| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c6.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
| 2 |
|
aks6d1c6.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
| 3 |
|
aks6d1c6.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 4 |
|
aks6d1c6.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 5 |
|
aks6d1c6.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 6 |
|
aks6d1c6.6 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 7 |
|
aks6d1c6.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| 8 |
|
aks6d1c6.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 9 |
|
aks6d1c6.9 |
⊢ ( 𝜑 → 𝐴 < 𝑃 ) |
| 10 |
|
aks6d1c6.10 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 11 |
|
aks6d1c6.11 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
| 12 |
|
aks6d1c6.12 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
| 13 |
|
aks6d1c6.13 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
| 14 |
|
aks6d1c6.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 15 |
|
aks6d1c6.15 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 16 |
|
aks6d1c6.16 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
| 17 |
|
aks6d1c6.17 |
⊢ 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) |
| 18 |
|
aks6d1c6.18 |
⊢ 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 19 |
|
aks6d1c6.19 |
⊢ 𝑆 = { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } |
| 20 |
|
aks6d1c6lem3.1 |
⊢ 𝐽 = ( 𝑗 ∈ ( ℕ0 × ℕ0 ) ↦ ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) |
| 21 |
|
aks6d1c6lem3.2 |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ♯ ‘ ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 22 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑅 ) = ( ℤ/nℤ ‘ 𝑅 ) |
| 23 |
6 4 7 5 8 12 13 22
|
hashscontpowcl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ∈ ℕ0 ) |
| 24 |
18 23
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
| 25 |
24
|
nn0zd |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
| 26 |
25
|
zcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 27 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 28 |
11
|
nn0cnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 29 |
26 27 28
|
nppcan3d |
⊢ ( 𝜑 → ( ( 𝐷 − 1 ) + ( 𝐴 + 1 ) ) = ( 𝐷 + 𝐴 ) ) |
| 30 |
29
|
eqcomd |
⊢ ( 𝜑 → ( 𝐷 + 𝐴 ) = ( ( 𝐷 − 1 ) + ( 𝐴 + 1 ) ) ) |
| 31 |
|
hashfz0 |
⊢ ( 𝐴 ∈ ℕ0 → ( ♯ ‘ ( 0 ... 𝐴 ) ) = ( 𝐴 + 1 ) ) |
| 32 |
11 31
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝐴 ) ) = ( 𝐴 + 1 ) ) |
| 33 |
32
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 + 1 ) = ( ♯ ‘ ( 0 ... 𝐴 ) ) ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐷 − 1 ) + ( 𝐴 + 1 ) ) = ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) |
| 35 |
30 34
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 + 𝐴 ) = ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) |
| 36 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 37 |
25 36
|
zsubcld |
⊢ ( 𝜑 → ( 𝐷 − 1 ) ∈ ℤ ) |
| 38 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → ( 0 + 1 ) = 1 ) |
| 40 |
|
fvexd |
⊢ ( 𝜑 → ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ∈ V ) |
| 41 |
13 40
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
| 42 |
41
|
imaexd |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V ) |
| 43 |
11
|
ne0d |
⊢ ( 𝜑 → ℕ0 ≠ ∅ ) |
| 44 |
43 43
|
jca |
⊢ ( 𝜑 → ( ℕ0 ≠ ∅ ∧ ℕ0 ≠ ∅ ) ) |
| 45 |
|
xpnz |
⊢ ( ( ℕ0 ≠ ∅ ∧ ℕ0 ≠ ∅ ) ↔ ( ℕ0 × ℕ0 ) ≠ ∅ ) |
| 46 |
44 45
|
sylib |
⊢ ( 𝜑 → ( ℕ0 × ℕ0 ) ≠ ∅ ) |
| 47 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ V ) |
| 48 |
47
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ V ) |
| 49 |
48
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ V ) |
| 50 |
12
|
fnmpo |
⊢ ( ∀ 𝑘 ∈ ℕ0 ∀ 𝑙 ∈ ℕ0 ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ∈ V → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
| 51 |
49 50
|
syl |
⊢ ( 𝜑 → 𝐸 Fn ( ℕ0 × ℕ0 ) ) |
| 52 |
|
ssidd |
⊢ ( 𝜑 → ( ℕ0 × ℕ0 ) ⊆ ( ℕ0 × ℕ0 ) ) |
| 53 |
|
fnimaeq0 |
⊢ ( ( 𝐸 Fn ( ℕ0 × ℕ0 ) ∧ ( ℕ0 × ℕ0 ) ⊆ ( ℕ0 × ℕ0 ) ) → ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ∅ ↔ ( ℕ0 × ℕ0 ) = ∅ ) ) |
| 54 |
51 52 53
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ∅ ↔ ( ℕ0 × ℕ0 ) = ∅ ) ) |
| 55 |
54
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ≠ ∅ ↔ ( ℕ0 × ℕ0 ) ≠ ∅ ) ) |
| 56 |
46 55
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ≠ ∅ ) |
| 57 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
| 58 |
22
|
zncrng |
⊢ ( 𝑅 ∈ ℕ0 → ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing ) |
| 59 |
57 58
|
syl |
⊢ ( 𝜑 → ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing ) |
| 60 |
|
crngring |
⊢ ( ( ℤ/nℤ ‘ 𝑅 ) ∈ CRing → ( ℤ/nℤ ‘ 𝑅 ) ∈ Ring ) |
| 61 |
13
|
zrhrhm |
⊢ ( ( ℤ/nℤ ‘ 𝑅 ) ∈ Ring → 𝐿 ∈ ( ℤring RingHom ( ℤ/nℤ ‘ 𝑅 ) ) ) |
| 62 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 63 |
|
eqid |
⊢ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) = ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
| 64 |
62 63
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom ( ℤ/nℤ ‘ 𝑅 ) ) → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
| 65 |
59 60 61 64
|
4syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) |
| 66 |
65
|
ffnd |
⊢ ( 𝜑 → 𝐿 Fn ℤ ) |
| 67 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) ) |
| 68 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑥 ∧ 𝑙 = 𝑦 ) ) → 𝑘 = 𝑥 ) |
| 69 |
68
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑥 ∧ 𝑙 = 𝑦 ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 𝑥 ) ) |
