| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6.1 | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } | 
						
							| 2 |  | aks6d1c6.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks6d1c6.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks6d1c6.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks6d1c6.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks6d1c6.6 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | aks6d1c6.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks6d1c6.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks6d1c6.9 | ⊢ ( 𝜑  →  𝐴  <  𝑃 ) | 
						
							| 10 |  | aks6d1c6.10 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c6.11 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 12 |  | aks6d1c6.12 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 13 |  | aks6d1c6.13 | ⊢ 𝐿  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 14 |  | aks6d1c6.14 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 15 |  | aks6d1c6.15 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 16 |  | aks6d1c6.16 | ⊢ ( 𝜑  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 17 |  | aks6d1c6.17 | ⊢ 𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) | 
						
							| 18 |  | aks6d1c6.18 | ⊢ 𝐷  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 19 |  | aks6d1c6.19 | ⊢ 𝑆  =  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } | 
						
							| 20 |  | aks6d1c6lem3.1 | ⊢ 𝐽  =  ( 𝑗  ∈  ( ℕ0  ×  ℕ0 )  ↦  ( ( 𝐸 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 ) ) | 
						
							| 21 |  | aks6d1c6lem3.2 | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≤  ( ♯ ‘ ( 𝐽  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 22 |  | eqid | ⊢ ( ℤ/nℤ ‘ 𝑅 )  =  ( ℤ/nℤ ‘ 𝑅 ) | 
						
							| 23 | 6 4 7 5 8 12 13 22 | hashscontpowcl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ∈  ℕ0 ) | 
						
							| 24 | 18 23 | eqeltrid | ⊢ ( 𝜑  →  𝐷  ∈  ℕ0 ) | 
						
							| 25 | 24 | nn0zd | ⊢ ( 𝜑  →  𝐷  ∈  ℤ ) | 
						
							| 26 | 25 | zcnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 27 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 28 | 11 | nn0cnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 29 | 26 27 28 | nppcan3d | ⊢ ( 𝜑  →  ( ( 𝐷  −  1 )  +  ( 𝐴  +  1 ) )  =  ( 𝐷  +  𝐴 ) ) | 
						
							| 30 | 29 | eqcomd | ⊢ ( 𝜑  →  ( 𝐷  +  𝐴 )  =  ( ( 𝐷  −  1 )  +  ( 𝐴  +  1 ) ) ) | 
						
							| 31 |  | hashfz0 | ⊢ ( 𝐴  ∈  ℕ0  →  ( ♯ ‘ ( 0 ... 𝐴 ) )  =  ( 𝐴  +  1 ) ) | 
						
							| 32 | 11 31 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... 𝐴 ) )  =  ( 𝐴  +  1 ) ) | 
						
							| 33 | 32 | eqcomd | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  =  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐷  −  1 )  +  ( 𝐴  +  1 ) )  =  ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) | 
						
							| 35 | 30 34 | eqtrd | ⊢ ( 𝜑  →  ( 𝐷  +  𝐴 )  =  ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) | 
						
							| 36 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 37 | 25 36 | zsubcld | ⊢ ( 𝜑  →  ( 𝐷  −  1 )  ∈  ℤ ) | 
						
							| 38 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  ( 0  +  1 )  =  1 ) | 
						
							| 40 |  | fvexd | ⊢ ( 𝜑  →  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) )  ∈  V ) | 
						
							| 41 | 13 40 | eqeltrid | ⊢ ( 𝜑  →  𝐿  ∈  V ) | 
						
							| 42 | 41 | imaexd | ⊢ ( 𝜑  →  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  V ) | 
						
							| 43 | 11 | ne0d | ⊢ ( 𝜑  →  ℕ0  ≠  ∅ ) | 
						
							| 44 | 43 43 | jca | ⊢ ( 𝜑  →  ( ℕ0  ≠  ∅  ∧  ℕ0  ≠  ∅ ) ) | 
						
							| 45 |  | xpnz | ⊢ ( ( ℕ0  ≠  ∅  ∧  ℕ0  ≠  ∅ )  ↔  ( ℕ0  ×  ℕ0 )  ≠  ∅ ) | 
						
							| 46 | 44 45 | sylib | ⊢ ( 𝜑  →  ( ℕ0  ×  ℕ0 )  ≠  ∅ ) | 
						
							| 47 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  ∈  V ) | 
						
							| 48 | 47 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ∀ 𝑙  ∈  ℕ0 ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  ∈  V ) | 
						
							| 49 | 48 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ0 ∀ 𝑙  ∈  ℕ0 ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  ∈  V ) | 
						
							| 50 | 12 | fnmpo | ⊢ ( ∀ 𝑘  ∈  ℕ0 ∀ 𝑙  ∈  ℕ0 ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  ∈  V  →  𝐸  Fn  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 51 | 49 50 | syl | ⊢ ( 𝜑  →  𝐸  Fn  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 52 |  | ssidd | ⊢ ( 𝜑  →  ( ℕ0  ×  ℕ0 )  ⊆  ( ℕ0  ×  ℕ0 ) ) | 
						
							| 53 |  | fnimaeq0 | ⊢ ( ( 𝐸  Fn  ( ℕ0  ×  ℕ0 )  ∧  ( ℕ0  ×  ℕ0 )  ⊆  ( ℕ0  ×  ℕ0 ) )  →  ( ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  =  ∅  ↔  ( ℕ0  ×  ℕ0 )  =  ∅ ) ) | 
						
							| 54 | 51 52 53 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  =  ∅  ↔  ( ℕ0  ×  ℕ0 )  =  ∅ ) ) | 
						
							| 55 | 54 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ≠  ∅  ↔  ( ℕ0  ×  ℕ0 )  ≠  ∅ ) ) | 
						
							| 56 | 46 55 | mpbird | ⊢ ( 𝜑  →  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ≠  ∅ ) | 
						
