Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ∀ 𝑦 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( ( eval1 ‘ 𝐾 ) ‘ 𝑓 ) ‘ ( 𝑒 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) ) ) } |
2 |
|
aks6d1c6.2 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
3 |
|
aks6d1c6.3 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
4 |
|
aks6d1c6.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
aks6d1c6.5 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
6 |
|
aks6d1c6.6 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
7 |
|
aks6d1c6.7 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
8 |
|
aks6d1c6.8 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
9 |
|
aks6d1c6.9 |
⊢ ( 𝜑 → 𝐴 < 𝑃 ) |
10 |
|
aks6d1c6.10 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
11 |
|
aks6d1c6.11 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
12 |
|
aks6d1c6.12 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
13 |
|
aks6d1c6.13 |
⊢ 𝐿 = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑅 ) ) |
14 |
|
aks6d1c6.14 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
15 |
|
aks6d1c6.15 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
16 |
|
aks6d1c6.16 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( mulGrp ‘ 𝐾 ) PrimRoots 𝑅 ) ) |
17 |
|
aks6d1c6.17 |
⊢ 𝐻 = ( ℎ ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( ( eval1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ ℎ ) ) ‘ 𝑀 ) ) |
18 |
|
aks6d1c6.18 |
⊢ 𝐷 = ( ♯ ‘ ( 𝐿 “ ( 𝐸 “ ( ℕ0 × ℕ0 ) ) ) ) |
19 |
|
aks6d1c6.19 |
⊢ 𝑆 = { 𝑠 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ∣ Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑠 ‘ 𝑡 ) ≤ ( 𝐷 − 1 ) } |
20 |
|
aks6d1c6lem1.1 |
⊢ ( 𝜑 → 𝑈 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
21 |
10
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
22 |
21
|
fveq1d |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑈 ) = ( ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ 𝑈 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ 𝑈 ) ) ) |
24 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝑈 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑔 = 𝑈 ) |
26 |
25
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝑈 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑔 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) |
27 |
26
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝑈 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) = ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) |
28 |
27
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝑈 ) → ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
29 |
28
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝑈 ) → ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
30 |
|
ovexd |
⊢ ( 𝜑 → ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ V ) |
31 |
24 29 20 30
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ 𝑈 ) = ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
32 |
31
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ 𝑈 ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
33 |
|
fldidom |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ IDomn ) |
34 |
3 33
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ IDomn ) |
35 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ Fin ) |
36 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) = ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) |
37 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( Poly1 ‘ 𝐾 ) ) |
38 |
36 37
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
39 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) |
40 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
41 |
|
crngring |
⊢ ( 𝐾 ∈ CRing → 𝐾 ∈ Ring ) |
42 |
40 41
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
43 |
|
eqid |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ 𝐾 ) |
44 |
43
|
ply1ring |
⊢ ( 𝐾 ∈ Ring → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
45 |
42 44
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Ring ) |
46 |
36
|
ringmgp |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ Ring → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ∈ Mnd ) |
49 |
|
nn0ex |
⊢ ℕ0 ∈ V |
50 |
49
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
51 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ V ) |
52 |
50 51
|
elmapd |
⊢ ( 𝜑 → ( 𝑈 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
53 |
20 52
|
mpbid |
⊢ ( 𝜑 → 𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑈 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
55 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑖 ∈ ( 0 ... 𝐴 ) ) |
56 |
54 55
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑈 ‘ 𝑖 ) ∈ ℕ0 ) |
57 |
|
2fveq3 |
⊢ ( 𝑡 = 𝑖 → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) = ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) |
58 |
57
|
oveq2d |
⊢ ( 𝑡 = 𝑖 → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) = ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) |
59 |
58
|
eleq1d |
⊢ ( 𝑡 = 𝑖 → ( ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
60 |
|
ringmnd |
⊢ ( ( Poly1 ‘ 𝐾 ) ∈ Ring → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
61 |
45 60
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( Poly1 ‘ 𝐾 ) ∈ Mnd ) |
63 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 𝐾 ∈ Ring ) |
64 |
|
eqid |
⊢ ( var1 ‘ 𝐾 ) = ( var1 ‘ 𝐾 ) |
65 |
64 43 37
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → ( var1 ‘ 𝐾 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
66 |
63 65
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( var1 ‘ 𝐾 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
67 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
68 |
67
|
zrhrhm |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
69 |
42 68
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
70 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
71 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
72 |
70 71
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
73 |
69 72
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
75 |
|
elfzelz |
⊢ ( 𝑡 ∈ ( 0 ... 𝐴 ) → 𝑡 ∈ ℤ ) |
76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 𝑡 ∈ ℤ ) |
77 |
74 76
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ∈ ( Base ‘ 𝐾 ) ) |
78 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) = ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) |
79 |
43 78 71 37
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
80 |
63 77 79
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
81 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ 𝐾 ) ) = ( +g ‘ ( Poly1 ‘ 𝐾 ) ) |
82 |
37 81
|
mndcl |
⊢ ( ( ( Poly1 ‘ 𝐾 ) ∈ Mnd ∧ ( var1 ‘ 𝐾 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
83 |
62 66 80 82
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
84 |
83
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 0 ... 𝐴 ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ∀ 𝑡 ∈ ( 0 ... 𝐴 ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
86 |
59 85 55
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
87 |
38 39 48 56 86
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) |
88 |
43
|
ply1idom |
⊢ ( 𝐾 ∈ IDomn → ( Poly1 ‘ 𝐾 ) ∈ IDomn ) |
