| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1pow.1 | ⊢ ( 𝜑  →  𝑅  ∈  IDomn ) | 
						
							| 2 |  | deg1pow.2 | ⊢ ( 𝜑  →  𝐹  ∈  ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 3 |  | deg1pow.3 | ⊢ ( 𝜑  →  𝐹  ≠  ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 4 |  | deg1pow.4 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 5 |  | deg1pow.5 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 6 |  | deg1pow.6 | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 7 |  | fvoveq1 | ⊢ ( 𝑥  =  0  →  ( 𝐷 ‘ ( 𝑥  ↑  𝐹 ) )  =  ( 𝐷 ‘ ( 0  ↑  𝐹 ) ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ·  ( 𝐷 ‘ 𝐹 ) )  =  ( 0  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥  =  0  →  ( ( 𝐷 ‘ ( 𝑥  ↑  𝐹 ) )  =  ( 𝑥  ·  ( 𝐷 ‘ 𝐹 ) )  ↔  ( 𝐷 ‘ ( 0  ↑  𝐹 ) )  =  ( 0  ·  ( 𝐷 ‘ 𝐹 ) ) ) ) | 
						
							| 10 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐷 ‘ ( 𝑥  ↑  𝐹 ) )  =  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ·  ( 𝐷 ‘ 𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 12 | 10 11 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐷 ‘ ( 𝑥  ↑  𝐹 ) )  =  ( 𝑥  ·  ( 𝐷 ‘ 𝐹 ) )  ↔  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) ) ) | 
						
							| 13 |  | fvoveq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝐷 ‘ ( 𝑥  ↑  𝐹 ) )  =  ( 𝐷 ‘ ( ( 𝑦  +  1 )  ↑  𝐹 ) ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑥  ·  ( 𝐷 ‘ 𝐹 ) )  =  ( ( 𝑦  +  1 )  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝐷 ‘ ( 𝑥  ↑  𝐹 ) )  =  ( 𝑥  ·  ( 𝐷 ‘ 𝐹 ) )  ↔  ( 𝐷 ‘ ( ( 𝑦  +  1 )  ↑  𝐹 ) )  =  ( ( 𝑦  +  1 )  ·  ( 𝐷 ‘ 𝐹 ) ) ) ) | 
						
							| 16 |  | fvoveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐷 ‘ ( 𝑥  ↑  𝐹 ) )  =  ( 𝐷 ‘ ( 𝐴  ↑  𝐹 ) ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ·  ( 𝐷 ‘ 𝐹 ) )  =  ( 𝐴  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝐷 ‘ ( 𝑥  ↑  𝐹 ) )  =  ( 𝑥  ·  ( 𝐷 ‘ 𝐹 ) )  ↔  ( 𝐷 ‘ ( 𝐴  ↑  𝐹 ) )  =  ( 𝐴  ·  ( 𝐷 ‘ 𝐹 ) ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) )  =  ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) )  =  ( Base ‘ ( Poly1 ‘ 𝑅 ) ) | 
						
							| 21 | 19 20 | mgpbas | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 22 |  | eqid | ⊢ ( 1r ‘ ( Poly1 ‘ 𝑅 ) )  =  ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) | 
						
							| 23 | 19 22 | ringidval | ⊢ ( 1r ‘ ( Poly1 ‘ 𝑅 ) )  =  ( 0g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 24 | 21 23 5 | mulg0 | ⊢ ( 𝐹  ∈  ( Base ‘ ( Poly1 ‘ 𝑅 ) )  →  ( 0  ↑  𝐹 )  =  ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 25 | 2 24 | syl | ⊢ ( 𝜑  →  ( 0  ↑  𝐹 )  =  ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 0  ↑  𝐹 ) )  =  ( 𝐷 ‘ ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) ) | 
						
