| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6.1 | ⊢  ∼   =  { 〈 𝑒 ,  𝑓 〉  ∣  ( 𝑒  ∈  ℕ  ∧  𝑓  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ∀ 𝑦  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) )  =  ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } | 
						
							| 2 |  | aks6d1c6.2 | ⊢ 𝑃  =  ( chr ‘ 𝐾 ) | 
						
							| 3 |  | aks6d1c6.3 | ⊢ ( 𝜑  →  𝐾  ∈  Field ) | 
						
							| 4 |  | aks6d1c6.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | aks6d1c6.5 | ⊢ ( 𝜑  →  𝑅  ∈  ℕ ) | 
						
							| 6 |  | aks6d1c6.6 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | aks6d1c6.7 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 8 |  | aks6d1c6.8 | ⊢ ( 𝜑  →  ( 𝑁  gcd  𝑅 )  =  1 ) | 
						
							| 9 |  | aks6d1c6.9 | ⊢ ( 𝜑  →  𝐴  <  𝑃 ) | 
						
							| 10 |  | aks6d1c6.10 | ⊢ 𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c6.11 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 12 |  | aks6d1c6.12 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 13 |  | aks6d1c6.13 | ⊢ 𝐿  =  ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) | 
						
							| 14 |  | aks6d1c6.14 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝐴 ) 𝑁  ∼  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) | 
						
							| 15 |  | aks6d1c6.15 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) )  ∈  ( 𝐾  RingIso  𝐾 ) ) | 
						
							| 16 |  | aks6d1c6.16 | ⊢ ( 𝜑  →  𝑀  ∈  ( ( mulGrp ‘ 𝐾 )  PrimRoots  𝑅 ) ) | 
						
							| 17 |  | aks6d1c6.17 | ⊢ 𝐻  =  ( ℎ  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) | 
						
							| 18 |  | aks6d1c6.18 | ⊢ 𝐷  =  ( ♯ ‘ ( 𝐿  “  ( 𝐸  “  ( ℕ0  ×  ℕ0 ) ) ) ) | 
						
							| 19 |  | aks6d1c6.19 | ⊢ 𝑆  =  { 𝑠  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ∣  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 )  ≤  ( 𝐷  −  1 ) } | 
						
							| 20 |  | aks6d1c6lem1.1 | ⊢ ( 𝜑  →  𝑈  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) ) ) | 
						
							| 21 | 10 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 22 | 21 | fveq1d | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑈 )  =  ( ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ 𝑈 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ 𝑈 ) ) ) | 
						
							| 24 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )  =  ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑔  =  𝑈 )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝑔  =  𝑈 ) | 
						
							| 26 | 25 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑔  =  𝑈 )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑔 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑔  =  𝑈 )  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  =  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) | 
						
							| 28 | 27 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑔  =  𝑈 )  →  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) )  =  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑔  =  𝑈 )  →  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) )  =  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 30 |  | ovexd | ⊢ ( 𝜑  →  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) )  ∈  V ) | 
						
							| 31 | 24 29 20 30 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ 𝑈 )  =  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ 𝑈 ) )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 33 |  | fldidom | ⊢ ( 𝐾  ∈  Field  →  𝐾  ∈  IDomn ) | 
						
							| 34 | 3 33 | syl | ⊢ ( 𝜑  →  𝐾  ∈  IDomn ) | 
						
							| 35 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ∈  Fin ) | 
						
							| 36 |  | eqid | ⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  =  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 38 | 36 37 | mgpbas | ⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 39 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) )  =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 40 | 3 | fldcrngd | ⊢ ( 𝜑  →  𝐾  ∈  CRing ) | 
						
							| 41 |  | crngring | ⊢ ( 𝐾  ∈  CRing  →  𝐾  ∈  Ring ) | 
						
							| 42 | 40 41 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Ring ) | 
						
							| 43 |  | eqid | ⊢ ( Poly1 ‘ 𝐾 )  =  ( Poly1 ‘ 𝐾 ) | 
						
							| 44 | 43 | ply1ring | ⊢ ( 𝐾  ∈  Ring  →  ( Poly1 ‘ 𝐾 )  ∈  Ring ) | 
						
							| 45 | 42 44 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Ring ) | 
						
							| 46 | 36 | ringmgp | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  Ring  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  Mnd ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  Mnd ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  ∈  Mnd ) | 
						
							| 49 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 50 | 49 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 51 |  | ovexd | ⊢ ( 𝜑  →  ( 0 ... 𝐴 )  ∈  V ) | 
						
							| 52 | 50 51 | elmapd | ⊢ ( 𝜑  →  ( 𝑈  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↔  𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) | 
						
							| 53 | 20 52 | mpbid | ⊢ ( 𝜑  →  𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) | 
						
							| 55 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  𝑖  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 56 | 54 55 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑈 ‘ 𝑖 )  ∈  ℕ0 ) | 
						
