Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
2 |
|
aks6d1c6.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks6d1c6.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks6d1c6.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks6d1c6.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks6d1c6.6 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
7 |
|
aks6d1c6.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks6d1c6.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks6d1c6.9 |
⊢ ( 𝜑 → 𝐴 < 𝑃 ) |
10 |
|
aks6d1c6.10 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
11 |
|
aks6d1c6.11 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
12 |
|
aks6d1c6.12 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
13 |
|
aks6d1c6.13 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
14 |
|
aks6d1c6.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
15 |
|
aks6d1c6.15 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
16 |
|
aks6d1c6.16 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
17 |
|
aks6d1c6.17 |
⊢ 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) |
18 |
|
aks6d1c6.18 |
⊢ 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
19 |
|
aks6d1c6.19 |
⊢ 𝑆 = { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } |
20 |
|
aks6d1c6lem3.1 |
⊢ 𝐽 = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
21 |
|
aks6d1c6lem3.2 |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ♯ ‘ ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ) ) |
22 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑅 ) = ( ℤ/nℤ ‘ 𝑅 ) |
23 |
6 4 7 5 8 12 13 22
|
hashscontpowcl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
24 |
18 23
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
25 |
24
|
nn0zd |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
26 |
25
|
zcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
27 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
28 |
11
|
nn0cnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
29 |
26 27 28
|
nppcan3d |
⊢ ( 𝜑 → ( ( 𝐷 − 1 ) + ( 𝐴 + 1 ) ) = ( 𝐷 + 𝐴 ) ) |
30 |
29
|
eqcomd |
⊢ ( 𝜑 → ( 𝐷 + 𝐴 ) = ( ( 𝐷 − 1 ) + ( 𝐴 + 1 ) ) ) |
31 |
|
hashfz0 |
⊢ ( 𝐴 ∈ ℕ0 → ( ♯ ‘ ( 0 ... 𝐴 ) ) = ( 𝐴 + 1 ) ) |
32 |
11 31
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝐴 ) ) = ( 𝐴 + 1 ) ) |
33 |
32
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 + 1 ) = ( ♯ ‘ ( 0 ... 𝐴 ) ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐷 − 1 ) + ( 𝐴 + 1 ) ) = ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) |
35 |
30 34
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 + 𝐴 ) = ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) |
36 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
37 |
25 36
|
zsubcld |
⊢ ( 𝜑 → ( 𝐷 − 1 ) ∈ ℤ ) |
38 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
39 |
38
|
a1i |
⊢ ( 𝜑 → ( 0 + 1 ) = 1 ) |
40 |
|
fvexd |
⊢ ( 𝜑 → ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ∈ V ) |
41 |
13 40
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
42 |
41
|
imaexd |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V ) |
43 |
11
|
ne0d |
⊢ ( 𝜑 → ℕ0 ≠ ∅ ) |
44 |
43 43
|
jca |
⊢ ( 𝜑 → ( ℕ0 ≠ ∅ ∧ ℕ0 ≠ ∅ ) ) |
45 |
|
xpnz |
⊢ ( ( ℕ0 ≠ ∅ ∧ ℕ0 ≠ ∅ ) ↔ ( ℕ0 × ℕ0 ) ≠ ∅ ) |
46 |
44 45
|
sylib |
⊢ ( 𝜑 → ( ℕ0 × ℕ0 ) ≠ ∅ ) |
47 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ V ) |
48 |
47
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ V ) |
49 |
48
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ V ) |
50 |
12
|
fnmpo |
⊢ ( ∀ 𝑘 ∈ ℕ0 ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ V → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
51 |
49 50
|
syl |
⊢ ( 𝜑 → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
52 |
|
ssidd |
⊢ ( 𝜑 → ( ℕ0 × ℕ0 ) ⊆ ( ℕ0 × ℕ0 ) ) |
53 |
|
fnimaeq0 |
⊢ ( ( 𝐸 Fn ( ℕ0 × ℕ0 ) ∧ ( ℕ0 × ℕ0 ) ⊆ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ∅ ↔ ( ℕ0 × ℕ0 ) = ∅ ) ) |
54 |
51 52 53
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ∅ ↔ ( ℕ0 × ℕ0 ) = ∅ ) ) |
55 |
54
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ≠ ∅ ↔ ( ℕ0 × ℕ0 ) ≠ ∅ ) ) |
56 |
46 55
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ≠ ∅ ) |
57 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
58 |
22
|
zncrng |
⊢ ( 𝑅 ∈ ℕ0 → ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing ) |
59 |
57 58
|
syl |
⊢ ( 𝜑 → ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing ) |
60 |
|
crngring |
⊢ ( ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing → ( ℤ/nℤ ‘ 𝑅 ) ∈ Ring ) |
61 |
13
|
zrhrhm |
⊢ ( ( ℤ/nℤ ‘ 𝑅 ) ∈ Ring → 𝐿 ∈ ( ℤring RingHom ( ℤ/nℤ ‘ 𝑅 ) ) ) |
62 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
63 |
|
eqid |
⊢ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) = ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
64 |
62 63
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom ( ℤ/nℤ ‘ 𝑅 ) ) → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
65 |
59 60 61 64
|
4syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
66 |
65
|
ffnd |
⊢ ( 𝜑 → 𝐿 Fn ℤ ) |
67 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) ) |
