Metamath Proof Explorer


Theorem aks6d1c6lem1

Description: Lemma for claim 6, deduce exact degree of the polynomial. (Contributed by metakunt, 7-May-2025)

Ref Expression
Hypotheses aks6d1c6.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c6.2 P = chr K
aks6d1c6.3 φ K Field
aks6d1c6.4 φ P
aks6d1c6.5 φ R
aks6d1c6.6 φ N
aks6d1c6.7 φ P N
aks6d1c6.8 φ N gcd R = 1
aks6d1c6.9 φ A < P
aks6d1c6.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
aks6d1c6.11 φ A 0
aks6d1c6.12 E = k 0 , l 0 P k N P l
aks6d1c6.13 L = ℤRHom /R
aks6d1c6.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
aks6d1c6.15 φ x Base K P mulGrp K x K RingIso K
aks6d1c6.16 φ M mulGrp K PrimRoots R
aks6d1c6.17 H = h 0 0 A eval 1 K G h M
aks6d1c6.18 D = L E 0 × 0
aks6d1c6.19 S = s 0 0 A | t = 0 A s t D 1
aks6d1c6lem1.1 φ U 0 0 A
Assertion aks6d1c6lem1 φ deg 1 K G U = t = 0 A U t

Proof

Step Hyp Ref Expression
1 aks6d1c6.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c6.2 P = chr K
3 aks6d1c6.3 φ K Field
4 aks6d1c6.4 φ P
5 aks6d1c6.5 φ R
6 aks6d1c6.6 φ N
7 aks6d1c6.7 φ P N
8 aks6d1c6.8 φ N gcd R = 1
9 aks6d1c6.9 φ A < P
10 aks6d1c6.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
11 aks6d1c6.11 φ A 0
12 aks6d1c6.12 E = k 0 , l 0 P k N P l
13 aks6d1c6.13 L = ℤRHom /R
14 aks6d1c6.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
15 aks6d1c6.15 φ x Base K P mulGrp K x K RingIso K
16 aks6d1c6.16 φ M mulGrp K PrimRoots R
17 aks6d1c6.17 H = h 0 0 A eval 1 K G h M
18 aks6d1c6.18 D = L E 0 × 0
19 aks6d1c6.19 S = s 0 0 A | t = 0 A s t D 1
20 aks6d1c6lem1.1 φ U 0 0 A
21 10 a1i φ G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
22 21 fveq1d φ G U = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i U
23 22 fveq2d φ deg 1 K G U = deg 1 K g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i U
24 eqidd φ g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
25 simplr φ g = U i 0 A g = U
26 25 fveq1d φ g = U i 0 A g i = U i
27 26 oveq1d φ g = U i 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i = U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
28 27 mpteq2dva φ g = U i 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i = i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
29 28 oveq2d φ g = U mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i = mulGrp Poly 1 K i = 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
30 ovexd φ mulGrp Poly 1 K i = 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i V
31 24 29 20 30 fvmptd φ g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i U = mulGrp Poly 1 K i = 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
32 31 fveq2d φ deg 1 K g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i U = deg 1 K mulGrp Poly 1 K i = 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
33 fldidom K Field K IDomn
34 3 33 syl φ K IDomn
35 fzfid φ 0 A Fin
36 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
37 eqid Base Poly 1 K = Base Poly 1 K
38 36 37 mgpbas Base Poly 1 K = Base mulGrp Poly 1 K
39 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
40 3 fldcrngd φ K CRing
41 crngring K CRing K Ring
42 40 41 syl φ K Ring
43 eqid Poly 1 K = Poly 1 K
44 43 ply1ring K Ring Poly 1 K Ring
45 42 44 syl φ Poly 1 K Ring
46 36 ringmgp Poly 1 K Ring mulGrp Poly 1 K Mnd
47 45 46 syl φ mulGrp Poly 1 K Mnd
48 47 adantr φ i 0 A mulGrp Poly 1 K Mnd
49 nn0ex 0 V
50 49 a1i φ 0 V
51 ovexd φ 0 A V
52 50 51 elmapd φ U 0 0 A U : 0 A 0
53 20 52 mpbid φ U : 0 A 0
54 53 adantr φ i 0 A U : 0 A 0
55 simpr φ i 0 A i 0 A
56 54 55 ffvelcdmd φ i 0 A U i 0
57 2fveq3 t = i algSc Poly 1 K ℤRHom K t = algSc Poly 1 K ℤRHom K i