							| 57 | 5 | nnnn0d | ⊢ ( 𝜑  →  𝑅  ∈  ℕ0 ) | 
						
							| 58 | 22 | zncrng | ⊢ ( 𝑅  ∈  ℕ0  →  ( ℤ/nℤ ‘ 𝑅 )  ∈  CRing ) | 
						
							| 59 | 57 58 | syl | ⊢ ( 𝜑  →  ( ℤ/nℤ ‘ 𝑅 )  ∈  CRing ) | 
						
							| 60 |  | crngring | ⊢ ( ( ℤ/nℤ ‘ 𝑅 )  ∈  CRing  →  ( ℤ/nℤ ‘ 𝑅 )  ∈  Ring ) | 
						
							| 61 | 13 | zrhrhm | ⊢ ( ( ℤ/nℤ ‘ 𝑅 )  ∈  Ring  →  𝐿  ∈  ( ℤring  RingHom  ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 62 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 63 |  | eqid | ⊢ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) )  =  ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 64 | 62 63 | rhmf | ⊢ ( 𝐿  ∈  ( ℤring  RingHom  ( ℤ/nℤ ‘ 𝑅 ) )  →  𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 65 | 59 60 61 64 | 4syl | ⊢ ( 𝜑  →  𝐿 : ℤ ⟶ ( Base ‘ ( ℤ/nℤ ‘ 𝑅 ) ) ) | 
						
							| 66 | 65 | ffnd | ⊢ ( 𝜑  →  𝐿  Fn  ℤ ) | 
						
							| 67 | 12 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) ) | 
						
							| 68 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑥  ∧  𝑙  =  𝑦 ) )  →  𝑘  =  𝑥 ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑥  ∧  𝑙  =  𝑦 ) )  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 𝑥 ) ) | 
						
							| 70 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑥  ∧  𝑙  =  𝑦 ) )  →  𝑙  =  𝑦 ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑥  ∧  𝑙  =  𝑦 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑦 ) ) | 
						
							| 72 | 69 71 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑥  ∧  𝑙  =  𝑦 ) )  →  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  =  ( ( 𝑃 ↑ 𝑥 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑦 ) ) ) | 
						
							| 73 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  𝑥  ∈  ℕ0 ) | 
						
							| 74 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  𝑦  ∈  ℕ0 ) | 
						
							| 75 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑥 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑦 ) )  ∈  V ) | 
						
							| 76 | 67 72 73 74 75 | ovmpod | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑥 𝐸 𝑦 )  =  ( ( 𝑃 ↑ 𝑥 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑦 ) ) ) | 
						
							| 77 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  𝑃  ∈  ℙ ) | 
						
							| 78 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 79 | 77 78 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  𝑃  ∈  ℕ ) | 
						
							| 80 | 79 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  𝑃  ∈  ℤ ) | 
						
							| 81 | 80 73 | zexpcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑥 )  ∈  ℤ ) | 
						
							| 82 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  𝑃  ∥  𝑁 ) | 
						
							| 83 | 79 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  𝑃  ≠  0 ) | 
						
							| 84 | 6 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 87 |  | dvdsval2 | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑃  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝑃  ∥  𝑁  ↔  ( 𝑁  /  𝑃 )  ∈  ℤ ) ) | 
						
							| 88 | 80 83 86 87 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑃  ∥  𝑁  ↔  ( 𝑁  /  𝑃 )  ∈  ℤ ) ) | 
						
							| 89 | 82 88 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ∈  ℤ ) | 
						
							| 90 | 89 74 | zexpcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑦 )  ∈  ℤ ) | 
						
							| 91 | 81 90 | zmulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑥 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑦 ) )  ∈  ℤ ) | 
						
							| 92 | 76 91 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑥 𝐸 𝑦 )  ∈  ℤ ) | 
						
							| 93 | 92 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ0 )  →  ∀ 𝑦  ∈  ℕ0 ( 𝑥 𝐸 𝑦 )  ∈  ℤ ) | 
						
							| 94 | 93 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℕ0 ∀ 𝑦  ∈  ℕ0 ( 𝑥 𝐸 𝑦 )  ∈  ℤ ) | 
						
							| 95 | 51 94 | jca | ⊢ ( 𝜑  →  ( 𝐸  Fn  ( ℕ0  ×  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ∀ 𝑦  ∈  ℕ0 ( 𝑥 𝐸 𝑦 )  ∈  ℤ ) ) | 
						
							| 96 |  | ffnov | ⊢ ( 𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℤ  ↔  ( 𝐸  Fn  ( ℕ0  ×  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ∀ 𝑦  ∈  ℕ0 ( 𝑥 𝐸 𝑦 )  ∈  ℤ ) ) | 
						
							| 97 | 95 96 | sylibr | ⊢ ( 𝜑  →  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℤ ) | 
						
							| 98 |  | frn | ⊢ ( 𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℤ  →  ran  𝐸  ⊆  ℤ ) | 
						
							| 99 | 97 98 | syl | ⊢ ( 𝜑  →  ran  𝐸  ⊆  ℤ ) | 
						
							| 100 |  | fnima | ⊢ ( 𝐸  Fn  ( ℕ0  ×  ℕ0 )  →  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  =  ran  𝐸 ) | 
						
							| 101 | 51 100 | syl | ⊢ ( 𝜑  →  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  =  ran  𝐸 ) | 
						
							| 102 | 101 | sseq1d | ⊢ ( 𝜑  →  ( ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ℤ  ↔  ran  𝐸  ⊆  ℤ ) ) | 
						
							| 103 | 99 102 | mpbird | ⊢ ( 𝜑  →  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ℤ ) | 
						
							| 104 |  | fnimaeq0 | ⊢ ( ( 𝐿  Fn  ℤ  ∧  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ⊆  ℤ )  →  ( ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  =  ∅  ↔  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  =  ∅ ) ) | 
						
							| 105 | 66 103 104 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  =  ∅  ↔  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  =  ∅ ) ) | 
						
							| 106 | 105 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ≠  ∅  ↔  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) )  ≠  ∅ ) ) | 
						
							| 107 | 56 106 | mpbird | ⊢ ( 𝜑  →  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ≠  ∅ ) | 
						
							| 108 |  | hashge1 | ⊢ ( ( ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  V  ∧  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ≠  ∅ )  →  1  ≤  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) ) | 
						
							| 109 | 18 | eqcomi | ⊢ ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  =  𝐷 | 
						
