| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1pow.1 |  |-  ( ph -> R e. IDomn ) | 
						
							| 2 |  | deg1pow.2 |  |-  ( ph -> F e. ( Base ` ( Poly1 ` R ) ) ) | 
						
							| 3 |  | deg1pow.3 |  |-  ( ph -> F =/= ( 0g ` ( Poly1 ` R ) ) ) | 
						
							| 4 |  | deg1pow.4 |  |-  ( ph -> A e. NN0 ) | 
						
							| 5 |  | deg1pow.5 |  |-  .^ = ( .g ` ( mulGrp ` ( Poly1 ` R ) ) ) | 
						
							| 6 |  | deg1pow.6 |  |-  D = ( deg1 ` R ) | 
						
							| 7 |  | fvoveq1 |  |-  ( x = 0 -> ( D ` ( x .^ F ) ) = ( D ` ( 0 .^ F ) ) ) | 
						
							| 8 |  | oveq1 |  |-  ( x = 0 -> ( x x. ( D ` F ) ) = ( 0 x. ( D ` F ) ) ) | 
						
							| 9 | 7 8 | eqeq12d |  |-  ( x = 0 -> ( ( D ` ( x .^ F ) ) = ( x x. ( D ` F ) ) <-> ( D ` ( 0 .^ F ) ) = ( 0 x. ( D ` F ) ) ) ) | 
						
							| 10 |  | fvoveq1 |  |-  ( x = y -> ( D ` ( x .^ F ) ) = ( D ` ( y .^ F ) ) ) | 
						
							| 11 |  | oveq1 |  |-  ( x = y -> ( x x. ( D ` F ) ) = ( y x. ( D ` F ) ) ) | 
						
							| 12 | 10 11 | eqeq12d |  |-  ( x = y -> ( ( D ` ( x .^ F ) ) = ( x x. ( D ` F ) ) <-> ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) ) | 
						
							| 13 |  | fvoveq1 |  |-  ( x = ( y + 1 ) -> ( D ` ( x .^ F ) ) = ( D ` ( ( y + 1 ) .^ F ) ) ) | 
						
							| 14 |  | oveq1 |  |-  ( x = ( y + 1 ) -> ( x x. ( D ` F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) | 
						
							| 15 | 13 14 | eqeq12d |  |-  ( x = ( y + 1 ) -> ( ( D ` ( x .^ F ) ) = ( x x. ( D ` F ) ) <-> ( D ` ( ( y + 1 ) .^ F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) ) | 
						
							| 16 |  | fvoveq1 |  |-  ( x = A -> ( D ` ( x .^ F ) ) = ( D ` ( A .^ F ) ) ) | 
						
							| 17 |  | oveq1 |  |-  ( x = A -> ( x x. ( D ` F ) ) = ( A x. ( D ` F ) ) ) | 
						
							| 18 | 16 17 | eqeq12d |  |-  ( x = A -> ( ( D ` ( x .^ F ) ) = ( x x. ( D ` F ) ) <-> ( D ` ( A .^ F ) ) = ( A x. ( D ` F ) ) ) ) | 
						
							| 19 |  | eqid |  |-  ( mulGrp ` ( Poly1 ` R ) ) = ( mulGrp ` ( Poly1 ` R ) ) | 
						
							| 20 |  | eqid |  |-  ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) | 
						
							| 21 | 19 20 | mgpbas |  |-  ( Base ` ( Poly1 ` R ) ) = ( Base ` ( mulGrp ` ( Poly1 ` R ) ) ) | 
						
							| 22 |  | eqid |  |-  ( 1r ` ( Poly1 ` R ) ) = ( 1r ` ( Poly1 ` R ) ) | 
						
							| 23 | 19 22 | ringidval |  |-  ( 1r ` ( Poly1 ` R ) ) = ( 0g ` ( mulGrp ` ( Poly1 ` R ) ) ) | 
						
							| 24 | 21 23 5 | mulg0 |  |-  ( F e. ( Base ` ( Poly1 ` R ) ) -> ( 0 .^ F ) = ( 1r ` ( Poly1 ` R ) ) ) | 
						
							| 25 | 2 24 | syl |  |-  ( ph -> ( 0 .^ F ) = ( 1r ` ( Poly1 ` R ) ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ph -> ( D ` ( 0 .^ F ) ) = ( D ` ( 1r ` ( Poly1 ` R ) ) ) ) | 
						