							| 57 |  | 2fveq3 | ⊢ ( 𝑡  =  𝑖  →  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) )  =  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( 𝑡  =  𝑖  →  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  =  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) | 
						
							| 59 | 58 | eleq1d | ⊢ ( 𝑡  =  𝑖  →  ( ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 60 |  | ringmnd | ⊢ ( ( Poly1 ‘ 𝐾 )  ∈  Ring  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 61 | 45 60 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( Poly1 ‘ 𝐾 )  ∈  Mnd ) | 
						
							| 63 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  𝐾  ∈  Ring ) | 
						
							| 64 |  | eqid | ⊢ ( var1 ‘ 𝐾 )  =  ( var1 ‘ 𝐾 ) | 
						
							| 65 | 64 43 37 | vr1cl | ⊢ ( 𝐾  ∈  Ring  →  ( var1 ‘ 𝐾 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 66 | 63 65 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( var1 ‘ 𝐾 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 67 |  | eqid | ⊢ ( ℤRHom ‘ 𝐾 )  =  ( ℤRHom ‘ 𝐾 ) | 
						
							| 68 | 67 | zrhrhm | ⊢ ( 𝐾  ∈  Ring  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 ) ) | 
						
							| 69 | 42 68 | syl | ⊢ ( 𝜑  →  ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 ) ) | 
						
							| 70 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 71 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 72 | 70 71 | rhmf | ⊢ ( ( ℤRHom ‘ 𝐾 )  ∈  ( ℤring  RingHom  𝐾 )  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 73 | 69 72 | syl | ⊢ ( 𝜑  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) | 
						
							| 75 |  | elfzelz | ⊢ ( 𝑡  ∈  ( 0 ... 𝐴 )  →  𝑡  ∈  ℤ ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  𝑡  ∈  ℤ ) | 
						
							| 77 | 74 76 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 78 |  | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) )  =  ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 79 | 43 78 71 37 | ply1sclcl | ⊢ ( ( 𝐾  ∈  Ring  ∧  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 80 | 63 77 79 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 81 |  | eqid | ⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( +g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 82 | 37 81 | mndcl | ⊢ ( ( ( Poly1 ‘ 𝐾 )  ∈  Mnd  ∧  ( var1 ‘ 𝐾 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 83 | 62 66 80 82 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 84 | 83 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( 0 ... 𝐴 ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ∀ 𝑡  ∈  ( 0 ... 𝐴 ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 86 | 59 85 55 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 87 | 38 39 48 56 86 | mulgnn0cld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 88 | 43 | ply1idom | ⊢ ( 𝐾  ∈  IDomn  →  ( Poly1 ‘ 𝐾 )  ∈  IDomn ) | 
						
							| 89 | 34 88 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝐾 )  ∈  IDomn ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( Poly1 ‘ 𝐾 )  ∈  IDomn ) | 
						
							| 91 | 58 | neeq1d | ⊢ ( 𝑡  =  𝑖  →  ( ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 92 |  | eqid | ⊢ ( deg1 ‘ 𝐾 )  =  ( deg1 ‘ 𝐾 ) | 
						
							| 93 | 92 43 37 | deg1xrcl | ⊢ ( ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ∈  ℝ* ) | 
						
							| 94 | 80 93 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ∈  ℝ* ) | 
						
							| 95 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 96 | 95 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  0  ∈  ℝ* ) | 
						
							| 97 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 98 | 97 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  1  ∈  ℝ* ) | 
						
							| 99 | 92 43 71 78 | deg1sclle | ⊢ ( ( 𝐾  ∈  Ring  ∧  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ≤  0 ) | 
						
							| 100 | 63 77 99 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ≤  0 ) | 
						
							| 101 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 102 | 101 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  0  <  1 ) | 
						
							| 103 | 94 96 98 100 102 | xrlelttrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  <  1 ) | 
						
							| 104 | 38 39 | mulg1 | ⊢ ( ( var1 ‘ 𝐾 )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  →  ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) )  =  ( var1 ‘ 𝐾 ) ) | 
						
							| 105 | 66 104 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) )  =  ( var1 ‘ 𝐾 ) ) | 
						
							| 106 | 105 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( var1 ‘ 𝐾 )  =  ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ) | 
						
							| 107 | 106 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ) ) | 
						
							| 108 |  | isfld | ⊢ ( 𝐾  ∈  Field  ↔  ( 𝐾  ∈  DivRing  ∧  𝐾  ∈  CRing ) ) | 
						
							| 109 |  | drngnzr | ⊢ ( 𝐾  ∈  DivRing  →  𝐾  ∈  NzRing ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝐾  ∈  CRing )  →  𝐾  ∈  NzRing ) | 
						
							| 111 | 108 110 | sylbi | ⊢ ( 𝐾  ∈  Field  →  𝐾  ∈  NzRing ) | 
						
							| 112 | 3 111 | syl | ⊢ ( 𝜑  →  𝐾  ∈  NzRing ) | 
						
							| 113 | 112 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  𝐾  ∈  NzRing ) | 
						