							| 110 | 109 | a1i | ⊢ ( ( ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  V  ∧  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ≠  ∅ )  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  =  𝐷 ) | 
						
							| 111 | 108 110 | breqtrd | ⊢ ( ( ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ∈  V  ∧  ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) )  ≠  ∅ )  →  1  ≤  𝐷 ) | 
						
							| 112 | 42 107 111 | syl2anc | ⊢ ( 𝜑  →  1  ≤  𝐷 ) | 
						
							| 113 | 39 112 | eqbrtrd | ⊢ ( 𝜑  →  ( 0  +  1 )  ≤  𝐷 ) | 
						
							| 114 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 115 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 116 | 24 | nn0red | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 117 |  | leaddsub | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐷  ∈  ℝ )  →  ( ( 0  +  1 )  ≤  𝐷  ↔  0  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 118 | 114 115 116 117 | syl3anc | ⊢ ( 𝜑  →  ( ( 0  +  1 )  ≤  𝐷  ↔  0  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 119 | 113 118 | mpbid | ⊢ ( 𝜑  →  0  ≤  ( 𝐷  −  1 ) ) | 
						
							| 120 | 37 119 | jca | ⊢ ( 𝜑  →  ( ( 𝐷  −  1 )  ∈  ℤ  ∧  0  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 121 |  | elnn0z | ⊢ ( ( 𝐷  −  1 )  ∈  ℕ0  ↔  ( ( 𝐷  −  1 )  ∈  ℤ  ∧  0  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 122 | 120 121 | sylibr | ⊢ ( 𝜑  →  ( 𝐷  −  1 )  ∈  ℕ0 ) | 
						
							| 123 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ∈  Fin ) | 
						
							| 124 |  | hashcl | ⊢ ( ( 0 ... 𝐴 )  ∈  Fin  →  ( ♯ ‘ ( 0 ... 𝐴 ) )  ∈  ℕ0 ) | 
						
							| 125 | 123 124 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... 𝐴 ) )  ∈  ℕ0 ) | 
						
							| 126 | 122 125 | nn0addcld | ⊢ ( 𝜑  →  ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) )  ∈  ℕ0 ) | 
						
							| 127 | 35 126 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐷  +  𝐴 )  ∈  ℕ0 ) | 
						
							| 128 |  | bccl | ⊢ ( ( ( 𝐷  +  𝐴 )  ∈  ℕ0  ∧  ( 𝐷  −  1 )  ∈  ℤ )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ∈  ℕ0 ) | 
						
							| 129 | 127 37 128 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ∈  ℕ0 ) | 
						
							| 130 | 129 | nn0red | ⊢ ( 𝜑  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ∈  ℝ ) | 
						
							| 131 | 130 | rexrd | ⊢ ( 𝜑  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ∈  ℝ* ) | 
						
							| 132 |  | ovexd | ⊢ ( 𝜑  →  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∈  V ) | 
						
							| 133 | 132 | mptexd | ⊢ ( 𝜑  →  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) )  ∈  V ) | 
						
							| 134 | 17 133 | eqeltrid | ⊢ ( 𝜑  →  𝐻  ∈  V ) | 
						
							| 135 | 134 | imaexd | ⊢ ( 𝜑  →  ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∈  V ) | 
						
							| 136 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) )  →  𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 137 | 136 | ex | ⊢ ( 𝜑  →  ( ( 𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) )  →  𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) | 
						
							| 138 |  | simpl | ⊢ ( ( 𝑠  =  𝑤  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  𝑠  =  𝑤 ) | 
						
							| 139 | 138 | fveq1d | ⊢ ( ( 𝑠  =  𝑤  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑠 ‘ 𝑡 )  =  ( 𝑤 ‘ 𝑡 ) ) | 
						
							| 140 | 139 | sumeq2dv | ⊢ ( 𝑠  =  𝑤  →  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  =  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 ) ) | 
						
							| 141 | 140 | breq1d | ⊢ ( 𝑠  =  𝑤  →  ( Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 )  ↔  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 142 | 141 | elrab | ⊢ ( 𝑤  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  ↔  ( 𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 143 | 142 | a1i | ⊢ ( 𝜑  →  ( 𝑤  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  ↔  ( 𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) ) | 
						
							| 144 | 143 | biimpd | ⊢ ( 𝜑  →  ( 𝑤  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  →  ( 𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) ) | 
						
							| 145 | 144 | imim1d | ⊢ ( 𝜑  →  ( ( ( 𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑤 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) )  →  𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( 𝑤  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  →  𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) ) | 
						
							| 146 | 137 145 | mpd | ⊢ ( 𝜑  →  ( 𝑤  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  →  𝑤  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) | 
						
							| 147 | 146 | ssrdv | ⊢ ( 𝜑  →  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  ⊆  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 148 | 19 | a1i | ⊢ ( 𝜑  →  𝑆  =  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } ) | 
						
							| 149 | 148 | sseq1d | ⊢ ( 𝜑  →  ( 𝑆  ⊆  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  ⊆  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) | 
						
							| 150 | 147 149 | mpbird | ⊢ ( 𝜑  →  𝑆  ⊆  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 151 |  | imass2 | ⊢ ( 𝑆  ⊆  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  →  ( 𝐻  “  𝑆 )  ⊆  ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) | 
						
							| 152 | 150 151 | syl | ⊢ ( 𝜑  →  ( 𝐻  “  𝑆 )  ⊆  ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) | 
						
							| 153 | 135 152 | ssexd | ⊢ ( 𝜑  →  ( 𝐻  “  𝑆 )  ∈  V ) | 
						
							| 154 |  | hashxnn0 | ⊢ ( ( 𝐻  “  𝑆 )  ∈  V  →  ( ♯ ‘ ( 𝐻  “  𝑆 ) )  ∈  ℕ0* ) | 
						
							| 155 | 153 154 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐻  “  𝑆 ) )  ∈  ℕ0* ) | 
						
							| 156 |  | xnn0xr | ⊢ ( ( ♯ ‘ ( 𝐻  “  𝑆 ) )  ∈  ℕ0*  →  ( ♯ ‘ ( 𝐻  “  𝑆 ) )  ∈  ℝ* ) | 
						
							| 157 | 155 156 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐻  “  𝑆 ) )  ∈  ℝ* ) | 
						