58 57 oveq2d t = i var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t = var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
59 58 eleq1d t = i var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t Base Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
60 ringmnd Poly 1 K Ring Poly 1 K Mnd
61 45 60 syl φ Poly 1 K Mnd
62 61 adantr φ t 0 A Poly 1 K Mnd
63 42 adantr φ t 0 A K Ring
64 eqid var 1 K = var 1 K
65 64 43 37 vr1cl K Ring var 1 K Base Poly 1 K
66 63 65 syl φ t 0 A var 1 K Base Poly 1 K
67 eqid ℤRHom K = ℤRHom K
68 67 zrhrhm K Ring ℤRHom K ring RingHom K
69 42 68 syl φ ℤRHom K ring RingHom K
70 zringbas = Base ring
71 eqid Base K = Base K
72 70 71 rhmf ℤRHom K ring RingHom K ℤRHom K : Base K
73 69 72 syl φ ℤRHom K : Base K
74 73 adantr φ t 0 A ℤRHom K : Base K
75 elfzelz t 0 A t
76 75 adantl φ t 0 A t
77 74 76 ffvelcdmd φ t 0 A ℤRHom K t Base K
78 eqid algSc Poly 1 K = algSc Poly 1 K
79 43 78 71 37 ply1sclcl K Ring ℤRHom K t Base K algSc Poly 1 K ℤRHom K t Base Poly 1 K
80 63 77 79 syl2anc φ t 0 A algSc Poly 1 K ℤRHom K t Base Poly 1 K
81 eqid + Poly 1 K = + Poly 1 K
82 37 81 mndcl Poly 1 K Mnd var 1 K Base Poly 1 K algSc Poly 1 K ℤRHom K t Base Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t Base Poly 1 K
83 62 66 80 82 syl3anc φ t 0 A var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t Base Poly 1 K
84 83 ralrimiva φ t 0 A var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t Base Poly 1 K
85 84 adantr φ i 0 A t 0 A var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t Base Poly 1 K
86 59 85 55 rspcdva φ i 0 A var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
87 38 39 48 56 86 mulgnn0cld φ i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K
88 43 ply1idom K IDomn Poly 1 K IDomn
89 34 88 syl φ Poly 1 K IDomn
90 89 adantr φ i 0 A Poly 1 K IDomn
91 58 neeq1d t = i var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t 0 Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i 0 Poly 1 K
92 eqid deg 1 K = deg 1 K
93 92 43 37 deg1xrcl algSc Poly 1 K ℤRHom K t Base Poly 1 K deg 1 K algSc Poly 1 K ℤRHom K t *
94 80 93 syl φ t 0 A deg 1 K algSc Poly 1 K ℤRHom K t *
95 0xr 0 *
96 95 a1i φ t 0 A 0 *
97 1xr 1 *
98 97 a1i φ t 0 A 1 *
99 92 43 71 78 deg1sclle K Ring ℤRHom K t Base K deg 1 K algSc Poly 1 K ℤRHom K t 0
100 63 77 99 syl2anc φ t 0 A deg 1 K algSc Poly 1 K ℤRHom K t 0
101 0lt1 0 < 1
102 101 a1i φ t 0 A 0 < 1
103 94 96 98 100 102 xrlelttrd φ t 0 A deg 1 K algSc Poly 1 K ℤRHom K t < 1
104 38 39 mulg1 var 1 K Base Poly 1 K 1 mulGrp Poly 1 K var 1 K = var 1 K
105 66 104 syl φ t 0 A 1 mulGrp Poly 1 K var 1 K = var 1 K
106 105 eqcomd φ t 0 A var 1 K = 1 mulGrp Poly 1 K var 1 K
107 106 fveq2d φ t 0 A deg 1 K var 1 K = deg 1 K 1 mulGrp Poly 1 K var 1 K
108 isfld K Field K DivRing K CRing
109 drngnzr K DivRing K NzRing
110 109 adantr K DivRing K CRing K NzRing
111 108 110 sylbi K Field K NzRing
112 3 111 syl φ K NzRing
113 112 adantr φ t 0 A K NzRing
114 1nn0 1 0
115 114 a1i φ t 0 A 1 0
116 92 43 64 36 39 deg1pw K NzRing 1 0 deg 1 K 1 mulGrp Poly 1 K var 1 K = 1
117 113 115 116 syl2anc φ t 0 A deg 1 K 1 mulGrp Poly 1 K var 1 K = 1
118 107 117 eqtr2d φ t 0 A 1 = deg 1 K var 1 K
119 103 118 breqtrd φ t 0 A deg 1 K algSc Poly 1 K ℤRHom K t < deg 1 K var 1 K
120 43 92 63 37 81 66 80 119 deg1add φ t 0 A deg 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t = deg 1 K var 1 K
121 107 117 eqtrd φ t 0 A deg 1 K var 1 K = 1
122 120 121 eqtrd φ t 0 A deg 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t = 1
123 122 115 eqeltrd φ t 0 A deg 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t 0
124 eqid 0 Poly 1 K = 0 Poly 1 K