| 70 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑥 ∧ 𝑙 = 𝑦 ) ) → 𝑙 = 𝑦 ) |
| 71 |
70
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑥 ∧ 𝑙 = 𝑦 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) |
| 72 |
69 71
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑥 ∧ 𝑙 = 𝑦 ) ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃 ↑ 𝑥 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
| 73 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
| 74 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) |
| 75 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑥 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ∈ V ) |
| 76 |
67 72 73 74 75
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 𝐸 𝑦 ) = ( ( 𝑃 ↑ 𝑥 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
| 77 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) |
| 78 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 79 |
77 78
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
| 80 |
79
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ∈ ℤ ) |
| 81 |
80 73
|
zexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑥 ) ∈ ℤ ) |
| 82 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ∥ 𝑁 ) |
| 83 |
79
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ≠ 0 ) |
| 84 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 86 |
85
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 87 |
|
dvdsval2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
| 88 |
80 83 86 87
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
| 89 |
82 88
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
| 90 |
89 74
|
zexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ∈ ℤ ) |
| 91 |
81 90
|
zmulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑥 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ∈ ℤ ) |
| 92 |
76 91
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 𝐸 𝑦 ) ∈ ℤ ) |
| 93 |
92
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ∀ 𝑦 ∈ ℕ0 ( 𝑥 𝐸 𝑦 ) ∈ ℤ ) |
| 94 |
93
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 𝐸 𝑦 ) ∈ ℤ ) |
| 95 |
51 94
|
jca |
⊢ ( 𝜑 → ( 𝐸 Fn ( ℕ0 × ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 𝐸 𝑦 ) ∈ ℤ ) ) |
| 96 |
|
ffnov |
⊢ ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ ↔ ( 𝐸 Fn ( ℕ0 × ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 𝐸 𝑦 ) ∈ ℤ ) ) |
| 97 |
95 96
|
sylibr |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ ) |
| 98 |
|
frn |
⊢ ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℤ → ran 𝐸 ⊆ ℤ ) |
| 99 |
97 98
|
syl |
⊢ ( 𝜑 → ran 𝐸 ⊆ ℤ ) |
| 100 |
|
fnima |
⊢ ( 𝐸 Fn ( ℕ0 × ℕ0 ) → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ran 𝐸 ) |
| 101 |
51 100
|
syl |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ran 𝐸 ) |
| 102 |
101
|
sseq1d |
⊢ ( 𝜑 → ( ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ ) ) |
| 103 |
99 102
|
mpbird |
⊢ ( 𝜑 → ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ) |
| 104 |
|
fnimaeq0 |
⊢ ( ( 𝐿 Fn ℤ ∧ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ⊆ ℤ ) → ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ∅ ↔ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ∅ ) ) |
| 105 |
66 103 104
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) = ∅ ↔ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) = ∅ ) ) |
| 106 |
105
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ≠ ∅ ↔ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ≠ ∅ ) ) |
| 107 |
56 106
|
mpbird |
⊢ ( 𝜑 → ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ≠ ∅ ) |
| 108 |
|
hashge1 |
⊢ ( ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V ∧ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ≠ ∅ ) → 1 ≤ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ) |
| 109 |
18
|
eqcomi |
⊢ ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = 𝐷 |
| 110 |
109
|
a1i |
⊢ ( ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V ∧ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ≠ ∅ ) → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) = 𝐷 ) |
| 111 |
108 110
|
breqtrd |
⊢ ( ( ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ∈ V ∧ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ≠ ∅ ) → 1 ≤ 𝐷 ) |
| 112 |
42 107 111
|
syl2anc |
⊢ ( 𝜑 → 1 ≤ 𝐷 ) |
| 113 |
39 112
|
eqbrtrd |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ 𝐷 ) |
| 114 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 115 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 116 |
24
|
nn0red |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 117 |
|
leaddsub |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 0 + 1 ) ≤ 𝐷 ↔ 0 ≤ ( 𝐷 − 1 ) ) ) |
| 118 |
114 115 116 117
|
syl3anc |
⊢ ( 𝜑 → ( ( 0 + 1 ) ≤ 𝐷 ↔ 0 ≤ ( 𝐷 − 1 ) ) ) |
| 119 |
113 118
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( 𝐷 − 1 ) ) |
| 120 |
37 119
|
jca |
⊢ ( 𝜑 → ( ( 𝐷 − 1 ) ∈ ℤ ∧ 0 ≤ ( 𝐷 − 1 ) ) ) |
| 121 |
|
elnn0z |
⊢ ( ( 𝐷 − 1 ) ∈ ℕ0 ↔ ( ( 𝐷 − 1 ) ∈ ℤ ∧ 0 ≤ ( 𝐷 − 1 ) ) ) |
| 122 |
120 121
|
sylibr |
⊢ ( 𝜑 → ( 𝐷 − 1 ) ∈ ℕ0 ) |
| 123 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ Fin ) |
| 124 |
|
hashcl |
⊢ ( ( 0 ... 𝐴 ) ∈ Fin → ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℕ0 ) |
| 125 |
123 124
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℕ0 ) |
| 126 |
122 125
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ∈ ℕ0 ) |
| 127 |
35 126
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 + 𝐴 ) ∈ ℕ0 ) |
