| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1pow.1 |
|- ( ph -> R e. IDomn ) |
| 2 |
|
deg1pow.2 |
|- ( ph -> F e. ( Base ` ( Poly1 ` R ) ) ) |
| 3 |
|
deg1pow.3 |
|- ( ph -> F =/= ( 0g ` ( Poly1 ` R ) ) ) |
| 4 |
|
deg1pow.4 |
|- ( ph -> A e. NN0 ) |
| 5 |
|
deg1pow.5 |
|- .^ = ( .g ` ( mulGrp ` ( Poly1 ` R ) ) ) |
| 6 |
|
deg1pow.6 |
|- D = ( deg1 ` R ) |
| 7 |
|
fvoveq1 |
|- ( x = 0 -> ( D ` ( x .^ F ) ) = ( D ` ( 0 .^ F ) ) ) |
| 8 |
|
oveq1 |
|- ( x = 0 -> ( x x. ( D ` F ) ) = ( 0 x. ( D ` F ) ) ) |
| 9 |
7 8
|
eqeq12d |
|- ( x = 0 -> ( ( D ` ( x .^ F ) ) = ( x x. ( D ` F ) ) <-> ( D ` ( 0 .^ F ) ) = ( 0 x. ( D ` F ) ) ) ) |
| 10 |
|
fvoveq1 |
|- ( x = y -> ( D ` ( x .^ F ) ) = ( D ` ( y .^ F ) ) ) |
| 11 |
|
oveq1 |
|- ( x = y -> ( x x. ( D ` F ) ) = ( y x. ( D ` F ) ) ) |
| 12 |
10 11
|
eqeq12d |
|- ( x = y -> ( ( D ` ( x .^ F ) ) = ( x x. ( D ` F ) ) <-> ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) ) |
| 13 |
|
fvoveq1 |
|- ( x = ( y + 1 ) -> ( D ` ( x .^ F ) ) = ( D ` ( ( y + 1 ) .^ F ) ) ) |
| 14 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x x. ( D ` F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) |
| 15 |
13 14
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( D ` ( x .^ F ) ) = ( x x. ( D ` F ) ) <-> ( D ` ( ( y + 1 ) .^ F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) ) |
| 16 |
|
fvoveq1 |
|- ( x = A -> ( D ` ( x .^ F ) ) = ( D ` ( A .^ F ) ) ) |
| 17 |
|
oveq1 |
|- ( x = A -> ( x x. ( D ` F ) ) = ( A x. ( D ` F ) ) ) |
| 18 |
16 17
|
eqeq12d |
|- ( x = A -> ( ( D ` ( x .^ F ) ) = ( x x. ( D ` F ) ) <-> ( D ` ( A .^ F ) ) = ( A x. ( D ` F ) ) ) ) |
| 19 |
|
eqid |
|- ( mulGrp ` ( Poly1 ` R ) ) = ( mulGrp ` ( Poly1 ` R ) ) |
| 20 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
| 21 |
19 20
|
mgpbas |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( mulGrp ` ( Poly1 ` R ) ) ) |
| 22 |
|
eqid |
|- ( 1r ` ( Poly1 ` R ) ) = ( 1r ` ( Poly1 ` R ) ) |
| 23 |
19 22
|
ringidval |
|- ( 1r ` ( Poly1 ` R ) ) = ( 0g ` ( mulGrp ` ( Poly1 ` R ) ) ) |
| 24 |
21 23 5
|
mulg0 |
|- ( F e. ( Base ` ( Poly1 ` R ) ) -> ( 0 .^ F ) = ( 1r ` ( Poly1 ` R ) ) ) |
| 25 |
2 24
|
syl |
|- ( ph -> ( 0 .^ F ) = ( 1r ` ( Poly1 ` R ) ) ) |
| 26 |
25
|
fveq2d |
|- ( ph -> ( D ` ( 0 .^ F ) ) = ( D ` ( 1r ` ( Poly1 ` R ) ) ) ) |
| 27 |
|
isidom |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
| 28 |
27
|
simprbi |
|- ( R e. IDomn -> R e. Domn ) |
| 29 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
| 30 |
28 29
|
syl |
|- ( R e. IDomn -> R e. Ring ) |
| 31 |
1 30
|
syl |
|- ( ph -> R e. Ring ) |
| 32 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
| 33 |
|
eqid |
|- ( algSc ` ( Poly1 ` R ) ) = ( algSc ` ( Poly1 ` R ) ) |
| 34 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 35 |
32 33 34 22
|
ply1scl1 |
|- ( R e. Ring -> ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) = ( 1r ` ( Poly1 ` R ) ) ) |
| 36 |
31 35
|
syl |