68 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑥 ∧ 𝑙 = 𝑦 ) ) → 𝑘 = 𝑥 ) |
69 |
68
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑥 ∧ 𝑙 = 𝑦 ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 𝑥 ) ) |
70 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑥 ∧ 𝑙 = 𝑦 ) ) → 𝑙 = 𝑦 ) |
71 |
70
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑥 ∧ 𝑙 = 𝑦 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) |
72 |
69 71
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑥 ∧ 𝑙 = 𝑦 ) ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃 ↑ 𝑥 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
73 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
74 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) |
75 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑥 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ∈ V ) |
76 |
67 72 73 74 75
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 𝐸 𝑦 ) = ( ( 𝑃 ↑ 𝑥 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
77 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) |
78 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
79 |
77 78
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
80 |
79
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ∈ ℤ ) |
81 |
80 73
|
zexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑥 ) ∈ ℤ ) |
82 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ∥ 𝑁 ) |
83 |
79
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ≠ 0 ) |
84 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
86 |
85
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
87 |
|
dvdsval2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
88 |
80 83 86 87
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
89 |
82 88
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
90 |
89 74
|
zexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ∈ ℤ ) |
91 |
81 90
|
zmulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑥 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ∈ ℤ ) |
92 |
76 91
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 𝐸 𝑦 ) ∈ ℤ ) |
93 |
92
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ∀ 𝑦 ∈ ℕ0 ( 𝑥 𝐸 𝑦 ) ∈ ℤ ) |
94 |
93
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 𝐸 𝑦 ) ∈ ℤ ) |
95 |
51 94
|
jca |
⊢ ( 𝜑 → ( 𝐸 Fn ( ℕ0 × ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 𝐸 𝑦 ) ∈ ℤ ) ) |
96 |
|
ffnov |
⊢ ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ ↔ ( 𝐸 Fn ( ℕ0 × ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 𝐸 𝑦 ) ∈ ℤ ) ) |
97 |
95 96
|
sylibr |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ ) |
98 |
|
frn |
⊢ ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ → ran 𝐸 ⊆ ℤ ) |
99 |
97 98
|
syl |
⊢ ( 𝜑 → ran 𝐸 ⊆ ℤ ) |
100 |
|
fnima |
⊢ ( 𝐸 Fn ( ℕ0 × ℕ0 ) → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ran 𝐸 ) |
101 |
51 100
|
syl |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ran 𝐸 ) |
102 |
101
|
sseq1d |
⊢ ( 𝜑 → ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ ) ) |
103 |
99 102
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ) |
104 |
|
fnimaeq0 |
⊢ ( ( 𝐿 Fn ℤ ∧ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ) → ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ∅ ↔ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ∅ ) ) |
105 |
66 103 104
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ∅ ↔ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ∅ ) ) |
106 |
105
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ≠ ∅ ↔ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ≠ ∅ ) ) |
107 |
56 106
|
mpbird |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ≠ ∅ ) |
108 |
|
hashge1 |
⊢ ( ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V ∧ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ≠ ∅ ) → 1 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
109 |
18
|
eqcomi |
⊢ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = 𝐷 |
110 |
109
|
a1i |
⊢ ( ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V ∧ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ≠ ∅ ) → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = 𝐷 ) |
111 |
108 110
|
breqtrd |
⊢ ( ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V ∧ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ≠ ∅ ) → 1 ≤ 𝐷 ) |
112 |
42 107 111
|
syl2anc |
⊢ ( 𝜑 → 1 ≤ 𝐷 ) |
113 |
39 112
|
eqbrtrd |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ 𝐷 ) |
114 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
115 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
116 |
24
|
nn0red |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
117 |
|
leaddsub |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 0 + 1 ) ≤ 𝐷 ↔ 0 ≤ ( 𝐷 − 1 ) ) ) |
118 |
114 115 116 117
|
syl3anc |
⊢ ( 𝜑 → ( ( 0 + 1 ) ≤ 𝐷 ↔ 0 ≤ ( 𝐷 − 1 ) ) ) |
119 |
113 118
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( 𝐷 − 1 ) ) |
120 |
37 119
|
jca |
⊢ ( 𝜑 → ( ( 𝐷 − 1 ) ∈ ℤ ∧ 0 ≤ ( 𝐷 − 1 ) ) ) |
121 |
|
elnn0z |
⊢ ( ( 𝐷 − 1 ) ∈ ℕ0 ↔ ( ( 𝐷 − 1 ) ∈ ℤ ∧ 0 ≤ ( 𝐷 − 1 ) ) ) |
122 |
120 121
|
sylibr |
⊢ ( 𝜑 → ( 𝐷 − 1 ) ∈ ℕ0 ) |
123 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ Fin ) |
124 |