							| 158 |  | hashxnn0 | ⊢ ( ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∈  V  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ∈  ℕ0* ) | 
						
							| 159 | 135 158 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ∈  ℕ0* ) | 
						
							| 160 |  | xnn0xr | ⊢ ( ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ∈  ℕ0*  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ∈  ℝ* ) | 
						
							| 161 | 159 160 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  ∈  ℝ* ) | 
						
							| 162 | 122 | nn0cnd | ⊢ ( 𝜑  →  ( 𝐷  −  1 )  ∈  ℂ ) | 
						
							| 163 | 125 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... 𝐴 ) )  ∈  ℂ ) | 
						
							| 164 | 162 163 | pncand | ⊢ ( 𝜑  →  ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) )  −  ( ♯ ‘ ( 0 ... 𝐴 ) ) )  =  ( 𝐷  −  1 ) ) | 
						
							| 165 | 164 | eqcomd | ⊢ ( 𝜑  →  ( 𝐷  −  1 )  =  ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) )  −  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) | 
						
							| 166 | 35 165 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  =  ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) )  −  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) | 
						
							| 167 | 11 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 168 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 169 | 11 | nn0zd | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 170 |  | eluz | ⊢ ( ( 0  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 𝐴  ∈  ( ℤ≥ ‘ 0 )  ↔  0  ≤  𝐴 ) ) | 
						
							| 171 | 168 169 170 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( ℤ≥ ‘ 0 )  ↔  0  ≤  𝐴 ) ) | 
						
							| 172 | 167 171 | mpbird | ⊢ ( 𝜑  →  𝐴  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 173 |  | fzn0 | ⊢ ( ( 0 ... 𝐴 )  ≠  ∅  ↔  𝐴  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 174 | 172 173 | sylibr | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ≠  ∅ ) | 
						
							| 175 | 122 123 174 19 | sticksstones23 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑆 )  =  ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) | 
						
							| 176 | 125 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... 𝐴 ) )  ∈  ℤ ) | 
						
							| 177 |  | bccmpl | ⊢ ( ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) )  ∈  ℕ0  ∧  ( ♯ ‘ ( 0 ... 𝐴 ) )  ∈  ℤ )  →  ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ♯ ‘ ( 0 ... 𝐴 ) ) )  =  ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) )  −  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) | 
						
							| 178 | 126 176 177 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ♯ ‘ ( 0 ... 𝐴 ) ) )  =  ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) )  −  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) | 
						
							| 179 | 175 178 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑆 )  =  ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) )  −  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) ) ) | 
						
							| 180 | 179 | eqcomd | ⊢ ( 𝜑  →  ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) C ( ( ( 𝐷  −  1 )  +  ( ♯ ‘ ( 0 ... 𝐴 ) ) )  −  ( ♯ ‘ ( 0 ... 𝐴 ) ) ) )  =  ( ♯ ‘ 𝑆 ) ) | 
						
							| 181 | 166 180 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  =  ( ♯ ‘ 𝑆 ) ) | 
						
							| 182 | 181 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  =  ( ♯ ‘ 𝑆 ) ) | 
						
							| 183 | 17 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) | 
						
							| 184 |  | ovexd | ⊢ ( ( 𝜑  ∧  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∈  V ) | 
						
							| 185 | 184 | mptexd | ⊢ ( ( 𝜑  ∧  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) )  ∈  V ) | 
						
							| 186 | 183 185 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  𝐻  ∈  V ) | 
						
							| 187 | 186 | resexd | ⊢ ( ( 𝜑  ∧  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  ( 𝐻  ↾  𝑆 )  ∈  V ) | 
						
							| 188 | 186 | imaexd | ⊢ ( ( 𝜑  ∧  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  ( 𝐻  “  𝑆 )  ∈  V ) | 
						
							| 189 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) ) | 
						
							| 190 |  | hashf1dmcdm | ⊢ ( ( ( 𝐻  ↾  𝑆 )  ∈  V  ∧  ( 𝐻  “  𝑆 )  ∈  V  ∧  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  ( ♯ ‘ 𝑆 )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) | 
						
							| 191 | 187 188 189 190 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  ( ♯ ‘ 𝑆 )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) | 
						
							| 192 | 182 191 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) | 
						
							| 193 | 17 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) ) | 
						
							| 194 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  ℎ  =  𝑗 )  →  ℎ  =  𝑗 ) | 
						
							| 195 | 194 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  ℎ  =  𝑗 )  →  ( 𝐺 ‘ ℎ )  =  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 196 | 195 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  ℎ  =  𝑗 )  →  ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) )  =  ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 197 | 196 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  ∧  ℎ  =  𝑗 )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 ) ) | 
						
							| 198 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) )  →  𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 199 | 198 | rabssdv | ⊢ ( 𝜑  →  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  ⊆  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 200 | 19 199 | eqsstrid | ⊢ ( 𝜑  →  𝑆  ⊆  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 201 | 200 | sselda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  𝑗  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 202 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 )  ∈  V ) | 
						
							| 203 | 193 197 201 202 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝐻 ‘ 𝑗 )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 ) ) | 
						
							| 204 |  | eqid | ⊢ ( eval1 ‘ 𝐾 )  =  ( eval1 ‘ 𝐾 ) | 
						
							| 205 |  | eqid | ⊢ ( Poly1 ‘ 𝐾 )  =  ( Poly1 ‘ 𝐾 ) | 
						
							| 206 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 207 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 208 | 3 | fldcrngd | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 209 | 208 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  𝐾  ∈  CRing ) | 
						
							| 210 |  | eqid | ⊢ ( mulGrp ‘ 𝐾 )  =  ( mulGrp ‘ 𝐾 ) | 
						
							| 211 | 210 | crngmgp | ⊢ ( 𝐾  ∈  CRing  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 212 | 208 211 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝐾 )  ∈  CMnd ) | 
						
							| 213 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝐾 ) )  =  ( .g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 214 | 212 57 213 | isprimroot | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  ↔  ( 𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ∀ 𝑣  ∈  ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑅  ∥  𝑣 ) ) ) ) | 
						
							| 215 | 214 | biimpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 )  →  ( 𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ∀ 𝑣  ∈  ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑅  ∥  𝑣 ) ) ) ) | 
						