89 |
34 88
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝐾 ) ∈ IDomn ) |
90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( Poly1 ‘ 𝐾 ) ∈ IDomn ) |
91 |
58
|
neeq1d |
⊢ ( 𝑡 = 𝑖 → ( ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
92 |
|
eqid |
⊢ ( deg1 ‘ 𝐾 ) = ( deg1 ‘ 𝐾 ) |
93 |
92 43 37
|
deg1xrcl |
⊢ ( ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ∈ ℝ* ) |
94 |
80 93
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ∈ ℝ* ) |
95 |
|
0xr |
⊢ 0 ∈ ℝ* |
96 |
95
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 0 ∈ ℝ* ) |
97 |
|
1xr |
⊢ 1 ∈ ℝ* |
98 |
97
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 1 ∈ ℝ* ) |
99 |
92 43 71 78
|
deg1sclle |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ≤ 0 ) |
100 |
63 77 99
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ≤ 0 ) |
101 |
|
0lt1 |
⊢ 0 < 1 |
102 |
101
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 0 < 1 ) |
103 |
94 96 98 100 102
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) < 1 ) |
104 |
38 39
|
mulg1 |
⊢ ( ( var1 ‘ 𝐾 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) → ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) = ( var1 ‘ 𝐾 ) ) |
105 |
66 104
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) = ( var1 ‘ 𝐾 ) ) |
106 |
105
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( var1 ‘ 𝐾 ) = ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ) |
107 |
106
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ) ) |
108 |
|
isfld |
⊢ ( 𝐾 ∈ Field ↔ ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) ) |
109 |
|
drngnzr |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ NzRing ) |
110 |
109
|
adantr |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing ) → 𝐾 ∈ NzRing ) |
111 |
108 110
|
sylbi |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ NzRing ) |
112 |
3 111
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ NzRing ) |
113 |
112
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 𝐾 ∈ NzRing ) |
114 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
115 |
114
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 1 ∈ ℕ0 ) |
116 |
92 43 64 36 39
|
deg1pw |
⊢ ( ( 𝐾 ∈ NzRing ∧ 1 ∈ ℕ0 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ) = 1 ) |
117 |
113 115 116
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 1 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( var1 ‘ 𝐾 ) ) ) = 1 ) |
118 |
107 117
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 1 = ( ( deg1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) ) ) |
119 |
103 118
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) ) ) |
120 |
43 92 63 37 81 66 80 119
|
deg1add |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) ) ) |
121 |
107 117
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( var1 ‘ 𝐾 ) ) = 1 ) |
122 |
120 121
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) = 1 ) |
123 |
122 115
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ∈ ℕ0 ) |
124 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) |
125 |
92 43 124 37
|
deg1nn0clb |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ) → ( ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ∈ ℕ0 ) ) |
126 |
63 83 125
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ∈ ℕ0 ) ) |
127 |
123 126
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
128 |
127
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 0 ... 𝐴 ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ∀ 𝑡 ∈ ( 0 ... 𝐴 ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
130 |
91 129 55
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
131 |
90 86 130 56 39
|
idomnnzpownz |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) |
132 |
87 131
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
133 |
132
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ 𝐾 ) ) ∧ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐾 ) ) ) ) |
134 |
34 35 133
|
deg1gprod |
⊢ ( 𝜑 → ( ( ( deg1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 ) ) ∧ 0 ≤ ( ( deg1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
135 |
134
|
simpld |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 ) ) ) |
136 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
137 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑖 = 𝑡 ) → 𝑖 = 𝑡 ) |
138 |
137
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑖 = 𝑡 ) → ( 𝑈 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑡 ) ) |
139 |
137
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑖 = 𝑡 ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) |
140 |
139
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑖 = 𝑡 ) → ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) = ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) |
141 |
140
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑖 = 𝑡 ) → ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) = ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) |
142 |
138 141
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) ∧ 𝑖 = 𝑡 ) → ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) = ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) |
143 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 𝑡 ∈ ( 0 ... 𝐴 ) ) |
144 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ∈ V ) |
145 |
136 142 143 144
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 ) = ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) |
146 |
145
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) ) |
147 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → 𝐾 ∈ IDomn ) |
148 |
53
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( 𝑈 ‘ 𝑡 ) ∈ ℕ0 ) |
149 |
147 83 127 148 39 92
|
deg1pow |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) = ( ( 𝑈 ‘ 𝑡 ) · ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) ) |
150 |
122
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑈 ‘ 𝑡 ) · ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) = ( ( 𝑈 ‘ 𝑡 ) · 1 ) ) |
151 |
148
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( 𝑈 ‘ 𝑡 ) ∈ ℂ ) |
152 |
151
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑈 ‘ 𝑡 ) · 1 ) = ( 𝑈 ‘ 𝑡 ) ) |
153 |
150 152
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑈 ‘ 𝑡 ) · ( ( deg1 ‘ 𝐾 ) ‘ ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) = ( 𝑈 ‘ 𝑡 ) ) |
154 |
149 153
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑈 ‘ 𝑡 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑡 ) ) ) ) ) = ( 𝑈 ‘ 𝑡 ) ) |
155 |
146 154
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 ... 𝐴 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 ) ) = ( 𝑈 ‘ 𝑡 ) ) |
156 |
155
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ‘ 𝑡 ) ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑈 ‘ 𝑡 ) ) |
157 |
135 156
|
eqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑈 ‘ 𝑡 ) ) |
158 |
32 157
|
eqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐾 ) ) ) ( ( var1 ‘ 𝐾 ) ( +g ‘ ( Poly1 ‘ 𝐾 ) ) ( ( algSc ‘ ( Poly1 ‘ 𝐾 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ‘ 𝑈 ) ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑈 ‘ 𝑡 ) ) |
159 |
23 158
|
eqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝐺 ‘ 𝑈 ) ) = Σ 𝑡 ∈ ( 0 ... 𝐴 ) ( 𝑈 ‘ 𝑡 ) ) |