							| 114 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 115 | 114 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  1  ∈  ℕ0 ) | 
						
							| 116 | 92 43 64 36 39 | deg1pw | ⊢ ( ( 𝐾  ∈  NzRing  ∧  1  ∈  ℕ0 )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) )  =  1 ) | 
						
							| 117 | 113 115 116 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) )  =  1 ) | 
						
							| 118 | 107 117 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  1  =  ( ( deg1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) ) ) | 
						
							| 119 | 103 118 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  <  ( ( deg1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) ) ) | 
						
							| 120 | 43 92 63 37 81 66 80 119 | deg1add | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) ) ) | 
						
							| 121 | 107 117 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) )  =  1 ) | 
						
							| 122 | 120 121 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) )  =  1 ) | 
						
							| 123 | 122 115 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) )  ∈  ℕ0 ) | 
						
							| 124 |  | eqid | ⊢ ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  =  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) | 
						
							| 125 | 92 43 124 37 | deg1nn0clb | ⊢ ( ( 𝐾  ∈  Ring  ∧  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) ) )  →  ( ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) )  ∈  ℕ0 ) ) | 
						
							| 126 | 63 83 125 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) )  ↔  ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) )  ∈  ℕ0 ) ) | 
						
							| 127 | 123 126 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 128 | 127 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( 0 ... 𝐴 ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ∀ 𝑡  ∈  ( 0 ... 𝐴 ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 130 | 91 129 55 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 131 | 90 86 130 56 39 | idomnnzpownz | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) | 
						
							| 132 | 87 131 | jca | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝐴 ) )  →  ( ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 133 | 132 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ... 𝐴 ) ( ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ ( Poly1 ‘ 𝐾 ) )  ∧  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  ≠  ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) ) | 
						
							| 134 | 34 35 133 | deg1gprod | ⊢ ( 𝜑  →  ( ( ( deg1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )  =  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 ) )  ∧  0  ≤  ( ( deg1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ) | 
						
							| 135 | 134 | simpld | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )  =  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 136 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) )  =  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 137 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  ∧  𝑖  =  𝑡 )  →  𝑖  =  𝑡 ) | 
						
							| 138 | 137 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  ∧  𝑖  =  𝑡 )  →  ( 𝑈 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑡 ) ) | 
						
							| 139 | 137 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  ∧  𝑖  =  𝑡 )  →  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 )  =  ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) | 
						
							| 140 | 139 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  ∧  𝑖  =  𝑡 )  →  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) )  =  ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) | 
						
							| 141 | 140 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  ∧  𝑖  =  𝑡 )  →  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) )  =  ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) | 
						
							| 142 | 138 141 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  ∧  𝑖  =  𝑡 )  →  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) )  =  ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 143 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  𝑡  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 144 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) )  ∈  V ) | 
						
							| 145 | 136 142 143 144 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 )  =  ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 146 | 145 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 ) )  =  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 147 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  𝐾  ∈  IDomn ) | 
						
							| 148 | 53 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑈 ‘ 𝑡 )  ∈  ℕ0 ) | 
						
							| 149 | 147 83 127 148 39 92 | deg1pow | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) )  =  ( ( 𝑈 ‘ 𝑡 )  ·  ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 150 | 122 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑈 ‘ 𝑡 )  ·  ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) )  =  ( ( 𝑈 ‘ 𝑡 )  ·  1 ) ) | 
						
							| 151 | 148 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( 𝑈 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 152 | 151 | mulridd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑈 ‘ 𝑡 )  ·  1 )  =  ( 𝑈 ‘ 𝑡 ) ) | 
						
							| 153 | 150 152 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝑈 ‘ 𝑡 )  ·  ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) )  =  ( 𝑈 ‘ 𝑡 ) ) | 
						
							| 154 | 149 153 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) )  =  ( 𝑈 ‘ 𝑡 ) ) | 
						
							| 155 | 146 154 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 0 ... 𝐴 ) )  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 ) )  =  ( 𝑈 ‘ 𝑡 ) ) | 
						
							| 156 | 155 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 ) )  =  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑈 ‘ 𝑡 ) ) | 
						
							| 157 | 135 156 | eqtrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) )  =  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑈 ‘ 𝑡 ) ) | 
						
							| 158 | 32 157 | eqtrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑔  ∈  ( ℕ0  ↑m  ( 0 ... 𝐴 ) )  ↦  ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) )  Σg  ( 𝑖  ∈  ( 0 ... 𝐴 )  ↦  ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ 𝑈 ) )  =  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑈 ‘ 𝑡 ) ) | 
						
							| 159 | 23 158 | eqtrd | ⊢ ( 𝜑  →  ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) )  =  Σ 𝑡  ∈  ( 0 ... 𝐴 ) ( 𝑈 ‘ 𝑡 ) ) |