							| 216 | 16 215 | mpd | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ( 𝑅 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  ∧  ∀ 𝑣  ∈  ℕ0 ( ( 𝑣 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑀 )  =  ( 0g ‘ ( mulGrp ‘ 𝐾 ) )  →  𝑅  ∥  𝑣 ) ) ) | 
						
							| 217 | 216 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) | 
						
							| 218 | 210 206 | mgpbas | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 219 | 218 | eqcomi | ⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) )  =  ( Base ‘ 𝐾 ) | 
						
							| 220 | 217 219 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 221 | 220 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  𝑀  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 222 |  | eqid | ⊢ ( var1 ‘ 𝐾 )  =  ( var1 ‘ 𝐾 ) | 
						
							| 223 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 224 | 3 4 2 11 9 222 223 10 | aks6d1c5lem0 | ⊢ ( 𝜑  →  𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 225 | 224 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 226 | 225 201 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝐺 ‘ 𝑗 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 227 | 204 205 206 207 209 221 226 | fveval1fvcl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑗 ) ) ‘ 𝑀 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 228 | 203 227 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  ( 𝐻 ‘ 𝑗 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 229 |  | eqid | ⊢ ( 𝑗  ∈  𝑆  ↦  ( 𝐻 ‘ 𝑗 ) )  =  ( 𝑗  ∈  𝑆  ↦  ( 𝐻 ‘ 𝑗 ) ) | 
						
							| 230 | 228 229 | fmptd | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝑆  ↦  ( 𝐻 ‘ 𝑗 ) ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 231 |  | fvexd | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  →  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 )  ∈  V ) | 
						
							| 232 | 231 17 | fmptd | ⊢ ( 𝜑  →  𝐻 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ⟶ V ) | 
						
							| 233 | 232 200 | feqresmpt | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑆 )  =  ( 𝑗  ∈  𝑆  ↦  ( 𝐻 ‘ 𝑗 ) ) ) | 
						
							| 234 | 233 | feq1d | ⊢ ( 𝜑  →  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( Base ‘ 𝐾 )  ↔  ( 𝑗  ∈  𝑆  ↦  ( 𝐻 ‘ 𝑗 ) ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) ) ) | 
						
							| 235 | 230 234 | mpbird | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 236 |  | ffrn | ⊢ ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( Base ‘ 𝐾 )  →  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ran  ( 𝐻  ↾  𝑆 ) ) | 
						
							| 237 | 235 236 | syl | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ran  ( 𝐻  ↾  𝑆 ) ) | 
						
							| 238 |  | df-ima | ⊢ ( 𝐻  “  𝑆 )  =  ran  ( 𝐻  ↾  𝑆 ) | 
						
							| 239 | 238 | a1i | ⊢ ( 𝜑  →  ( 𝐻  “  𝑆 )  =  ran  ( 𝐻  ↾  𝑆 ) ) | 
						
							| 240 | 239 | feq3d | ⊢ ( 𝜑  →  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ↔  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ran  ( 𝐻  ↾  𝑆 ) ) ) | 
						
							| 241 | 237 240 | mpbird | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 ) ) | 
						
							| 242 | 241 | notnotd | ⊢ ( 𝜑  →  ¬  ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 ) ) | 
						
							| 243 | 242 | a1d | ⊢ ( 𝜑  →  ( ¬  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) )  →  ¬  ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 ) ) ) | 
						
							| 244 | 243 | con4d | ⊢ ( 𝜑  →  ( ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) | 
						
							| 245 |  | df-an | ⊢ ( ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 )  ↔  ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  ¬  ¬  𝑢  =  𝑣 ) ) | 
						
							| 246 | 245 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  →  ( ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 )  ↔  ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  ¬  ¬  𝑢  =  𝑣 ) ) ) | 
						
							| 247 |  | eqid | ⊢ ( deg1 ‘ 𝐾 )  =  ( deg1 ‘ 𝐾 ) | 
						
							| 248 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 249 |  | eqid | ⊢ ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 250 |  | fldidom | ⊢ ( 𝐾  ∈  Field  →  𝐾  ∈  IDomn ) | 
						
							| 251 | 3 250 | syl | ⊢ ( 𝜑  →  𝐾  ∈  IDomn ) | 
						
							| 252 | 251 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝐾  ∈  IDomn ) | 
						
							| 253 | 205 | ply1crng | ⊢ ( 𝐾  ∈  CRing  →  ( Poly1 ‘ 𝐾 )  ∈  CRing ) | 
						
							| 254 |  | crngring | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  CRing  →  ( Poly1 ‘ 𝐾 )  ∈  Ring ) | 
						
							| 255 |  | ringgrp | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  Ring  →  ( Poly1 ‘ 𝐾 )  ∈  Grp ) | 
						
							| 256 | 208 253 254 255 | 4syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Grp ) | 
						
							| 257 | 256 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( Poly1 ‘ 𝐾 )  ∈  Grp ) | 
						
							| 258 | 3 4 2 11 9 222 223 10 | aks6d1c5 | ⊢ ( 𝜑  →  𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 259 | 258 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 260 |  | f1f | ⊢ ( 𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  →  𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 261 | 259 260 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ⟶ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 262 | 19 | eleq2i | ⊢ ( 𝑢  ∈  𝑆  ↔  𝑢  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } ) | 
						
							| 263 |  | simpl | ⊢ ( ( 𝑠  =  𝑢  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  𝑠  =  𝑢 ) | 
						
							| 264 | 263 | fveq1d | ⊢ ( ( 𝑠  =  𝑢  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑠 ‘ 𝑡 )  =  ( 𝑢 ‘ 𝑡 ) ) | 
						
							| 265 | 264 | sumeq2dv | ⊢ ( 𝑠  =  𝑢  →  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  =  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ) | 
						
							| 266 | 265 | breq1d | ⊢ ( 𝑠  =  𝑢  →  ( Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 )  ↔  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 267 | 266 | elrab | ⊢ ( 𝑢  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  ↔  ( 𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 268 | 267 | simplbi | ⊢ ( 𝑢  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  →  𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 269 | 262 268 | sylbi | ⊢ ( 𝑢  ∈  𝑆  →  𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 270 | 269 | adantl | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  →  𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 271 | 270 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  →  𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 272 | 271 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 273 | 261 272 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝐺 ‘ 𝑢 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 274 | 19 | eleq2i | ⊢ ( 𝑣  ∈  𝑆  ↔  𝑣  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } ) | 
						