							| 27 |  | isidom | ⊢ ( 𝑅  ∈  IDomn  ↔  ( 𝑅  ∈  CRing  ∧  𝑅  ∈  Domn ) ) | 
						
							| 28 | 27 | simprbi | ⊢ ( 𝑅  ∈  IDomn  →  𝑅  ∈  Domn ) | 
						
							| 29 |  | domnring | ⊢ ( 𝑅  ∈  Domn  →  𝑅  ∈  Ring ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝑅  ∈  IDomn  →  𝑅  ∈  Ring ) | 
						
							| 31 | 1 30 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 32 |  | eqid | ⊢ ( Poly1 ‘ 𝑅 )  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 33 |  | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) )  =  ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) | 
						
							| 34 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 35 | 32 33 34 22 | ply1scl1 | ⊢ ( 𝑅  ∈  Ring  →  ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 36 | 31 35 | syl | ⊢ ( 𝜑  →  ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 37 | 36 | eqcomd | ⊢ ( 𝜑  →  ( 1r ‘ ( Poly1 ‘ 𝑅 ) )  =  ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) ) ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) )  =  ( 𝐷 ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) ) ) ) | 
						
							| 39 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 40 | 39 34 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 41 | 31 40 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 42 | 1 28 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Domn ) | 
						
							| 43 |  | domnnzr | ⊢ ( 𝑅  ∈  Domn  →  𝑅  ∈  NzRing ) | 
						
							| 44 | 42 43 | syl | ⊢ ( 𝜑  →  𝑅  ∈  NzRing ) | 
						
							| 45 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 46 | 34 45 | nzrnz | ⊢ ( 𝑅  ∈  NzRing  →  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 47 | 44 46 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 48 | 6 32 39 33 45 | deg1scl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) )  →  ( 𝐷 ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) ) )  =  0 ) | 
						
							| 49 | 31 41 47 48 | syl3anc | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ ( 1r ‘ 𝑅 ) ) )  =  0 ) | 
						
							| 50 | 38 49 | eqtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 1r ‘ ( Poly1 ‘ 𝑅 ) ) )  =  0 ) | 
						
							| 51 | 26 50 | eqtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 0  ↑  𝐹 ) )  =  0 ) | 
						
							| 52 |  | eqid | ⊢ ( 0g ‘ ( Poly1 ‘ 𝑅 ) )  =  ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) | 
						
							| 53 | 6 32 52 20 | deg1nn0cl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  ( Base ‘ ( Poly1 ‘ 𝑅 ) )  ∧  𝐹  ≠  ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) )  →  ( 𝐷 ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 54 | 31 2 3 53 | syl3anc | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 55 | 54 | nn0cnd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 56 | 55 | mul02d | ⊢ ( 𝜑  →  ( 0  ·  ( 𝐷 ‘ 𝐹 ) )  =  0 ) | 
						
							| 57 | 56 | eqcomd | ⊢ ( 𝜑  →  0  =  ( 0  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 58 | 51 57 | eqtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 0  ↑  𝐹 ) )  =  ( 0  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 59 | 32 | ply1idom | ⊢ ( 𝑅  ∈  IDomn  →  ( Poly1 ‘ 𝑅 )  ∈  IDomn ) | 
						
							| 60 | 1 59 | syl | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝑅 )  ∈  IDomn ) | 
						
							| 61 | 60 | idomringd | ⊢ ( 𝜑  →  ( Poly1 ‘ 𝑅 )  ∈  Ring ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  →  ( Poly1 ‘ 𝑅 )  ∈  Ring ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( Poly1 ‘ 𝑅 )  ∈  Ring ) | 
						
							| 64 | 19 | ringmgp | ⊢ ( ( Poly1 ‘ 𝑅 )  ∈  Ring  →  ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) )  ∈  Mnd ) | 
						
							| 65 | 63 64 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) )  ∈  Mnd ) | 
						
							| 66 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  𝑦  ∈  ℕ0 ) | 
						
							| 67 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  𝐹  ∈  ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 68 |  | eqid | ⊢ ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) )  =  ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 69 | 21 5 68 | mulgnn0p1 | ⊢ ( ( ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) )  ∈  Mnd  ∧  𝑦  ∈  ℕ0  ∧  𝐹  ∈  ( Base ‘ ( Poly1 ‘ 𝑅 ) ) )  →  ( ( 𝑦  +  1 )  ↑  𝐹 )  =  ( ( 𝑦  ↑  𝐹 ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) 𝐹 ) ) | 
						