125 92 43 124 37 deg1nn0clb K Ring var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t Base Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t 0 Poly 1 K deg 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t 0
126 63 83 125 syl2anc φ t 0 A var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t 0 Poly 1 K deg 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t 0
127 123 126 mpbird φ t 0 A var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t 0 Poly 1 K
128 127 ralrimiva φ t 0 A var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t 0 Poly 1 K
129 128 adantr φ i 0 A t 0 A var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t 0 Poly 1 K
130 91 129 55 rspcdva φ i 0 A var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i 0 Poly 1 K
131 90 86 130 56 39 idomnnzpownz φ i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i 0 Poly 1 K
132 87 131 jca φ i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i 0 Poly 1 K
133 132 ralrimiva φ i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i Base Poly 1 K U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i 0 Poly 1 K
134 34 35 133 deg1gprod φ deg 1 K mulGrp Poly 1 K i = 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i = t = 0 A deg 1 K i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i t 0 deg 1 K mulGrp Poly 1 K i = 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
135 134 simpld φ deg 1 K mulGrp Poly 1 K i = 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i = t = 0 A deg 1 K i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i t
136 eqidd φ t 0 A i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i = i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
137 simpr φ t 0 A i = t i = t
138 137 fveq2d φ t 0 A i = t U i = U t
139 137 fveq2d φ t 0 A i = t ℤRHom K i = ℤRHom K t
140 139 fveq2d φ t 0 A i = t algSc Poly 1 K ℤRHom K i = algSc Poly 1 K ℤRHom K t
141 140 oveq2d φ t 0 A i = t var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i = var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t
142 138 141 oveq12d φ t 0 A i = t U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i = U t mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t
143 simpr φ t 0 A t 0 A
144 ovexd φ t 0 A U t mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t V
145 136 142 143 144 fvmptd φ t 0 A i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i t = U t mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t
146 145 fveq2d φ t 0 A deg 1 K i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i t = deg 1 K U t mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t
147 34 adantr φ t 0 A K IDomn
148 53 ffvelcdmda φ t 0 A U t 0
149 147 83 127 148 39 92 deg1pow φ t 0 A deg 1 K U t mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t = U t deg 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t
150 122 oveq2d φ t 0 A U t deg 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t = U t 1
151 148 nn0cnd φ t 0 A U t
152 151 mulridd φ t 0 A U t 1 = U t
153 150 152 eqtrd φ t 0 A U t deg 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t = U t
154 149 153 eqtrd φ t 0 A deg 1 K U t mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K t = U t
155 146 154 eqtrd φ t 0 A deg 1 K i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i t = U t
156 155 sumeq2dv φ t = 0 A deg 1 K i 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i t = t = 0 A U t
157 135 156 eqtrd φ deg 1 K mulGrp Poly 1 K i = 0 A U i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i = t = 0 A U t
158 32 157 eqtrd φ deg 1 K g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i U = t = 0 A U t
159 23 158 eqtrd φ deg 1 K G U = t = 0 A U t