|
hashcl |
⊢ ( ( 0 ... 𝐴 ) ∈ Fin → ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℕ0 ) |
125 |
123 124
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℕ0 ) |
126 |
122 125
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ∈ ℕ0 ) |
127 |
35 126
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 + 𝐴 ) ∈ ℕ0 ) |
128 |
|
bccl |
⊢ ( ( ( 𝐷 + 𝐴 ) ∈ ℕ0 ∧ ( 𝐷 − 1 ) ∈ ℤ ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℕ0 ) |
129 |
127 37 128
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℕ0 ) |
130 |
129
|
nn0red |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℝ ) |
131 |
130
|
rexrd |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℝ* ) |
132 |
|
ovexd |
⊢ ( 𝜑 → ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∈ V ) |
133 |
132
|
mptexd |
⊢ ( 𝜑 → ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ∈ V ) |
134 |
17 133
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
135 |
134
|
imaexd |
⊢ ( 𝜑 → ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V ) |
136 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) → 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
137 |
136
|
ex |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) → 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
138 |
|
simpl |
⊢ ( ( 𝑠 = 𝑤 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 𝑠 = 𝑤 ) |
139 |
138
|
fveq1d |
⊢ ( ( 𝑠 = 𝑤 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( 𝑠 ‘ 𝑡 ) = ( 𝑤 ‘ 𝑡 ) ) |
140 |
139
|
sumeq2dv |
⊢ ( 𝑠 = 𝑤 → Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ) |
141 |
140
|
breq1d |
⊢ ( 𝑠 = 𝑤 → ( Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ↔ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
142 |
141
|
elrab |
⊢ ( 𝑤 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ↔ ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
143 |
142
|
a1i |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ↔ ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) ) |
144 |
143
|
biimpd |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) ) |
145 |
144
|
imim1d |
⊢ ( 𝜑 → ( ( ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) → 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝑤 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |
146 |
137 145
|
mpd |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
147 |
146
|
ssrdv |
⊢ ( 𝜑 → { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
148 |
19
|
a1i |
⊢ ( 𝜑 → 𝑆 = { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ) |
149 |
148
|
sseq1d |
⊢ ( 𝜑 → ( 𝑆 ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
150 |
147 149
|
mpbird |
⊢ ( 𝜑 → 𝑆 ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
151 |
|
imass2 |
⊢ ( 𝑆 ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) → ( 𝐻 “ 𝑆 ) ⊆ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
152 |
150 151
|
syl |
⊢ ( 𝜑 → ( 𝐻 “ 𝑆 ) ⊆ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
153 |
135 152
|
ssexd |
⊢ ( 𝜑 → ( 𝐻 “ 𝑆 ) ∈ V ) |
154 |
|
hashxnn0 |
⊢ ( ( 𝐻 “ 𝑆 ) ∈ V → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ∈ ℕ0* ) |
155 |
153 154
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ∈ ℕ0* ) |
156 |
|
xnn0xr |
⊢ ( ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ∈ ℕ0* → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ∈ ℝ* ) |
157 |
155 156
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ∈ ℝ* ) |
158 |
|
hashxnn0 |
⊢ ( ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℕ0* ) |
159 |
135 158
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℕ0* ) |
160 |
|
xnn0xr |
⊢ ( ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℕ0* → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℝ* ) |
161 |
159 160
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℝ* ) |
162 |
122
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐷 − 1 ) ∈ ℂ ) |
163 |
125
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℂ ) |
164 |
162 163
|
pncand |
⊢ ( 𝜑 → ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) = ( 𝐷 − 1 ) ) |
165 |
164
|
eqcomd |
⊢ ( 𝜑 → ( 𝐷 − 1 ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) |
166 |
35 165
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) |
167 |
11
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
168 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
169 |
11
|
nn0zd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
170 |
|
eluz |
⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) ↔ 0 ≤ 𝐴 ) ) |
171 |
168 169 170
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) ↔ 0 ≤ 𝐴 ) ) |
172 |
167 171
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
173 |
|
fzn0 |
⊢ ( ( 0 ... 𝐴 ) ≠ ∅ ↔ 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
174 |
172 173
|
sylibr |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ≠ ∅ ) |
175 |
122 123 174 19
|
sticksstones23 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) |
176 |
125
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℤ ) |
177 |
|
bccmpl |
⊢ ( ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ∈ ℕ0 ∧ ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℤ ) → ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ♯ ‘ ( 0 ... 𝐴 ) ) ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) |