							| 70 | 65 66 67 69 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( ( 𝑦  +  1 )  ↑  𝐹 )  =  ( ( 𝑦  ↑  𝐹 ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) 𝐹 ) ) | 
						
							| 71 | 70 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( 𝐷 ‘ ( ( 𝑦  +  1 )  ↑  𝐹 ) )  =  ( 𝐷 ‘ ( ( 𝑦  ↑  𝐹 ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) 𝐹 ) ) ) | 
						
							| 72 |  | eqid | ⊢ ( .r ‘ ( Poly1 ‘ 𝑅 ) )  =  ( .r ‘ ( Poly1 ‘ 𝑅 ) ) | 
						
							| 73 | 19 72 | mgpplusg | ⊢ ( .r ‘ ( Poly1 ‘ 𝑅 ) )  =  ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 74 | 73 | eqcomi | ⊢ ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) )  =  ( .r ‘ ( Poly1 ‘ 𝑅 ) ) | 
						
							| 75 | 1 | idomdomd | ⊢ ( 𝜑  →  𝑅  ∈  Domn ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  →  𝑅  ∈  Domn ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  𝑅  ∈  Domn ) | 
						
							| 78 | 21 5 65 66 67 | mulgnn0cld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( 𝑦  ↑  𝐹 )  ∈  ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 79 | 60 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  →  ( Poly1 ‘ 𝑅 )  ∈  IDomn ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( Poly1 ‘ 𝑅 )  ∈  IDomn ) | 
						
							| 81 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  𝐹  ≠  ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 82 | 80 67 81 66 5 | idomnnzpownz | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( 𝑦  ↑  𝐹 )  ≠  ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 83 | 6 32 20 74 52 77 78 82 67 81 | deg1mul | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( 𝐷 ‘ ( ( 𝑦  ↑  𝐹 ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) 𝐹 ) )  =  ( ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  +  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 84 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 85 | 84 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  +  ( 𝐷 ‘ 𝐹 ) )  =  ( ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) )  +  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 86 | 66 | nn0cnd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  𝑦  ∈  ℂ ) | 
						
							| 87 | 55 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( 𝐷 ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 88 | 86 87 | adddirp1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( ( 𝑦  +  1 )  ·  ( 𝐷 ‘ 𝐹 ) )  =  ( ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) )  +  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 89 | 88 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) )  +  ( 𝐷 ‘ 𝐹 ) )  =  ( ( 𝑦  +  1 )  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 90 | 85 89 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  +  ( 𝐷 ‘ 𝐹 ) )  =  ( ( 𝑦  +  1 )  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 91 | 83 90 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( 𝐷 ‘ ( ( 𝑦  ↑  𝐹 ) ( +g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝑅 ) ) ) 𝐹 ) )  =  ( ( 𝑦  +  1 )  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 92 | 71 91 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝐷 ‘ ( 𝑦  ↑  𝐹 ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝐹 ) ) )  →  ( 𝐷 ‘ ( ( 𝑦  +  1 )  ↑  𝐹 ) )  =  ( ( 𝑦  +  1 )  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 93 | 9 12 15 18 58 92 | nn0indd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℕ0 )  →  ( 𝐷 ‘ ( 𝐴  ↑  𝐹 ) )  =  ( 𝐴  ·  ( 𝐷 ‘ 𝐹 ) ) ) | 
						
							| 94 | 93 | ex | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℕ0  →  ( 𝐷 ‘ ( 𝐴  ↑  𝐹 ) )  =  ( 𝐴  ·  ( 𝐷 ‘ 𝐹 ) ) ) ) | 
						
							| 95 | 4 94 | mpd | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝐴  ↑  𝐹 ) )  =  ( 𝐴  ·  ( 𝐷 ‘ 𝐹 ) ) ) |