| 128 |
|
bccl |
⊢ ( ( ( 𝐷 + 𝐴 ) ∈ ℕ0 ∧ ( 𝐷 − 1 ) ∈ ℤ ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℕ0 ) |
| 129 |
127 37 128
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℕ0 ) |
| 130 |
129
|
nn0red |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℝ ) |
| 131 |
130
|
rexrd |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ∈ ℝ* ) |
| 132 |
|
ovexd |
⊢ ( 𝜑 → ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∈ V ) |
| 133 |
132
|
mptexd |
⊢ ( 𝜑 → ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ∈ V ) |
| 134 |
17 133
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 135 |
134
|
imaexd |
⊢ ( 𝜑 → ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V ) |
| 136 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) → 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 137 |
136
|
ex |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) → 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
| 138 |
|
simpl |
⊢ ( ( 𝑠 = 𝑤 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 𝑠 = 𝑤 ) |
| 139 |
138
|
fveq1d |
⊢ ( ( 𝑠 = 𝑤 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( 𝑠 ‘ 𝑡 ) = ( 𝑤 ‘ 𝑡 ) ) |
| 140 |
139
|
sumeq2dv |
⊢ ( 𝑠 = 𝑤 → Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ) |
| 141 |
140
|
breq1d |
⊢ ( 𝑠 = 𝑤 → ( Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ↔ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
| 142 |
141
|
elrab |
⊢ ( 𝑤 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ↔ ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
| 143 |
142
|
a1i |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ↔ ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) ) |
| 144 |
143
|
biimpd |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) ) |
| 145 |
144
|
imim1d |
⊢ ( 𝜑 → ( ( ( 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) → 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( 𝑤 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |
| 146 |
137 145
|
mpd |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑤 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
| 147 |
146
|
ssrdv |
⊢ ( 𝜑 → { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 148 |
19
|
a1i |
⊢ ( 𝜑 → 𝑆 = { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ) |
| 149 |
148
|
sseq1d |
⊢ ( 𝜑 → ( 𝑆 ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
| 150 |
147 149
|
mpbird |
⊢ ( 𝜑 → 𝑆 ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 151 |
|
imass2 |
⊢ ( 𝑆 ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) → ( 𝐻 “ 𝑆 ) ⊆ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
| 152 |
150 151
|
syl |
⊢ ( 𝜑 → ( 𝐻 “ 𝑆 ) ⊆ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
| 153 |
135 152
|
ssexd |
⊢ ( 𝜑 → ( 𝐻 “ 𝑆 ) ∈ V ) |
| 154 |
|
hashxnn0 |
⊢ ( ( 𝐻 “ 𝑆 ) ∈ V → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ∈ ℕ0* ) |
| 155 |
153 154
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ∈ ℕ0* ) |
| 156 |
|
xnn0xr |
⊢ ( ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ∈ ℕ0* → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ∈ ℝ* ) |
| 157 |
155 156
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ∈ ℝ* ) |
| 158 |
|
hashxnn0 |
⊢ ( ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℕ0* ) |
| 159 |
135 158
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℕ0* ) |
| 160 |
|
xnn0xr |
⊢ ( ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℕ0* → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℝ* ) |
| 161 |
159 160
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ∈ ℝ* ) |
| 162 |
122
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐷 − 1 ) ∈ ℂ ) |
| 163 |
125
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℂ ) |
| 164 |
162 163
|
pncand |
⊢ ( 𝜑 → ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) = ( 𝐷 − 1 ) ) |
| 165 |
164
|
eqcomd |
⊢ ( 𝜑 → ( 𝐷 − 1 ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) |
| 166 |
35 165
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) |
| 167 |
11
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 168 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 169 |
11
|
nn0zd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 170 |
|
eluz |
⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) ↔ 0 ≤ 𝐴 ) ) |
| 171 |
168 169 170
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) ↔ 0 ≤ 𝐴 ) ) |
| 172 |
167 171
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
| 173 |
|
fzn0 |
⊢ ( ( 0 ... 𝐴 ) ≠ ∅ ↔ 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
| 174 |
172 173
|
sylibr |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ≠ ∅ ) |
| 175 |
122 123 174 19
|
sticksstones23 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) |
| 176 |
125
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℤ ) |
| 177 |
|
bccmpl |
⊢ ( ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ∈ ℕ0 ∧ ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℤ ) → ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ♯ ‘ ( 0 ... 𝐴 ) ) ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) |
| 178 |
126 176 177
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ♯ ‘ ( 0 ... 𝐴 ) ) ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) |
| 179 |
175 178
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) |
| 180 |
179
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷 − 1 ) + ( ♯ ‘ ( 0 ... 𝐴 ) ) ) − ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) = ( ♯ ‘ 𝑆 ) ) |
| 181 |