178 |
126 176 177
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ♯ ‘ ( 0 ... 𝐴 ) ) ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) |
179 |
175 178
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) |
180 |
179
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) = ( ♯ ‘ 𝑆 ) ) |
181 |
166 180
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) = ( ♯ ‘ 𝑆 ) ) |
182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) = ( ♯ ‘ 𝑆 ) ) |
183 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) |
184 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∈ V ) |
185 |
184
|
mptexd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ∈ V ) |
186 |
183 185
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → 𝐻 ∈ V ) |
187 |
186
|
resexd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( 𝐻 ↾ 𝑆 ) ∈ V ) |
188 |
186
|
imaexd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( 𝐻 “ 𝑆 ) ∈ V ) |
189 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) |
190 |
|
hashf1dmcdm |
⊢ ( ( ( 𝐻 ↾ 𝑆 ) ∈ V ∧ ( 𝐻 “ 𝑆 ) ∈ V ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
191 |
187 188 189 190
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
192 |
182 191
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
193 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) |
194 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ ℎ = 𝑗 ) → ℎ = 𝑗 ) |
195 |
194
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ ℎ = 𝑗 ) → ( 𝐺 ‘ ℎ ) = ( 𝐺 ‘ 𝑗 ) ) |
196 |
195
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ ℎ = 𝑗 ) → ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
197 |
196
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ ℎ = 𝑗 ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 ) ) |
198 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) → 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
199 |
198
|
rabssdv |
⊢ ( 𝜑 → { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
200 |
19 199
|
eqsstrid |
⊢ ( 𝜑 → 𝑆 ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
201 |
200
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝑗 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
202 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 ) ∈ V ) |
203 |
193 197 201 202
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐻 ‘ 𝑗 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 ) ) |
204 |
|
eqid |
⊢ ( eval1 ‘ 𝐾 ) = ( eval1 ‘ 𝐾 ) |
205 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
206 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
207 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
208 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
209 |
208
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐾 ∈ CRing ) |
210 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
211 |
210
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
212 |
208 211
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
213 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
214 |
212 57 213
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) ) |
215 |
214
|
biimpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) ) |
216 |
16 215
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) |
217 |
216
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
218 |
210 206
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
219 |
218
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ 𝐾 ) |
220 |
217 219
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
221 |
220
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
222 |
|
eqid |
⊢ ( var1 ‘ 𝐾 ) = ( var1 ‘ 𝐾 ) |
223 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
224 |
3 4 2 11 9 222 223 10
|
aks6d1c5lem0 |
⊢ ( 𝜑 → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
225 |
224
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
226 |
225 201
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑗 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
227 |
204 205 206 207 209 221 226
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 ) ∈ ( Base ‘ 𝐾 ) ) |
228 |
203 227
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐻 ‘ 𝑗 ) ∈ ( Base ‘ 𝐾 ) ) |
229 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑆 ↦ ( 𝐻 ‘ 𝑗 ) ) = ( 𝑗 ∈ 𝑆 ↦ ( 𝐻 ‘ 𝑗 ) ) |
230 |
228 229
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑆 ↦ ( 𝐻 ‘ 𝑗 ) ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) ) |
231 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ∈ V ) |
232 |
231 17
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ V ) |
233 |
232 200
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑆 ) = ( 𝑗 ∈ 𝑆 ↦ ( 𝐻 ‘ 𝑗 ) ) ) |
234 |
233
|
feq1d |
⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) ↔ ( 𝑗 ∈ 𝑆 ↦ ( 𝐻 ‘ 𝑗 ) ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) ) ) |
235 |
230 234
|
mpbird |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) ) |
236 |
|
ffrn |
⊢ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) → ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ran ( 𝐻 ↾ 𝑆 ) ) |
237 |
235 236
|