							| 27 |  | isidom |  |-  ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) | 
						
							| 28 | 27 | simprbi |  |-  ( R e. IDomn -> R e. Domn ) | 
						
							| 29 |  | domnring |  |-  ( R e. Domn -> R e. Ring ) | 
						
							| 30 | 28 29 | syl |  |-  ( R e. IDomn -> R e. Ring ) | 
						
							| 31 | 1 30 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 32 |  | eqid |  |-  ( Poly1 ` R ) = ( Poly1 ` R ) | 
						
							| 33 |  | eqid |  |-  ( algSc ` ( Poly1 ` R ) ) = ( algSc ` ( Poly1 ` R ) ) | 
						
							| 34 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 35 | 32 33 34 22 | ply1scl1 |  |-  ( R e. Ring -> ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) = ( 1r ` ( Poly1 ` R ) ) ) | 
						
							| 36 | 31 35 | syl |  |-  ( ph -> ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) = ( 1r ` ( Poly1 ` R ) ) ) | 
						
							| 37 | 36 | eqcomd |  |-  ( ph -> ( 1r ` ( Poly1 ` R ) ) = ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) ) | 
						
							| 38 | 37 | fveq2d |  |-  ( ph -> ( D ` ( 1r ` ( Poly1 ` R ) ) ) = ( D ` ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) ) ) | 
						
							| 39 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 40 | 39 34 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 41 | 31 40 | syl |  |-  ( ph -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 42 | 1 28 | syl |  |-  ( ph -> R e. Domn ) | 
						
							| 43 |  | domnnzr |  |-  ( R e. Domn -> R e. NzRing ) | 
						
							| 44 | 42 43 | syl |  |-  ( ph -> R e. NzRing ) | 
						
							| 45 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 46 | 34 45 | nzrnz |  |-  ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) | 
						
							| 47 | 44 46 | syl |  |-  ( ph -> ( 1r ` R ) =/= ( 0g ` R ) ) | 
						
							| 48 | 6 32 39 33 45 | deg1scl |  |-  ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( D ` ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) ) = 0 ) | 
						
							| 49 | 31 41 47 48 | syl3anc |  |-  ( ph -> ( D ` ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) ) = 0 ) | 
						
							| 50 | 38 49 | eqtrd |  |-  ( ph -> ( D ` ( 1r ` ( Poly1 ` R ) ) ) = 0 ) | 
						
							| 51 | 26 50 | eqtrd |  |-  ( ph -> ( D ` ( 0 .^ F ) ) = 0 ) | 
						
							| 52 |  | eqid |  |-  ( 0g ` ( Poly1 ` R ) ) = ( 0g ` ( Poly1 ` R ) ) | 
						
							| 53 | 6 32 52 20 | deg1nn0cl |  |-  ( ( R e. Ring /\ F e. ( Base ` ( Poly1 ` R ) ) /\ F =/= ( 0g ` ( Poly1 ` R ) ) ) -> ( D ` F ) e. NN0 ) | 
						
							| 54 | 31 2 3 53 | syl3anc |  |-  ( ph -> ( D ` F ) e. NN0 ) | 
						
							| 55 | 54 | nn0cnd |  |-  ( ph -> ( D ` F ) e. CC ) | 
						
							| 56 | 55 | mul02d |  |-  ( ph -> ( 0 x. ( D ` F ) ) = 0 ) | 
						
							| 57 | 56 | eqcomd |  |-  ( ph -> 0 = ( 0 x. ( D ` F ) ) ) | 
						
							| 58 | 51 57 | eqtrd |  |-  ( ph -> ( D ` ( 0 .^ F ) ) = ( 0 x. ( D ` F ) ) ) | 
						
							| 59 | 32 | ply1idom |  |-  ( R e. IDomn -> ( Poly1 ` R ) e. IDomn ) | 
						
							| 60 | 1 59 | syl |  |-  ( ph -> ( Poly1 ` R ) e. IDomn ) | 
						
							| 61 | 60 | idomringd |  |-  ( ph -> ( Poly1 ` R ) e. Ring ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ph /\ y e. NN0 ) -> ( Poly1 ` R ) e. Ring ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( Poly1 ` R ) e. Ring ) | 
						