166 180
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) = ( ♯ ‘ 𝑆 ) ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) = ( ♯ ‘ 𝑆 ) ) |
| 183 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) |
| 184 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∈ V ) |
| 185 |
184
|
mptexd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ∈ V ) |
| 186 |
183 185
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → 𝐻 ∈ V ) |
| 187 |
186
|
resexd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( 𝐻 ↾ 𝑆 ) ∈ V ) |
| 188 |
186
|
imaexd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( 𝐻 “ 𝑆 ) ∈ V ) |
| 189 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) |
| 190 |
|
hashf1dmcdm |
⊢ ( ( ( 𝐻 ↾ 𝑆 ) ∈ V ∧ ( 𝐻 “ 𝑆 ) ∈ V ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
| 191 |
187 188 189 190
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
| 192 |
182 191
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
| 193 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) |
| 194 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ ℎ = 𝑗 ) → ℎ = 𝑗 ) |
| 195 |
194
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ ℎ = 𝑗 ) → ( 𝐺 ‘ ℎ ) = ( 𝐺 ‘ 𝑗 ) ) |
| 196 |
195
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ ℎ = 𝑗 ) → ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) = ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 197 |
196
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ ℎ = 𝑗 ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 ) ) |
| 198 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) → 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 199 |
198
|
rabssdv |
⊢ ( 𝜑 → { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 200 |
19 199
|
eqsstrid |
⊢ ( 𝜑 → 𝑆 ⊆ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 201 |
200
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝑗 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 202 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 ) ∈ V ) |
| 203 |
193 197 201 202
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐻 ‘ 𝑗 ) = ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 ) ) |
| 204 |
|
eqid |
⊢ ( eval1 ‘ 𝐾 ) = ( eval1 ‘ 𝐾 ) |
| 205 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
| 206 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 207 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
| 208 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
| 209 |
208
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐾 ∈ CRing ) |
| 210 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
| 211 |
210
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
| 212 |
208 211
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ CMnd ) |
| 213 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 214 |
212 57 213
|
isprimroot |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ↔ ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) ) |
| 215 |
214
|
biimpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) ) |
| 216 |
16 215
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ∀ 𝑣 ∈ ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) = ( 0g ‘ ( mulGrp ‘ 𝐾 ) ) → 𝑅 ∥ 𝑣 ) ) ) |
| 217 |
216
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 218 |
210 206
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
| 219 |
218
|
eqcomi |
⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ 𝐾 ) |
| 220 |
217 219
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
| 221 |
220
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝑀 ∈ ( Base ‘ 𝐾 ) ) |
| 222 |
|
eqid |
⊢ ( var1 ‘ 𝐾 ) = ( var1 ‘ 𝐾 ) |
| 223 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 224 |
3 4 2 11 9 222 223 10
|
aks6d1c5lem0 |
⊢ ( 𝜑 → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 225 |
224
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 226 |
225 201
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑗 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 227 |
204 205 206 207 209 221 226
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 ) ∈ ( Base ‘ 𝐾 ) ) |
| 228 |
203 227
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐻 ‘ 𝑗 ) ∈ ( Base ‘ 𝐾 ) ) |
| 229 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑆 ↦ ( 𝐻 ‘ 𝑗 ) ) = ( 𝑗 ∈ 𝑆 ↦ ( 𝐻 ‘ 𝑗 ) ) |
| 230 |
228 229
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑆 ↦ ( 𝐻 ‘ 𝑗 ) ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) ) |
| 231 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) → ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ∈ V ) |
| 232 |
231 17
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ V ) |
| 233 |
232 200
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑆 ) = ( 𝑗 ∈ 𝑆 ↦ ( 𝐻 ‘ 𝑗 ) ) ) |
| 234 |
233
|
feq1d |
⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) ↔ ( 𝑗 ∈ 𝑆 ↦ ( 𝐻 ‘ 𝑗 ) ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) ) ) |
| 235 |
230 234
|
mpbird |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) ) |
| 236 |
|
ffrn |
⊢ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) → ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ran ( 𝐻 ↾ 𝑆 ) ) |
| 237 |
235 236
|
syl |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ran ( 𝐻 ↾ 𝑆 ) ) |
| 238 |
|
df-ima |
⊢ ( 𝐻 “ 𝑆 ) = ran ( 𝐻 ↾ 𝑆 ) |
| 239 |
238
|
a1i |
⊢ ( 𝜑 → ( 𝐻 “ 𝑆 ) = ran ( 𝐻 ↾ 𝑆 ) ) |
| 240 |
239
|
feq3d |
⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ↔ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ran ( 𝐻 ↾ 𝑆 ) ) ) |