syl |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ran ( 𝐻 ↾ 𝑆 ) ) |
238 |
|
df-ima |
⊢ ( 𝐻 “ 𝑆 ) = ran ( 𝐻 ↾ 𝑆 ) |
239 |
238
|
a1i |
⊢ ( 𝜑 → ( 𝐻 “ 𝑆 ) = ran ( 𝐻 ↾ 𝑆 ) ) |
240 |
239
|
feq3d |
⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ↔ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ran ( 𝐻 ↾ 𝑆 ) ) ) |
241 |
237 240
|
mpbird |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ) |
242 |
241
|
notnotd |
⊢ ( 𝜑 → ¬ ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ) |
243 |
242
|
a1d |
⊢ ( 𝜑 → ( ¬ ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) → ¬ ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ) ) |
244 |
243
|
con4d |
⊢ ( 𝜑 → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
245 |
|
df-an |
⊢ ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) ) |
246 |
245
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) ) ) |
247 |
|
eqid |
⊢ ( deg1 ‘ 𝐾 ) = ( deg1 ‘ 𝐾 ) |
248 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
249 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) |
250 |
|
fldidom |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ IDomn ) |
251 |
3 250
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ IDomn ) |
252 |
251
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐾 ∈ IDomn ) |
253 |
205
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
254 |
|
crngring |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
255 |
|
ringgrp |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ Ring → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
256 |
208 253 254 255
|
4syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
257 |
256
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
258 |
3 4 2 11 9 222 223 10
|
aks6d1c5 |
⊢ ( 𝜑 → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
259 |
258
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
260 |
|
f1f |
⊢ ( 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
261 |
259 260
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
262 |
19
|
eleq2i |
⊢ ( 𝑢 ∈ 𝑆 ↔ 𝑢 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ) |
263 |
|
simpl |
⊢ ( ( 𝑠 = 𝑢 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 𝑠 = 𝑢 ) |
264 |
263
|
fveq1d |
⊢ ( ( 𝑠 = 𝑢 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( 𝑠 ‘ 𝑡 ) = ( 𝑢 ‘ 𝑡 ) ) |
265 |
264
|
sumeq2dv |
⊢ ( 𝑠 = 𝑢 → Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ) |
266 |
265
|
breq1d |
⊢ ( 𝑠 = 𝑢 → ( Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ↔ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
267 |
266
|
elrab |
⊢ ( 𝑢 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ↔ ( 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
268 |
267
|
simplbi |
⊢ ( 𝑢 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
269 |
262 268
|
sylbi |
⊢ ( 𝑢 ∈ 𝑆 → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
270 |
269
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
271 |
270
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
272 |
271
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
273 |
261 272
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
274 |
19
|
eleq2i |
⊢ ( 𝑣 ∈ 𝑆 ↔ 𝑣 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ) |
275 |
|
elrabi |
⊢ ( 𝑣 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
276 |
274 275
|
sylbi |
⊢ ( 𝑣 ∈ 𝑆 → 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
277 |
276
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
278 |
277
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
279 |
261 278
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐺 ‘ 𝑣 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
280 |
|
eqid |
⊢ ( -g ‘ ( Poly1 ‘ 𝐾 ) ) = ( -g ‘ ( Poly1 ‘ 𝐾 ) ) |
281 |
207 280
|
grpsubcl |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Grp ∧ ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝐺 ‘ 𝑣 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
282 |
257 273 279 281
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
283 |
|
neqne |
⊢ ( ¬ 𝑢 = 𝑣 → 𝑢 ≠ 𝑣 ) |
284 |
283
|
adantl |
⊢ ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) → 𝑢 ≠ 𝑣 ) |
285 |
284
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑢 ≠ 𝑣 ) |
286 |
272 278
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
287 |
|
f1fveq |
⊢ ( ( 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) → ( ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑣 ) ↔ 𝑢 = 𝑣 ) ) |
288 |
259 286 287
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑣 ) ↔ 𝑢 = 𝑣 ) ) |
289 |
288
|
bicomd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑢 = 𝑣 ↔ ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑣 ) ) ) |
290 |
289
|
necon3bid |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑢 ≠ 𝑣 ↔ ( 𝐺 ‘ 𝑢 ) ≠ ( 𝐺 ‘ 𝑣 ) ) ) |
291 |
290
|
biimpd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑢 ≠ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≠ ( 𝐺 ‘ 𝑣 ) ) ) |
292 |
285 291
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐺 ‘ 𝑢 ) ≠ ( 𝐺 ‘ 𝑣 ) ) |
293 |
207 249 280
|
grpsubeq0 |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Grp ∧ ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝐺 ‘ 𝑣 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑣 ) ) ) |
294 |
293
|
necon3bid |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Grp ∧ ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝐺 ‘ 𝑣 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( 𝐺 ‘ 𝑢 ) ≠ ( 𝐺 ‘ 𝑣 ) ) ) |
295 |
257 273 279 294
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( 𝐺 ‘ 𝑢 ) ≠ ( 𝐺 ‘ 𝑣 ) ) ) |
296 |
292 295
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
297 |
205 207 247 204 248 249 252 282 296
|
fta1g |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) |
298 |
247 205 207
|
deg1xrcl |
⊢ ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℝ* ) |
299 |
282 298
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℝ* ) |
300 |
116
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐷 ∈ ℝ ) |
301 |
|
1red |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 1 ∈ ℝ ) |
302 |
300 301
|
resubcld |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐷 − 1 ) ∈ ℝ ) |
303 |
302
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐷 − 1 ) ∈ ℝ* ) |
304 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝜑 ) |
305 |
|
fvexd |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V ) |
306 |
|
cnvexg |
⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V → ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V ) |
307 |
305 306
|
syl |
⊢ ( 𝜑 → ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V ) |
308 |
307
|
imaexd |
⊢ ( 𝜑 → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ) |
309 |
|
hashxnn0 |
⊢ ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0* ) |
310 |
|
xnn0xr |
⊢ ( ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0* → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ* ) |
311 |
304 308 309 310
|
4syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ* ) |
312 |
247 205 207
|
deg1xrcl |
⊢ ( ( 𝐺 ‘ 𝑣 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ∈ ℝ* ) |
313 |
279 312
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ∈ ℝ* ) |
314 |
247 205 207
|
deg1xrcl |
⊢ ( ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ∈ ℝ* ) |
315 |
273 314
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ∈ ℝ* ) |
316 |
313 315
|
ifcld |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ∈ ℝ* ) |
317 |
252
|
idomringd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐾 ∈ Ring ) |
318 |
205 247 317 207 280 273 279
|
deg1suble |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ≤ if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) |
319 |
|
id |
⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) |
320 |
319
|
breq1d |
⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) → ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ≤ ( 𝐷 − 1 ) ↔ if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( 𝐷 − 1 ) ) ) |
321 |
|
id |
⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) |
322 |
321
|
breq1d |
⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) → ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( 𝐷 − 1 ) ↔ if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( 𝐷 − 1 ) ) ) |
323 |
3
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐾 ∈ Field ) |
324 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑃 ∈ ℙ ) |
325 |
5
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑅 ∈ ℕ ) |
326 |
6
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑁 ∈ ℕ ) |
327 |
7
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑃 ∥ 𝑁 ) |
328 |
8
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
329 |
9
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐴 < 𝑃 ) |
330 |
11
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐴 ∈ ℕ0 ) |
331 |
14
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
332 |
15
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
333 |
16
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
334 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑣 ∈ 𝑆 ) |
335 |
334 276
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
336 |
1 2 323 324 325 326 327 328 329 10 330 12 13 331 332 333 17 18 19 335
|
aks6d1c6lem1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ) |
337 |
|
simpl |
⊢ ( ( 𝑠 = 𝑣 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 𝑠 = 𝑣 ) |
338 |
337
|
fveq1d |
⊢ ( ( 𝑠 = 𝑣 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( 𝑠 ‘ 𝑡 ) = ( 𝑣 ‘ 𝑡 ) ) |
339 |
338
|
sumeq2dv |
⊢ ( 𝑠 = 𝑣 → Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ) |
340 |
339
|
breq1d |
⊢ ( 𝑠 = 𝑣 → ( Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ↔ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
341 |
340
|
elrab |
⊢ ( 𝑣 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ↔ ( 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
342 |
274 341
|
bitri |
⊢ ( 𝑣 ∈ 𝑆 ↔ ( 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
343 |
334 342
|
sylib |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
344 |
343
|
simprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) |
345 |
336 344
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ≤ ( 𝐷 − 1 ) ) |
346 |
3
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐾 ∈ Field ) |