							| 64 | 19 | ringmgp |  |-  ( ( Poly1 ` R ) e. Ring -> ( mulGrp ` ( Poly1 ` R ) ) e. Mnd ) | 
						
							| 65 | 63 64 | syl |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( mulGrp ` ( Poly1 ` R ) ) e. Mnd ) | 
						
							| 66 |  | simplr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> y e. NN0 ) | 
						
							| 67 | 2 | ad2antrr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> F e. ( Base ` ( Poly1 ` R ) ) ) | 
						
							| 68 |  | eqid |  |-  ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) = ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) | 
						
							| 69 | 21 5 68 | mulgnn0p1 |  |-  ( ( ( mulGrp ` ( Poly1 ` R ) ) e. Mnd /\ y e. NN0 /\ F e. ( Base ` ( Poly1 ` R ) ) ) -> ( ( y + 1 ) .^ F ) = ( ( y .^ F ) ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) F ) ) | 
						
							| 70 | 65 66 67 69 | syl3anc |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( ( y + 1 ) .^ F ) = ( ( y .^ F ) ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) F ) ) | 
						
							| 71 | 70 | fveq2d |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` ( ( y + 1 ) .^ F ) ) = ( D ` ( ( y .^ F ) ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) F ) ) ) | 
						
							| 72 |  | eqid |  |-  ( .r ` ( Poly1 ` R ) ) = ( .r ` ( Poly1 ` R ) ) | 
						
							| 73 | 19 72 | mgpplusg |  |-  ( .r ` ( Poly1 ` R ) ) = ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) | 
						
							| 74 | 73 | eqcomi |  |-  ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) = ( .r ` ( Poly1 ` R ) ) | 
						
							| 75 | 1 | idomdomd |  |-  ( ph -> R e. Domn ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ph /\ y e. NN0 ) -> R e. Domn ) | 
						
							| 77 | 76 | adantr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> R e. Domn ) | 
						
							| 78 | 21 5 65 66 67 | mulgnn0cld |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( y .^ F ) e. ( Base ` ( Poly1 ` R ) ) ) | 
						
							| 79 | 60 | adantr |  |-  ( ( ph /\ y e. NN0 ) -> ( Poly1 ` R ) e. IDomn ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( Poly1 ` R ) e. IDomn ) | 
						
							| 81 | 3 | ad2antrr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> F =/= ( 0g ` ( Poly1 ` R ) ) ) | 
						
							| 82 | 80 67 81 66 5 | idomnnzpownz |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( y .^ F ) =/= ( 0g ` ( Poly1 ` R ) ) ) | 
						
							| 83 | 6 32 20 74 52 77 78 82 67 81 | deg1mul |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` ( ( y .^ F ) ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) F ) ) = ( ( D ` ( y .^ F ) ) + ( D ` F ) ) ) | 
						
							| 84 |  | simpr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) | 
						
							| 85 | 84 | oveq1d |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( ( D ` ( y .^ F ) ) + ( D ` F ) ) = ( ( y x. ( D ` F ) ) + ( D ` F ) ) ) | 
						
							| 86 | 66 | nn0cnd |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> y e. CC ) | 
						
							| 87 | 55 | ad2antrr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` F ) e. CC ) | 
						
							| 88 | 86 87 | adddirp1d |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( ( y + 1 ) x. ( D ` F ) ) = ( ( y x. ( D ` F ) ) + ( D ` F ) ) ) | 
						
							| 89 | 88 | eqcomd |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( ( y x. ( D ` F ) ) + ( D ` F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) | 
						
							| 90 | 85 89 | eqtrd |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( ( D ` ( y .^ F ) ) + ( D ` F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) | 
						
							| 91 | 83 90 | eqtrd |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` ( ( y .^ F ) ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) | 
						
							| 92 | 71 91 | eqtrd |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` ( ( y + 1 ) .^ F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) | 
						
							| 93 | 9 12 15 18 58 92 | nn0indd |  |-  ( ( ph /\ A e. NN0 ) -> ( D ` ( A .^ F ) ) = ( A x. ( D ` F ) ) ) | 
						
							| 94 | 93 | ex |  |-  ( ph -> ( A e. NN0 -> ( D ` ( A .^ F ) ) = ( A x. ( D ` F ) ) ) ) | 
						
							| 95 | 4 94 | mpd |  |-  ( ph -> ( D ` ( A .^ F ) ) = ( A x. ( D ` F ) ) ) |