| 241 |
237 240
|
mpbird |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ) |
| 242 |
241
|
notnotd |
⊢ ( 𝜑 → ¬ ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ) |
| 243 |
242
|
a1d |
⊢ ( 𝜑 → ( ¬ ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) → ¬ ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ) ) |
| 244 |
243
|
con4d |
⊢ ( 𝜑 → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
| 245 |
|
df-an |
⊢ ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) ) |
| 246 |
245
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) ) ) |
| 247 |
|
eqid |
⊢ ( deg1 ‘ 𝐾 ) = ( deg1 ‘ 𝐾 ) |
| 248 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 249 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) |
| 250 |
|
fldidom |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ IDomn ) |
| 251 |
3 250
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ IDomn ) |
| 252 |
251
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐾 ∈ IDomn ) |
| 253 |
205
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ CRing ) |
| 254 |
|
crngring |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ CRing → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
| 255 |
|
ringgrp |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ Ring → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
| 256 |
208 253 254 255
|
4syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
| 257 |
256
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( Poly1 ‘ 𝐾 ) ∈ Grp ) |
| 258 |
3 4 2 11 9 222 223 10
|
aks6d1c5 |
⊢ ( 𝜑 → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 259 |
258
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 260 |
|
f1f |
⊢ ( 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 261 |
259 260
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 262 |
19
|
eleq2i |
⊢ ( 𝑢 ∈ 𝑆 ↔ 𝑢 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ) |
| 263 |
|
simpl |
⊢ ( ( 𝑠 = 𝑢 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 𝑠 = 𝑢 ) |
| 264 |
263
|
fveq1d |
⊢ ( ( 𝑠 = 𝑢 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( 𝑠 ‘ 𝑡 ) = ( 𝑢 ‘ 𝑡 ) ) |
| 265 |
264
|
sumeq2dv |
⊢ ( 𝑠 = 𝑢 → Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ) |
| 266 |
265
|
breq1d |
⊢ ( 𝑠 = 𝑢 → ( Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ↔ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
| 267 |
266
|
elrab |
⊢ ( 𝑢 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ↔ ( 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
| 268 |
267
|
simplbi |
⊢ ( 𝑢 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 269 |
262 268
|
sylbi |
⊢ ( 𝑢 ∈ 𝑆 → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 270 |
269
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 271 |
270
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 272 |
271
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 273 |
261 272
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 274 |
19
|
eleq2i |
⊢ ( 𝑣 ∈ 𝑆 ↔ 𝑣 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ) |
| 275 |
|
elrabi |
⊢ ( 𝑣 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } → 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 276 |
274 275
|
sylbi |
⊢ ( 𝑣 ∈ 𝑆 → 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 277 |
276
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 278 |
277
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 279 |
261 278
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐺 ‘ 𝑣 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 280 |
|
eqid |
⊢ ( -g ‘ ( Poly1 ‘ 𝐾 ) ) = ( -g ‘ ( Poly1 ‘ 𝐾 ) ) |
| 281 |
207 280
|
grpsubcl |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Grp ∧ ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝐺 ‘ 𝑣 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 282 |
257 273 279 281
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 283 |
|
neqne |
⊢ ( ¬ 𝑢 = 𝑣 → 𝑢 ≠ 𝑣 ) |
| 284 |
283
|
adantl |
⊢ ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) → 𝑢 ≠ 𝑣 ) |
| 285 |
284
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑢 ≠ 𝑣 ) |
| 286 |
272 278
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) |
| 287 |
|
f1fveq |
⊢ ( ( 𝐺 : ( ℕ0 ↑m ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) → ( ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑣 ) ↔ 𝑢 = 𝑣 ) ) |
| 288 |
259 286 287
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑣 ) ↔ 𝑢 = 𝑣 ) ) |
| 289 |
288
|
bicomd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑢 = 𝑣 ↔ ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑣 ) ) ) |
| 290 |
289
|
necon3bid |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑢 ≠ 𝑣 ↔ ( 𝐺 ‘ 𝑢 ) ≠ ( 𝐺 ‘ 𝑣 ) ) ) |
| 291 |
290
|
biimpd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑢 ≠ 𝑣 → ( 𝐺 ‘ 𝑢 ) ≠ ( 𝐺 ‘ 𝑣 ) ) ) |
| 292 |
285 291
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐺 ‘ 𝑢 ) ≠ ( 𝐺 ‘ 𝑣 ) ) |
| 293 |
207 249 280
|
grpsubeq0 |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Grp ∧ ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝐺 ‘ 𝑣 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑣 ) ) ) |
| 294 |
293
|
necon3bid |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Grp ∧ ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( 𝐺 ‘ 𝑣 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( 𝐺 ‘ 𝑢 ) ≠ ( 𝐺 ‘ 𝑣 ) ) ) |
| 295 |
257 273 279 294
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( 𝐺 ‘ 𝑢 ) ≠ ( 𝐺 ‘ 𝑣 ) ) ) |