347 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑃 ∈ ℙ ) |
348 |
5
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑅 ∈ ℕ ) |
349 |
6
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑁 ∈ ℕ ) |
350 |
7
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑃 ∥ 𝑁 ) |
351 |
8
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
352 |
9
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐴 < 𝑃 ) |
353 |
11
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐴 ∈ ℕ0 ) |
354 |
14
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
355 |
15
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
356 |
16
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
357 |
272
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
358 |
1 2 346 347 348 349 350 351 352 10 353 12 13 354 355 356 17 18 19 357
|
aks6d1c6lem1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ) |
359 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑢 ∈ 𝑆 ) |
360 |
262 267
|
bitri |
⊢ ( 𝑢 ∈ 𝑆 ↔ ( 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
361 |
359 360
|
sylib |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
362 |
361
|
simprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) |
363 |
358 362
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( 𝐷 − 1 ) ) |
364 |
320 322 345 363
|
ifbothda |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( 𝐷 − 1 ) ) |
365 |
299 316 303 318 364
|
xrletrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ≤ ( 𝐷 − 1 ) ) |
366 |
300
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐷 ∈ ℝ* ) |
367 |
300
|
ltm1d |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐷 − 1 ) < 𝐷 ) |
368 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑢 ∈ 𝑆 ) |
369 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑣 ∈ 𝑆 ) |
370 |
304 368 369
|
jca31 |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ) |
371 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) |
372 |
370 371
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ) |
373 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐾 ∈ Field ) |
374 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑃 ∈ ℙ ) |
375 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑅 ∈ ℕ ) |
376 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑁 ∈ ℕ ) |
377 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑃 ∥ 𝑁 ) |
378 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
379 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐴 < 𝑃 ) |
380 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐴 ∈ ℕ0 ) |
381 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
382 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
383 |
16
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
384 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑢 ∈ 𝑆 ) |
385 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑣 ∈ 𝑆 ) |
386 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ) |
387 |
284
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑢 ≠ 𝑣 ) |
388 |
21
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ♯ ‘ ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ) ) |
389 |
1 2 373 374 375 376 377 378 379 10 380 12 13 381 382 383 17 18 19 384 385 386 387 20 388
|
aks6d1c6lem2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐷 ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
390 |
372 389
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐷 ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
391 |
303 366 311 367 390
|
xrltletrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐷 − 1 ) < ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
392 |
299 303 311 365 391
|
xrlelttrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) < ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
393 |
247 205 249 207
|
deg1nn0clb |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℕ0 ) ) |
394 |
317 282 393
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℕ0 ) ) |
395 |
296 394
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℕ0 ) |
396 |
395
|
nn0red |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℝ ) |
397 |
396
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℝ* ) |
398 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V ) |
399 |
398 306
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V ) |
400 |
399
|
imaexd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ) |
401 |
400 309
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0* ) |
402 |
401 310
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ* ) |
403 |
|
xrltnle |
⊢ ( ( ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℝ* ∧ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ* ) → ( ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) < ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ↔ ¬ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) ) |
404 |
397 402 403
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) < ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ↔ ¬ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) ) |
405 |
392 404