|- ( ph -> ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) = ( 1r ` ( Poly1 ` R ) ) ) |
| 37 |
36
|
eqcomd |
|- ( ph -> ( 1r ` ( Poly1 ` R ) ) = ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) ) |
| 38 |
37
|
fveq2d |
|- ( ph -> ( D ` ( 1r ` ( Poly1 ` R ) ) ) = ( D ` ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) ) ) |
| 39 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 40 |
39 34
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 41 |
31 40
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 42 |
1 28
|
syl |
|- ( ph -> R e. Domn ) |
| 43 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
| 44 |
42 43
|
syl |
|- ( ph -> R e. NzRing ) |
| 45 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 46 |
34 45
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 47 |
44 46
|
syl |
|- ( ph -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 48 |
6 32 39 33 45
|
deg1scl |
|- ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( D ` ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) ) = 0 ) |
| 49 |
31 41 47 48
|
syl3anc |
|- ( ph -> ( D ` ( ( algSc ` ( Poly1 ` R ) ) ` ( 1r ` R ) ) ) = 0 ) |
| 50 |
38 49
|
eqtrd |
|- ( ph -> ( D ` ( 1r ` ( Poly1 ` R ) ) ) = 0 ) |
| 51 |
26 50
|
eqtrd |
|- ( ph -> ( D ` ( 0 .^ F ) ) = 0 ) |
| 52 |
|
eqid |
|- ( 0g ` ( Poly1 ` R ) ) = ( 0g ` ( Poly1 ` R ) ) |
| 53 |
6 32 52 20
|
deg1nn0cl |
|- ( ( R e. Ring /\ F e. ( Base ` ( Poly1 ` R ) ) /\ F =/= ( 0g ` ( Poly1 ` R ) ) ) -> ( D ` F ) e. NN0 ) |
| 54 |
31 2 3 53
|
syl3anc |
|- ( ph -> ( D ` F ) e. NN0 ) |
| 55 |
54
|
nn0cnd |
|- ( ph -> ( D ` F ) e. CC ) |
| 56 |
55
|
mul02d |
|- ( ph -> ( 0 x. ( D ` F ) ) = 0 ) |
| 57 |
56
|
eqcomd |
|- ( ph -> 0 = ( 0 x. ( D ` F ) ) ) |
| 58 |
51 57
|
eqtrd |
|- ( ph -> ( D ` ( 0 .^ F ) ) = ( 0 x. ( D ` F ) ) ) |
| 59 |
32
|
ply1idom |
|- ( R e. IDomn -> ( Poly1 ` R ) e. IDomn ) |
| 60 |
1 59
|
syl |
|- ( ph -> ( Poly1 ` R ) e. IDomn ) |
| 61 |
60
|
idomringd |
|- ( ph -> ( Poly1 ` R ) e. Ring ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> ( Poly1 ` R ) e. Ring ) |
| 63 |
62
|
adantr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( Poly1 ` R ) e. Ring ) |
| 64 |
19
|
ringmgp |
|- ( ( Poly1 ` R ) e. Ring -> ( mulGrp ` ( Poly1 ` R ) ) e. Mnd ) |
| 65 |
63 64
|
syl |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( mulGrp ` ( Poly1 ` R ) ) e. Mnd ) |
| 66 |
|
simplr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> y e. NN0 ) |
| 67 |
2
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> F e. ( Base ` ( Poly1 ` R ) ) ) |
| 68 |
|
eqid |
|- ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) = ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) |
| 69 |
21 5 68
|
mulgnn0p1 |
|- ( ( ( mulGrp ` ( Poly1 ` R ) ) e. Mnd /\ y e. NN0 /\ F e. ( Base ` ( Poly1 ` R ) ) ) -> ( ( y + 1 ) .^ F ) = ( ( y .^ F ) ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) F ) ) |
| 70 |
65 66 67 69
|
syl3anc |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( ( y + 1 ) .^ F ) = ( ( y .^ F ) ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) F ) ) |