| 296 |
292 295
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
| 297 |
205 207 247 204 248 249 252 282 296
|
fta1g |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 298 |
247 205 207
|
deg1xrcl |
⊢ ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℝ* ) |
| 299 |
282 298
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℝ* ) |
| 300 |
116
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐷 ∈ ℝ ) |
| 301 |
|
1red |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 1 ∈ ℝ ) |
| 302 |
300 301
|
resubcld |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐷 − 1 ) ∈ ℝ ) |
| 303 |
302
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐷 − 1 ) ∈ ℝ* ) |
| 304 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝜑 ) |
| 305 |
|
fvexd |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V ) |
| 306 |
|
cnvexg |
⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V → ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V ) |
| 307 |
305 306
|
syl |
⊢ ( 𝜑 → ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V ) |
| 308 |
307
|
imaexd |
⊢ ( 𝜑 → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ) |
| 309 |
|
hashxnn0 |
⊢ ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0* ) |
| 310 |
|
xnn0xr |
⊢ ( ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0* → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ* ) |
| 311 |
304 308 309 310
|
4syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ* ) |
| 312 |
247 205 207
|
deg1xrcl |
⊢ ( ( 𝐺 ‘ 𝑣 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ∈ ℝ* ) |
| 313 |
279 312
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ∈ ℝ* ) |
| 314 |
247 205 207
|
deg1xrcl |
⊢ ( ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ∈ ℝ* ) |
| 315 |
273 314
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ∈ ℝ* ) |
| 316 |
313 315
|
ifcld |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ∈ ℝ* ) |
| 317 |
252
|
idomringd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐾 ∈ Ring ) |
| 318 |
205 247 317 207 280 273 279
|
deg1suble |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ≤ if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) |
| 319 |
|
id |
⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) |
| 320 |
319
|
breq1d |
⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) → ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ≤ ( 𝐷 − 1 ) ↔ if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( 𝐷 − 1 ) ) ) |
| 321 |
|
id |
⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) |
| 322 |
321
|
breq1d |
⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) = if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) → ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( 𝐷 − 1 ) ↔ if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( 𝐷 − 1 ) ) ) |
| 323 |
3
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐾 ∈ Field ) |
| 324 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑃 ∈ ℙ ) |
| 325 |
5
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑅 ∈ ℕ ) |
| 326 |
6
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑁 ∈ ℕ ) |
| 327 |
7
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑃 ∥ 𝑁 ) |
| 328 |
8
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 329 |
9
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐴 < 𝑃 ) |
| 330 |
11
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐴 ∈ ℕ0 ) |
| 331 |
14
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 332 |
15
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 333 |
16
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
| 334 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑣 ∈ 𝑆 ) |
| 335 |
334 276
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 336 |
1 2 323 324 325 326 327 328 329 10 330 12 13 331 332 333 17 18 19 335
|
aks6d1c6lem1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ) |
| 337 |
|
simpl |
⊢ ( ( 𝑠 = 𝑣 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 𝑠 = 𝑣 ) |
| 338 |
337
|
fveq1d |
⊢ ( ( 𝑠 = 𝑣 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( 𝑠 ‘ 𝑡 ) = ( 𝑣 ‘ 𝑡 ) ) |
| 339 |
338
|
sumeq2dv |
⊢ ( 𝑠 = 𝑣 → Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ) |
| 340 |
339
|
breq1d |
⊢ ( 𝑠 = 𝑣 → ( Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ↔ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
| 341 |
340
|
elrab |
⊢ ( 𝑣 ∈ { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } ↔ ( 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
| 342 |
274 341
|
bitri |
⊢ ( 𝑣 ∈ 𝑆 ↔ ( 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
| 343 |
334 342
|
sylib |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑣 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
| 344 |
343
|
simprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) |
| 345 |
336 344
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ≤ ( 𝐷 − 1 ) ) |
| 346 |
3
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐾 ∈ Field ) |
| 347 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑃 ∈ ℙ ) |
| 348 |
5
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑅 ∈ ℕ ) |
| 349 |
6
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑁 ∈ ℕ ) |
| 350 |
7
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑃 ∥ 𝑁 ) |
| 351 |
8
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 352 |
9
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐴 < 𝑃 ) |
| 353 |
11
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝐴 ∈ ℕ0 ) |