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ¬ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) |
406 |
297 405
|
pm2.21dd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
407 |
406
|
ex |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
408 |
246 407
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
409 |
|
biidd |
⊢ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ( 𝑢 = 𝑣 ↔ 𝑢 = 𝑣 ) ) |
410 |
409
|
necon3abid |
⊢ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ( 𝑢 ≠ 𝑣 ↔ ¬ 𝑢 = 𝑣 ) ) |
411 |
410
|
necon1bbid |
⊢ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ( ¬ ¬ 𝑢 = 𝑣 ↔ 𝑢 = 𝑣 ) ) |
412 |
411
|
pm5.74i |
⊢ ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) ↔ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
413 |
412
|
notbii |
⊢ ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
414 |
413
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
415 |
414
|
imbi1d |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ↔ ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) ) |
416 |
408 415
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
417 |
416
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
418 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑢 → ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) ↔ ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) ) ) |
419 |
|
equequ1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 = 𝑦 ↔ 𝑢 = 𝑦 ) ) |
420 |
418 419
|
imbi12d |
⊢ ( 𝑥 = 𝑢 → ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑢 = 𝑦 ) ) ) |
421 |
420
|
notbid |
⊢ ( 𝑥 = 𝑢 → ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑢 = 𝑦 ) ) ) |
422 |
|
fveq2 |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ) |
423 |
422
|
eqeq2d |
⊢ ( 𝑦 = 𝑣 → ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) ↔ ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ) ) |
424 |
|
equequ2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 = 𝑦 ↔ 𝑢 = 𝑣 ) ) |
425 |
423 424
|
imbi12d |
⊢ ( 𝑦 = 𝑣 → ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑢 = 𝑦 ) ↔ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
426 |
425
|
notbid |
⊢ ( 𝑦 = 𝑣 → ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑢 = 𝑦 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
427 |
421 426
|
cbvrex2vw |
⊢ ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
428 |
427
|
biimpi |
⊢ ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
429 |
428
|
adantl |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
430 |
417 429
|
r19.29vva |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
431 |
430
|
ex |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
432 |
|
rexnal2 |
⊢ ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
433 |
432
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
434 |
433
|
imbi1d |
⊢ ( 𝜑 → ( ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ↔ ( ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) ) |
435 |
431 434
|
mpbid |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
436 |
244 435
|
jaod |
⊢ ( 𝜑 → ( ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∨ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
437 |
|
ianor |
⊢ ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∨ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
438 |
437
|
a1i |
⊢ ( 𝜑 → ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∨ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
439 |
438
|
biimpd |
⊢ ( 𝜑 → ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∨ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
440 |
439
|
imim1d |
⊢ ( 𝜑 → ( ( ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∨ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) → ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) ) |
441 |
436 440
|
mpd |
⊢ ( 𝜑 → ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
442 |
|
dff13 |
⊢ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ↔ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
443 |
442
|
a1i |
⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ↔ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
444 |
443
|
notbid |
⊢ ( 𝜑 → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ↔ ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
445 |
444
|
biimpd |
⊢ ( 𝜑 → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) → ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
446 |
445
|
imim1d |
⊢ ( 𝜑 → ( ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) ) |
447 |
441 446
|
mpd |
⊢ ( 𝜑 → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
448 |
447
|
imp |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
449 |
192 448
|
pm2.61dan |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
450 |
|
hashss |
⊢ ( ( ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V ∧ ( 𝐻 “ 𝑆 ) ⊆ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ≤ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |
451 |
135 152 450
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ≤ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |
452 |
131 157 161 449 451
|
xrletrd |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |