Step |
Hyp |
Ref |
Expression |
1 |
|
deg1pow.1 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
2 |
|
deg1pow.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
3 |
|
deg1pow.3 |
⊢ ( 𝜑 → 𝐹 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) |
4 |
|
deg1pow.4 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
5 |
|
deg1pow.5 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) |
6 |
|
deg1pow.6 |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
7 |
|
fvoveq1 |
⊢ ( 𝑥 = 0 → ( 𝐷 ‘ ( 𝑥 ↑ 𝐹 ) ) = ( 𝐷 ‘ ( 0 ↑ 𝐹 ) ) ) |
8 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · ( 𝐷 ‘ 𝐹 ) ) = ( 0 · ( 𝐷 ‘ 𝐹 ) ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝐷 ‘ ( 𝑥 ↑ 𝐹 ) ) = ( 𝑥 · ( 𝐷 ‘ 𝐹 ) ) ↔ ( 𝐷 ‘ ( 0 ↑ 𝐹 ) ) = ( 0 · ( 𝐷 ‘ 𝐹 ) ) ) ) |
10 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝐷 ‘ ( 𝑥 ↑ 𝐹 ) ) = ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) ) |
11 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · ( 𝐷 ‘ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐷 ‘ ( 𝑥 ↑ 𝐹 ) ) = ( 𝑥 · ( 𝐷 ‘ 𝐹 ) ) ↔ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) ) |
13 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐷 ‘ ( 𝑥 ↑ 𝐹 ) ) = ( 𝐷 ‘ ( ( 𝑦 + 1 ) ↑ 𝐹 ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · ( 𝐷 ‘ 𝐹 ) ) = ( ( 𝑦 + 1 ) · ( 𝐷 ‘ 𝐹 ) ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐷 ‘ ( 𝑥 ↑ 𝐹 ) ) = ( 𝑥 · ( 𝐷 ‘ 𝐹 ) ) ↔ ( 𝐷 ‘ ( ( 𝑦 + 1 ) ↑ 𝐹 ) ) = ( ( 𝑦 + 1 ) · ( 𝐷 ‘ 𝐹 ) ) ) ) |
16 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝐷 ‘ ( 𝑥 ↑ 𝐹 ) ) = ( 𝐷 ‘ ( 𝐴 ↑ 𝐹 ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 · ( 𝐷 ‘ 𝐹 ) ) = ( 𝐴 · ( 𝐷 ‘ 𝐹 ) ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐷 ‘ ( 𝑥 ↑ 𝐹 ) ) = ( 𝑥 · ( 𝐷 ‘ 𝐹 ) ) ↔ ( 𝐷 ‘ ( 𝐴 ↑ 𝐹 ) ) = ( 𝐴 · ( 𝐷 ‘ 𝐹 ) ) ) ) |
19 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) = ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) |
20 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
21 |
19 20
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) |
22 |
|
eqid |
⊢ ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) = ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) |
23 |
19 22
|
ringidval |
⊢ ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) |
24 |
21 23 5
|
mulg0 |
⊢ ( 𝐹 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) → ( 0 ↑ 𝐹 ) = ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) |
25 |
2 24
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝐹 ) = ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0 ↑ 𝐹 ) ) = ( 𝐷 ‘ ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) ) |
27 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
28 |
27
|
simprbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ Domn ) |
29 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
30 |
28 29
|
syl |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ Ring ) |
31 |
1 30
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
32 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
33 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) = ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) |
34 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
35 |
32 33 34 22
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) |
36 |
31 35
|
syl |
⊢ ( 𝜑 → ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) |
37 |
36
|
eqcomd |
⊢ ( 𝜑 → ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) = ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) ) ) |
38 |
37
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) = ( 𝐷 ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
40 |
39 34
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
41 |
31 40
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
42 |
1 28
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
43 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
44 |
42 43
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
45 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
46 |
34 45
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
47 |
44 46
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
48 |
6 32 39 33 45
|
deg1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐷 ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) ) ) = 0 ) |
49 |
31 41 47 48
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) ) ) = 0 ) |
50 |
38 49
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) = 0 ) |
51 |
26 50
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0 ↑ 𝐹 ) ) = 0 ) |
52 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) = ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) |
53 |
6 32 52 20
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝐹 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
54 |
31 2 3 53
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
55 |
54
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℂ ) |
56 |
55
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( 𝐷 ‘ 𝐹 ) ) = 0 ) |
57 |
56
|
eqcomd |
⊢ ( 𝜑 → 0 = ( 0 · ( 𝐷 ‘ 𝐹 ) ) ) |
58 |
51 57
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 0 ↑ 𝐹 ) ) = ( 0 · ( 𝐷 ‘ 𝐹 ) ) ) |
59 |
32
|
ply1idom |
⊢ ( 𝑅 ∈ IDomn → ( Poly1 ‘ 𝑅 ) ∈ IDomn ) |
60 |
1 59
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ 𝑅 ) ∈ IDomn ) |
61 |
60
|
idomringd |
⊢ ( 𝜑 → ( Poly1 ‘ 𝑅 ) ∈ Ring ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( Poly1 ‘ 𝑅 ) ∈ Ring ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( Poly1 ‘ 𝑅 ) ∈ Ring ) |
64 |
19
|
ringmgp |
⊢ ( ( Poly1 ‘ 𝑅 ) ∈ Ring → ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ∈ Mnd ) |
65 |
63 64
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ∈ Mnd ) |
66 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → 𝑦 ∈ ℕ0 ) |
67 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → 𝐹 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
68 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) = ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) |
69 |
21 5 68
|
mulgnn0p1 |
⊢ ( ( ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐹 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 𝑦 + 1 ) ↑ 𝐹 ) = ( ( 𝑦 ↑ 𝐹 ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) 𝐹 ) ) |
70 |
65 66 67 69
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( ( 𝑦 + 1 ) ↑ 𝐹 ) = ( ( 𝑦 ↑ 𝐹 ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) 𝐹 ) ) |
71 |
70
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( 𝐷 ‘ ( ( 𝑦 + 1 ) ↑ 𝐹 ) ) = ( 𝐷 ‘ ( ( 𝑦 ↑ 𝐹 ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) 𝐹 ) ) ) |
72 |
|
eqid |
⊢ ( .r ‘ ( Poly1 ‘ 𝑅 ) ) = ( .r ‘ ( Poly1 ‘ 𝑅 ) ) |
73 |
19 72
|
mgpplusg |
⊢ ( .r ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) |
74 |
73
|
eqcomi |
⊢ ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) = ( .r ‘ ( Poly1 ‘ 𝑅 ) ) |
75 |
1
|
idomdomd |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑅 ∈ Domn ) |
77 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → 𝑅 ∈ Domn ) |
78 |
21 5 65 66 67
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( 𝑦 ↑ 𝐹 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
79 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( Poly1 ‘ 𝑅 ) ∈ IDomn ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( Poly1 ‘ 𝑅 ) ∈ IDomn ) |
81 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → 𝐹 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) |
82 |
80 67 81 66 5
|
idomnnzpownz |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( 𝑦 ↑ 𝐹 ) ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) |
83 |
6 32 20 74 52 77 78 82 67 81
|
deg1mul |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( 𝐷 ‘ ( ( 𝑦 ↑ 𝐹 ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) 𝐹 ) ) = ( ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) + ( 𝐷 ‘ 𝐹 ) ) ) |
84 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) |
85 |
84
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) + ( 𝐷 ‘ 𝐹 ) ) = ( ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) + ( 𝐷 ‘ 𝐹 ) ) ) |
86 |
66
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → 𝑦 ∈ ℂ ) |
87 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( 𝐷 ‘ 𝐹 ) ∈ ℂ ) |
88 |
86 87
|
adddirp1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( ( 𝑦 + 1 ) · ( 𝐷 ‘ 𝐹 ) ) = ( ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) + ( 𝐷 ‘ 𝐹 ) ) ) |
89 |
88
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) + ( 𝐷 ‘ 𝐹 ) ) = ( ( 𝑦 + 1 ) · ( 𝐷 ‘ 𝐹 ) ) ) |
90 |
85 89
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) + ( 𝐷 ‘ 𝐹 ) ) = ( ( 𝑦 + 1 ) · ( 𝐷 ‘ 𝐹 ) ) ) |
91 |
83 90
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( 𝐷 ‘ ( ( 𝑦 ↑ 𝐹 ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) 𝐹 ) ) = ( ( 𝑦 + 1 ) · ( 𝐷 ‘ 𝐹 ) ) ) |
92 |
71 91
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐷 ‘ ( 𝑦 ↑ 𝐹 ) ) = ( 𝑦 · ( 𝐷 ‘ 𝐹 ) ) ) → ( 𝐷 ‘ ( ( 𝑦 + 1 ) ↑ 𝐹 ) ) = ( ( 𝑦 + 1 ) · ( 𝐷 ‘ 𝐹 ) ) ) |
93 |
9 12 15 18 58 92
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐴 ↑ 𝐹 ) ) = ( 𝐴 · ( 𝐷 ‘ 𝐹 ) ) ) |
94 |
93
|
ex |
⊢ ( 𝜑 → ( 𝐴 ∈ ℕ0 → ( 𝐷 ‘ ( 𝐴 ↑ 𝐹 ) ) = ( 𝐴 · ( 𝐷 ‘ 𝐹 ) ) ) ) |
95 |
4 94
|
mpd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐴 ↑ 𝐹 ) ) = ( 𝐴 · ( 𝐷 ‘ 𝐹 ) ) ) |