| 71 |
70
|
fveq2d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` ( ( y + 1 ) .^ F ) ) = ( D ` ( ( y .^ F ) ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) F ) ) ) |
| 72 |
|
eqid |
|- ( .r ` ( Poly1 ` R ) ) = ( .r ` ( Poly1 ` R ) ) |
| 73 |
19 72
|
mgpplusg |
|- ( .r ` ( Poly1 ` R ) ) = ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) |
| 74 |
73
|
eqcomi |
|- ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) = ( .r ` ( Poly1 ` R ) ) |
| 75 |
1
|
idomdomd |
|- ( ph -> R e. Domn ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> R e. Domn ) |
| 77 |
76
|
adantr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> R e. Domn ) |
| 78 |
21 5 65 66 67
|
mulgnn0cld |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( y .^ F ) e. ( Base ` ( Poly1 ` R ) ) ) |
| 79 |
60
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> ( Poly1 ` R ) e. IDomn ) |
| 80 |
79
|
adantr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( Poly1 ` R ) e. IDomn ) |
| 81 |
3
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> F =/= ( 0g ` ( Poly1 ` R ) ) ) |
| 82 |
80 67 81 66 5
|
idomnnzpownz |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( y .^ F ) =/= ( 0g ` ( Poly1 ` R ) ) ) |
| 83 |
6 32 20 74 52 77 78 82 67 81
|
deg1mul |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` ( ( y .^ F ) ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) F ) ) = ( ( D ` ( y .^ F ) ) + ( D ` F ) ) ) |
| 84 |
|
simpr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) |
| 85 |
84
|
oveq1d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( ( D ` ( y .^ F ) ) + ( D ` F ) ) = ( ( y x. ( D ` F ) ) + ( D ` F ) ) ) |
| 86 |
66
|
nn0cnd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> y e. CC ) |
| 87 |
55
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` F ) e. CC ) |
| 88 |
86 87
|
adddirp1d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( ( y + 1 ) x. ( D ` F ) ) = ( ( y x. ( D ` F ) ) + ( D ` F ) ) ) |
| 89 |
88
|
eqcomd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( ( y x. ( D ` F ) ) + ( D ` F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) |
| 90 |
85 89
|
eqtrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( ( D ` ( y .^ F ) ) + ( D ` F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) |
| 91 |
83 90
|
eqtrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` ( ( y .^ F ) ( +g ` ( mulGrp ` ( Poly1 ` R ) ) ) F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) |
| 92 |
71 91
|
eqtrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( D ` ( y .^ F ) ) = ( y x. ( D ` F ) ) ) -> ( D ` ( ( y + 1 ) .^ F ) ) = ( ( y + 1 ) x. ( D ` F ) ) ) |
| 93 |
9 12 15 18 58 92
|
nn0indd |
|- ( ( ph /\ A e. NN0 ) -> ( D ` ( A .^ F ) ) = ( A x. ( D ` F ) ) ) |
| 94 |
93
|
ex |
|- ( ph -> ( A e. NN0 -> ( D ` ( A .^ F ) ) = ( A x. ( D ` F ) ) ) ) |
| 95 |
4 94
|
mpd |
|- ( ph -> ( D ` ( A .^ F ) ) = ( A x. ( D ` F ) ) ) |