Base ` K ) ) ) |
| 217 |
65 216
|
rhmf |
|- ( ( eval1 ` K ) e. ( ( Poly1 ` K ) RingHom ( K ^s ( Base ` K ) ) ) -> ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( Base ` ( K ^s ( Base ` K ) ) ) ) |
| 218 |
215 217
|
syl |
|- ( ph -> ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( Base ` ( K ^s ( Base ` K ) ) ) ) |
| 219 |
|
fvexd |
|- ( ph -> ( Base ` K ) e. _V ) |
| 220 |
213 64
|
pwsbas |
|- ( ( K e. Field /\ ( Base ` K ) e. _V ) -> ( ( Base ` K ) ^m ( Base ` K ) ) = ( Base ` ( K ^s ( Base ` K ) ) ) ) |
| 221 |
3 219 220
|
syl2anc |
|- ( ph -> ( ( Base ` K ) ^m ( Base ` K ) ) = ( Base ` ( K ^s ( Base ` K ) ) ) ) |
| 222 |
221
|
feq3d |
|- ( ph -> ( ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( ( Base ` K ) ^m ( Base ` K ) ) <-> ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( Base ` ( K ^s ( Base ` K ) ) ) ) ) |
| 223 |
218 222
|
mpbird |
|- ( ph -> ( eval1 ` K ) : ( Base ` ( Poly1 ` K ) ) --> ( ( Base ` K ) ^m ( Base ` K ) ) ) |
| 224 |
63
|
ply1ring |
|- ( K e. Ring -> ( Poly1 ` K ) e. Ring ) |
| 225 |
71 224
|
syl |
|- ( ph -> ( Poly1 ` K ) e. Ring ) |
| 226 |
|
ringgrp |
|- ( ( Poly1 ` K ) e. Ring -> ( Poly1 ` K ) e. Grp ) |
| 227 |
225 226
|
syl |
|- ( ph -> ( Poly1 ` K ) e. Grp ) |
| 228 |
65 108
|
grpsubcl |
|- ( ( ( Poly1 ` K ) e. Grp /\ ( G ` U ) e. ( Base ` ( Poly1 ` K ) ) /\ ( G ` V ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 229 |
227 95 104 228
|
syl3anc |
|- ( ph -> ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 230 |
223 229
|
ffvelcdmd |
|- ( ph -> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. ( ( Base ` K ) ^m ( Base ` K ) ) ) |
| 231 |
219 219
|
elmapd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) e. ( ( Base ` K ) ^m ( Base ` K ) ) <-> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) : ( Base ` K ) --> ( Base ` K ) ) ) |
| 232 |
230 231
|
mpbid |
|- ( ph -> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) : ( Base ` K ) --> ( Base ` K ) ) |
| 233 |
232
|
ffund |
|- ( ph -> Fun ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ) |
| 234 |
233
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> Fun ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ) |
| 235 |
232
|
ffnd |
|- ( ph -> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) Fn ( Base ` K ) ) |
| 236 |
235
|
adantr |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) Fn ( Base ` K ) ) |
| 237 |
236
|
fndmd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> dom ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) = ( Base ` K ) ) |
| 238 |
237
|
eqcomd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( Base ` K ) = dom ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ) |
| 239 |
86 238
|
eleqtrd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. dom ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ) |
| 240 |
|
fvimacnv |
|- ( ( Fun ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) /\ ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. dom ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ) -> ( ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. { ( 0g ` K ) } <-> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) ) |
| 241 |
234 239 240
|
syl2anc |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) ` ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) ) e. { ( 0g ` K ) } <-> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) ) |
| 242 |
212 241
|
mpbid |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( ( E ` w ) ( .g ` ( mulGrp ` K ) ) M ) e. ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) |
| 243 |
61 242
|
eqeltrd |
|- ( ( ph /\ w e. ( NN0 X. NN0 ) ) -> ( J ` w ) e. ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) |
| 244 |
50 54 243
|
funimassd |
|- ( ph -> ( J " ( NN0 X. NN0 ) ) C_ ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) |
| 245 |
|
hashss |
|- ( ( ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) e. _V /\ ( J " ( NN0 X. NN0 ) ) C_ ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) -> ( # ` ( J " ( NN0 X. NN0 ) ) ) <_ ( # ` ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) ) |
| 246 |
49 244 245
|
syl2anc |
|- ( ph -> ( # ` ( J " ( NN0 X. NN0 ) ) ) <_ ( # ` ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) ) |
| 247 |
31 40 46 48 246
|
xrletrd |
|- ( ph -> D <_ ( # ` ( `' ( ( eval1 ` K ) ` ( ( G ` U ) ( -g ` ( Poly1 ` K ) ) ( G ` V ) ) ) " { ( 0g ` K ) } ) ) ) |