| 354 |
14
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 355 |
15
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 356 |
16
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
| 357 |
272
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 358 |
1 2 346 347 348 349 350 351 352 10 353 12 13 354 355 356 17 18 19 357
|
aks6d1c6lem1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ) |
| 359 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → 𝑢 ∈ 𝑆 ) |
| 360 |
262 267
|
bitri |
⊢ ( 𝑢 ∈ 𝑆 ↔ ( 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
| 361 |
359 360
|
sylib |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( 𝑢 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∧ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) ) |
| 362 |
361
|
simprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) ) |
| 363 |
358 362
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ∧ ¬ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( 𝐷 − 1 ) ) |
| 364 |
320 322 345 363
|
ifbothda |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) , ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ≤ ( 𝐷 − 1 ) ) |
| 365 |
299 316 303 318 364
|
xrletrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ≤ ( 𝐷 − 1 ) ) |
| 366 |
300
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐷 ∈ ℝ* ) |
| 367 |
300
|
ltm1d |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐷 − 1 ) < 𝐷 ) |
| 368 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑢 ∈ 𝑆 ) |
| 369 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑣 ∈ 𝑆 ) |
| 370 |
304 368 369
|
jca31 |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ) |
| 371 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) |
| 372 |
370 371
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) ) |
| 373 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐾 ∈ Field ) |
| 374 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑃 ∈ ℙ ) |
| 375 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑅 ∈ ℕ ) |
| 376 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑁 ∈ ℕ ) |
| 377 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑃 ∥ 𝑁 ) |
| 378 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 379 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐴 < 𝑃 ) |
| 380 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐴 ∈ ℕ0 ) |
| 381 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 382 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 383 |
16
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
| 384 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑢 ∈ 𝑆 ) |
| 385 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑣 ∈ 𝑆 ) |
| 386 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ) |
| 387 |
284
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝑢 ≠ 𝑣 ) |
| 388 |
21
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) ≤ ( ♯ ‘ ( 𝐽 “ ( ℕ0 × ℕ0 ) ) ) ) |
| 389 |
1 2 373 374 375 376 377 378 379 10 380 12 13 381 382 383 17 18 19 384 385 386 387 20 388
|
aks6d1c6lem2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐷 ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
| 390 |
372 389
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → 𝐷 ≤ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
| 391 |
303 366 311 367 390
|
xrltletrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( 𝐷 − 1 ) < ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
| 392 |
299 303 311 365 391
|
xrlelttrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) < ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ) |
| 393 |
247 205 249 207
|
deg1nn0clb |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℕ0 ) ) |
| 394 |
317 282 393
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℕ0 ) ) |
| 395 |
296 394
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℕ0 ) |
| 396 |
395
|
nn0red |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℝ ) |
| 397 |
396
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℝ* ) |
| 398 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V ) |
| 399 |
398 306
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ V ) |
| 400 |
399
|
imaexd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ∈ V ) |
| 401 |
400 309
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℕ0* ) |
| 402 |
401 310
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ* ) |
| 403 |
|
xrltnle |
⊢ ( ( ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ∈ ℝ* ∧ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ∈ ℝ* ) → ( ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) < ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ↔ ¬ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) ) |
| 404 |
397 402 403
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) < ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ↔ ¬ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) ) |
| 405 |
392 404
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ¬ ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) “ { ( 0g ‘ 𝐾 ) } ) ) ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 406 |
297 405
|
pm2.21dd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
| 407 |
406
|
ex |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ∧ ¬ 𝑢 = 𝑣 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
| 408 |
246 407
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
| 409 |
|
biidd |