							| 275 |  | elrabi | ⊢ ( 𝑣  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  →  𝑣  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 276 | 274 275 | sylbi | ⊢ ( 𝑣  ∈  𝑆  →  𝑣  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 277 | 276 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  →  𝑣  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 278 | 277 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑣  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 279 | 261 278 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝐺 ‘ 𝑣 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 280 |  | eqid | ⊢ ( -g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( -g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 281 | 207 280 | grpsubcl | ⊢ ( ( ( Poly1 ‘ 𝐾 )  ∈  Grp  ∧  ( 𝐺 ‘ 𝑢 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( 𝐺 ‘ 𝑣 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 282 | 257 273 279 281 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 283 |  | neqne | ⊢ ( ¬  𝑢  =  𝑣  →  𝑢  ≠  𝑣 ) | 
						
							| 284 | 283 | adantl | ⊢ ( ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 )  →  𝑢  ≠  𝑣 ) | 
						
							| 285 | 284 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑢  ≠  𝑣 ) | 
						
							| 286 | 272 278 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  𝑣  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) | 
						
							| 287 |  | f1fveq | ⊢ ( ( 𝐺 : ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) –1-1→ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( 𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  𝑣  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  →  ( ( 𝐺 ‘ 𝑢 )  =  ( 𝐺 ‘ 𝑣 )  ↔  𝑢  =  𝑣 ) ) | 
						
							| 288 | 259 286 287 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( 𝐺 ‘ 𝑢 )  =  ( 𝐺 ‘ 𝑣 )  ↔  𝑢  =  𝑣 ) ) | 
						
							| 289 | 288 | bicomd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝑢  =  𝑣  ↔  ( 𝐺 ‘ 𝑢 )  =  ( 𝐺 ‘ 𝑣 ) ) ) | 
						
							| 290 | 289 | necon3bid | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝑢  ≠  𝑣  ↔  ( 𝐺 ‘ 𝑢 )  ≠  ( 𝐺 ‘ 𝑣 ) ) ) | 
						
							| 291 | 290 | biimpd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝑢  ≠  𝑣  →  ( 𝐺 ‘ 𝑢 )  ≠  ( 𝐺 ‘ 𝑣 ) ) ) | 
						
							| 292 | 285 291 | mpd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝐺 ‘ 𝑢 )  ≠  ( 𝐺 ‘ 𝑣 ) ) | 
						
							| 293 | 207 249 280 | grpsubeq0 | ⊢ ( ( ( Poly1 ‘ 𝐾 )  ∈  Grp  ∧  ( 𝐺 ‘ 𝑢 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( 𝐺 ‘ 𝑣 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) )  =  ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( 𝐺 ‘ 𝑢 )  =  ( 𝐺 ‘ 𝑣 ) ) ) | 
						
							| 294 | 293 | necon3bid | ⊢ ( ( ( Poly1 ‘ 𝐾 )  ∈  Grp  ∧  ( 𝐺 ‘ 𝑢 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( 𝐺 ‘ 𝑣 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( 𝐺 ‘ 𝑢 )  ≠  ( 𝐺 ‘ 𝑣 ) ) ) | 
						
							| 295 | 257 273 279 294 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( 𝐺 ‘ 𝑢 )  ≠  ( 𝐺 ‘ 𝑣 ) ) ) | 
						
							| 296 | 292 295 | mpbird | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 297 | 205 207 247 204 248 249 252 282 296 | fta1g | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 298 | 247 205 207 | deg1xrcl | ⊢ ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  ℝ* ) | 
						
							| 299 | 282 298 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  ℝ* ) | 
						
							| 300 | 116 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 301 |  | 1red | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  1  ∈  ℝ ) | 
						
							| 302 | 300 301 | resubcld | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝐷  −  1 )  ∈  ℝ ) | 
						
							| 303 | 302 | rexrd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝐷  −  1 )  ∈  ℝ* ) | 
						
							| 304 |  | simp-4l | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝜑 ) | 
						
							| 305 |  | fvexd | ⊢ ( 𝜑  →  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  V ) | 
						
							| 306 |  | cnvexg | ⊢ ( ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  V  →  ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  V ) | 
						
							| 307 | 305 306 | syl | ⊢ ( 𝜑  →  ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  V ) | 
						
							| 308 | 307 | imaexd | ⊢ ( 𝜑  →  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } )  ∈  V ) | 
						
							| 309 |  | hashxnn0 | ⊢ ( ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } )  ∈  V  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℕ0* ) | 
						
							| 310 |  | xnn0xr | ⊢ ( ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℕ0*  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℝ* ) | 
						
							| 311 | 304 308 309 310 | 4syl | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℝ* ) | 
						
							| 312 | 247 205 207 | deg1xrcl | ⊢ ( ( 𝐺 ‘ 𝑣 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) )  ∈  ℝ* ) | 
						
							| 313 | 279 312 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) )  ∈  ℝ* ) | 
						
							| 314 | 247 205 207 | deg1xrcl | ⊢ ( ( 𝐺 ‘ 𝑢 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ∈  ℝ* ) | 
						
							| 315 | 273 314 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ∈  ℝ* ) | 
						
							| 316 | 313 315 | ifcld | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) )  ∈  ℝ* ) | 
						
							| 317 | 252 | idomringd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝐾  ∈  Ring ) | 
						
							| 318 | 205 247 317 207 280 273 279 | deg1suble | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ≤  if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) | 
						
							| 319 |  | id | ⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) )  =  if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) )  =  if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) | 
						
							| 320 | 319 | breq1d | ⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) )  =  if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) )  →  ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) )  ≤  ( 𝐷  −  1 )  ↔  if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 321 |  | id | ⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  =  if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  =  if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) | 
						
							| 322 | 321 | breq1d | ⊢ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  =  if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) )  →  ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( 𝐷  −  1 )  ↔  if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 323 | 3 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝐾  ∈  Field ) | 
						
							| 324 | 4 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 325 | 5 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑅  ∈  ℕ ) | 
						
							| 326 | 6 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 327 | 7 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑃  ∥  𝑁 ) | 
						
							| 328 | 8 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 329 | 9 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝐴  <  𝑃 ) | 
						
							| 330 | 11 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 331 | 14 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 332 | 15 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 333 | 16 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 334 |  | simpllr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑣  ∈  𝑆 ) | 
						
							| 335 | 334 276 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑣  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 336 | 1 2 323 324 325 326 327 328 329 10 330 12 13 331 332 333 17 18 19 335 | aks6d1c6lem1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) )  =  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ) | 
						
							| 337 |  | simpl | ⊢ ( ( 𝑠  =  𝑣  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  𝑠  =  𝑣 ) | 
						
							| 338 | 337 | fveq1d | ⊢ ( ( 𝑠  =  𝑣  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑠 ‘ 𝑡 )  =  ( 𝑣 ‘ 𝑡 ) ) | 
						
							| 339 | 338 | sumeq2dv | ⊢ ( 𝑠  =  𝑣  →  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  =  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 ) ) | 
						
							| 340 | 339 | breq1d | ⊢ ( 𝑠  =  𝑣  →  ( Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 )  ↔  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 341 | 340 | elrab | ⊢ ( 𝑣  ∈  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) }  ↔  ( 𝑣  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 342 | 274 341 | bitri | ⊢ ( 𝑣  ∈  𝑆  ↔  ( 𝑣  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 343 | 334 342 | sylib | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ( 𝑣  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 344 | 343 | simprd | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑣 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) | 
						
							| 345 | 336 344 | eqbrtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) )  ≤  ( 𝐷  −  1 ) ) | 
						
							| 346 | 3 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝐾  ∈  Field ) | 
						
							| 347 | 4 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 348 | 5 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑅  ∈  ℕ ) | 
						
							| 349 | 6 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 350 | 7 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑃  ∥  𝑁 ) | 
						
							| 351 | 8 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 352 | 9 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝐴  <  𝑃 ) | 
						
							| 353 | 11 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 354 | 14 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 355 | 15 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 356 | 16 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 357 | 272 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 358 | 1 2 346 347 348 349 350 351 352 10 353 12 13 354 355 356 17 18 19 357 | aks6d1c6lem1 | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  =  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 ) ) | 
						
							| 359 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  𝑢  ∈  𝑆 ) | 
						
							| 360 | 262 267 | bitri | ⊢ ( 𝑢  ∈  𝑆  ↔  ( 𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 361 | 359 360 | sylib | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ( 𝑢  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∧  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) ) | 
						
							| 362 | 361 | simprd | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑢 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) ) | 
						
							| 363 | 358 362 | eqbrtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  ∧  ¬  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( 𝐷  −  1 ) ) | 
						
							| 364 | 320 322 345 363 | ifbothda | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  if ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑣 ) ) ,  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑢 ) ) )  ≤  ( 𝐷  −  1 ) ) | 
						
							| 365 | 299 316 303 318 364 | xrletrd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ≤  ( 𝐷  −  1 ) ) | 
						
							| 366 | 300 | rexrd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝐷  ∈  ℝ* ) | 
						
							| 367 | 300 | ltm1d | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝐷  −  1 )  <  𝐷 ) | 
						
							| 368 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑢  ∈  𝑆 ) | 
						
							| 369 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑣  ∈  𝑆 ) | 
						
							| 370 | 304 368 369 | jca31 | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 ) ) | 
						
							| 371 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) ) | 
						
							| 372 | 370 371 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) ) ) | 
						
							| 373 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝐾  ∈  Field ) | 
						
							| 374 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 375 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑅  ∈  ℕ ) | 
						
							| 376 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 377 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑃  ∥  𝑁 ) | 
						
							| 378 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 379 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝐴  <  𝑃 ) | 
						
							| 380 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 381 | 14 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 382 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 383 | 16 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 384 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑢  ∈  𝑆 ) | 
						
							| 385 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑣  ∈  𝑆 ) | 
						
							| 386 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 ) ) | 
						
							| 387 | 284 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝑢  ≠  𝑣 ) | 
						
							| 388 | 21 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) )  ≤  ( ♯ ‘ ( 𝐽  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 389 | 1 2 373 374 375 376 377 378 379 10 380 12 13 381 382 383 17 18 19 384 385 386 387 20 388 | aks6d1c6lem2 | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝐷  ≤  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 390 | 372 389 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  𝐷  ≤  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 391 | 303 366 311 367 390 | xrltletrd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( 𝐷  −  1 )  <  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 392 | 299 303 311 365 391 | xrlelttrd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  <  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) ) ) | 
						
							| 393 | 247 205 249 207 | deg1nn0clb | ⊢ ( ( 𝐾  ∈  Ring  ∧  ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  ℕ0 ) ) | 
						
							| 394 | 317 282 393 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  ℕ0 ) ) | 
						
							| 395 | 296 394 | mpbid | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  ℕ0 ) | 
						
							| 396 | 395 | nn0red | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  ℝ ) | 
						
							| 397 | 396 | rexrd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  ℝ* ) | 
						
							| 398 |  | fvexd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  V ) | 
						
							| 399 | 398 306 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  V ) | 
						
							| 400 | 399 | imaexd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } )  ∈  V ) | 
						
							| 401 | 400 309 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℕ0* ) | 
						
							| 402 | 401 310 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℝ* ) | 
						
							| 403 |  | xrltnle | ⊢ ( ( ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  ∈  ℝ*  ∧  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ∈  ℝ* )  →  ( ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  <  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ↔  ¬  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) ) | 
						
							| 404 | 397 402 403 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  <  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ↔  ¬  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) ) | 
						
							| 405 | 392 404 | mpbid | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ¬  ( ♯ ‘ ( ◡ ( ( eval1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) )  “  { ( 0g ‘ 𝐾 ) } ) )  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ ( Poly1 ‘ 𝐾 ) ) ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 406 | 297 405 | pm2.21dd | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 ) )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) | 
						
							| 407 | 406 | ex | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  →  ( ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  ∧  ¬  𝑢  =  𝑣 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) | 
						