⊢ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ( 𝑢 = 𝑣 ↔ 𝑢 = 𝑣 ) ) |
| 410 |
409
|
necon3abid |
⊢ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ( 𝑢 ≠ 𝑣 ↔ ¬ 𝑢 = 𝑣 ) ) |
| 411 |
410
|
necon1bbid |
⊢ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ( ¬ ¬ 𝑢 = 𝑣 ↔ 𝑢 = 𝑣 ) ) |
| 412 |
411
|
pm5.74i |
⊢ ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) ↔ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 413 |
412
|
notbii |
⊢ ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 414 |
413
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 415 |
414
|
imbi1d |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → ¬ ¬ 𝑢 = 𝑣 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ↔ ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) ) |
| 416 |
408 415
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) → ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
| 417 |
416
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ 𝑢 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑆 ) ∧ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
| 418 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑢 → ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) ↔ ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) ) ) |
| 419 |
|
equequ1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 = 𝑦 ↔ 𝑢 = 𝑦 ) ) |
| 420 |
418 419
|
imbi12d |
⊢ ( 𝑥 = 𝑢 → ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑢 = 𝑦 ) ) ) |
| 421 |
420
|
notbid |
⊢ ( 𝑥 = 𝑢 → ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑢 = 𝑦 ) ) ) |
| 422 |
|
fveq2 |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ) |
| 423 |
422
|
eqeq2d |
⊢ ( 𝑦 = 𝑣 → ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) ↔ ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) ) ) |
| 424 |
|
equequ2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 = 𝑦 ↔ 𝑢 = 𝑣 ) ) |
| 425 |
423 424
|
imbi12d |
⊢ ( 𝑦 = 𝑣 → ( ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑢 = 𝑦 ) ↔ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 426 |
425
|
notbid |
⊢ ( 𝑦 = 𝑣 → ( ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑢 = 𝑦 ) ↔ ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 427 |
421 426
|
cbvrex2vw |
⊢ ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 428 |
427
|
biimpi |
⊢ ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 429 |
428
|
adantl |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑢 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 430 |
417 429
|
r19.29vva |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
| 431 |
430
|
ex |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
| 432 |
|
rexnal2 |
⊢ ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 433 |
432
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 434 |
433
|
imbi1d |
⊢ ( 𝜑 → ( ( ∃ 𝑥 ∈ 𝑆 ∃ 𝑦 ∈ 𝑆 ¬ ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ↔ ( ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) ) |
| 435 |
431 434
|
mpbid |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
| 436 |
244 435
|
jaod |
⊢ ( 𝜑 → ( ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∨ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
| 437 |
|
ianor |
⊢ ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∨ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 438 |
437
|
a1i |
⊢ ( 𝜑 → ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∨ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 439 |
438
|
biimpd |
⊢ ( 𝜑 → ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∨ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 440 |
439
|
imim1d |
⊢ ( 𝜑 → ( ( ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∨ ¬ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) → ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) ) |
| 441 |
436 440
|
mpd |
⊢ ( 𝜑 → ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
| 442 |
|
dff13 |
⊢ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ↔ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 443 |
442
|
a1i |
⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ↔ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 444 |
443
|
notbid |
⊢ ( 𝜑 → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ↔ ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 445 |
444
|
biimpd |
⊢ ( 𝜑 → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) → ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 446 |
445
|
imim1d |
⊢ ( 𝜑 → ( ( ¬ ( ( 𝐻 ↾ 𝑆 ) : 𝑆 ⟶ ( 𝐻 “ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑥 ) = ( ( 𝐻 ↾ 𝑆 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) ) |
| 447 |
441 446
|
mpd |
⊢ ( 𝜑 → ( ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) ) |
| 448 |
447
|
imp |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐻 ↾ 𝑆 ) : 𝑆 –1-1→ ( 𝐻 “ 𝑆 ) ) → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
| 449 |
192 448
|
pm2.61dan |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ) |
| 450 |
|
hashss |
⊢ ( ( ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ∈ V ∧ ( 𝐻 “ 𝑆 ) ⊆ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ≤ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |
| 451 |
135 152 450
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐻 “ 𝑆 ) ) ≤ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |
| 452 |
131 157 161 449 451
|
xrletrd |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐴 ) C ( 𝐷 − 1 ) ) ≤ ( ♯ ‘ ( 𝐻 “ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) ) ) |