							| 408 | 246 407 | sylbird | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  →  ( ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  ¬  ¬  𝑢  =  𝑣 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) | 
						
							| 409 |  | biidd | ⊢ ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  ( 𝑢  =  𝑣  ↔  𝑢  =  𝑣 ) ) | 
						
							| 410 | 409 | necon3abid | ⊢ ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  ( 𝑢  ≠  𝑣  ↔  ¬  𝑢  =  𝑣 ) ) | 
						
							| 411 | 410 | necon1bbid | ⊢ ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  ( ¬  ¬  𝑢  =  𝑣  ↔  𝑢  =  𝑣 ) ) | 
						
							| 412 | 411 | pm5.74i | ⊢ ( ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  ¬  ¬  𝑢  =  𝑣 )  ↔  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 413 | 412 | notbii | ⊢ ( ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  ¬  ¬  𝑢  =  𝑣 )  ↔  ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 414 | 413 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  →  ( ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  ¬  ¬  𝑢  =  𝑣 )  ↔  ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) ) ) | 
						
							| 415 | 414 | imbi1d | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  →  ( ( ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  ¬  ¬  𝑢  =  𝑣 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) )  ↔  ( ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  𝑢  =  𝑣 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) ) | 
						
							| 416 | 408 415 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  →  ( ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  𝑢  =  𝑣 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) | 
						
							| 417 | 416 | imp | ⊢ ( ( ( ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  𝑢  ∈  𝑆 )  ∧  𝑣  ∈  𝑆 )  ∧  ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) | 
						
							| 418 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑢  →  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  ↔  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 ) ) ) | 
						
							| 419 |  | equequ1 | ⊢ ( 𝑥  =  𝑢  →  ( 𝑥  =  𝑦  ↔  𝑢  =  𝑦 ) ) | 
						
							| 420 | 418 419 | imbi12d | ⊢ ( 𝑥  =  𝑢  →  ( ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑢  =  𝑦 ) ) ) | 
						
							| 421 | 420 | notbid | ⊢ ( 𝑥  =  𝑢  →  ( ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑢  =  𝑦 ) ) ) | 
						
							| 422 |  | fveq2 | ⊢ ( 𝑦  =  𝑣  →  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 ) ) | 
						
							| 423 | 422 | eqeq2d | ⊢ ( 𝑦  =  𝑣  →  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  ↔  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 ) ) ) | 
						
							| 424 |  | equequ2 | ⊢ ( 𝑦  =  𝑣  →  ( 𝑢  =  𝑦  ↔  𝑢  =  𝑣 ) ) | 
						
							| 425 | 423 424 | imbi12d | ⊢ ( 𝑦  =  𝑣  →  ( ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑢  =  𝑦 )  ↔  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) ) ) | 
						
							| 426 | 425 | notbid | ⊢ ( 𝑦  =  𝑣  →  ( ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑢  =  𝑦 )  ↔  ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) ) ) | 
						
							| 427 | 421 426 | cbvrex2vw | ⊢ ( ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 428 | 427 | biimpi | ⊢ ( ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 429 | 428 | adantl | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑢 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 430 | 417 429 | r19.29vva | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) | 
						
							| 431 | 430 | ex | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) | 
						
							| 432 |  | rexnal2 | ⊢ ( ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ¬  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 433 | 432 | a1i | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ¬  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 434 | 433 | imbi1d | ⊢ ( 𝜑  →  ( ( ∃ 𝑥  ∈  𝑆 ∃ 𝑦  ∈  𝑆 ¬  ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) )  ↔  ( ¬  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) ) | 
						
							| 435 | 431 434 | mpbid | ⊢ ( 𝜑  →  ( ¬  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) | 
						
							| 436 | 244 435 | jaod | ⊢ ( 𝜑  →  ( ( ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∨  ¬  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) | 
						
							| 437 |  | ianor | ⊢ ( ¬  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ↔  ( ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∨  ¬  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 438 | 437 | a1i | ⊢ ( 𝜑  →  ( ¬  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ↔  ( ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∨  ¬  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 439 | 438 | biimpd | ⊢ ( 𝜑  →  ( ¬  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∨  ¬  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 440 | 439 | imim1d | ⊢ ( 𝜑  →  ( ( ( ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∨  ¬  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) )  →  ( ¬  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) ) | 
						
							| 441 | 436 440 | mpd | ⊢ ( 𝜑  →  ( ¬  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) | 
						
							| 442 |  | dff13 | ⊢ ( ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 )  ↔  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 443 | 442 | a1i | ⊢ ( 𝜑  →  ( ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 )  ↔  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 444 | 443 | notbid | ⊢ ( 𝜑  →  ( ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 )  ↔  ¬  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 445 | 444 | biimpd | ⊢ ( 𝜑  →  ( ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 )  →  ¬  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 446 | 445 | imim1d | ⊢ ( 𝜑  →  ( ( ¬  ( ( 𝐻  ↾  𝑆 ) : 𝑆 ⟶ ( 𝐻  “  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( ( 𝐻  ↾  𝑆 ) ‘ 𝑥 )  =  ( ( 𝐻  ↾  𝑆 ) ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) )  →  ( ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) ) | 
						
							| 447 | 441 446 | mpd | ⊢ ( 𝜑  →  ( ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) ) | 
						
							| 448 | 447 | imp | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐻  ↾  𝑆 ) : 𝑆 –1-1→ ( 𝐻  “  𝑆 ) )  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) | 
						
							| 449 | 192 448 | pm2.61dan | ⊢ ( 𝜑  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  𝑆 ) ) ) | 
						
							| 450 |  | hashss | ⊢ ( ( ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) )  ∈  V  ∧  ( 𝐻  “  𝑆 )  ⊆  ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) )  →  ( ♯ ‘ ( 𝐻  “  𝑆 ) )  ≤  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) ) | 
						
							| 451 | 135 152 450 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐻  “  𝑆 ) )  ≤  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) ) | 
						
							| 452 | 131 157 161 449 451 | xrletrd | ⊢ ( 𝜑  →  ( ( 𝐷  +  𝐴 ) C ( 𝐷  −  1 ) )  ≤  ( ♯ ‘ ( 𝐻  “  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) ) ) |