| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c6.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } | 
						
							| 2 |  | aks6d1c6.2 |  |-  P = ( chr ` K ) | 
						
							| 3 |  | aks6d1c6.3 |  |-  ( ph -> K e. Field ) | 
						
							| 4 |  | aks6d1c6.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | aks6d1c6.5 |  |-  ( ph -> R e. NN ) | 
						
							| 6 |  | aks6d1c6.6 |  |-  ( ph -> N e. NN ) | 
						
							| 7 |  | aks6d1c6.7 |  |-  ( ph -> P || N ) | 
						
							| 8 |  | aks6d1c6.8 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 9 |  | aks6d1c6.9 |  |-  ( ph -> A < P ) | 
						
							| 10 |  | aks6d1c6.10 |  |-  G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c6.11 |  |-  ( ph -> A e. NN0 ) | 
						
							| 12 |  | aks6d1c6.12 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 13 |  | aks6d1c6.13 |  |-  L = ( ZRHom ` ( Z/nZ ` R ) ) | 
						
							| 14 |  | aks6d1c6.14 |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 15 |  | aks6d1c6.15 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 16 |  | aks6d1c6.16 |  |-  ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 17 |  | aks6d1c6.17 |  |-  H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) | 
						
							| 18 |  | aks6d1c6.18 |  |-  D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 19 |  | aks6d1c6.19 |  |-  S = { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } | 
						
							| 20 |  | aks6d1c6lem1.1 |  |-  ( ph -> U e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 21 | 10 | a1i |  |-  ( ph -> G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) | 
						
							| 22 | 21 | fveq1d |  |-  ( ph -> ( G ` U ) = ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ph -> ( ( deg1 ` K ) ` ( G ` U ) ) = ( ( deg1 ` K ) ` ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) ) | 
						
							| 24 |  | eqidd |  |-  ( ph -> ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) | 
						
							| 25 |  | simplr |  |-  ( ( ( ph /\ g = U ) /\ i e. ( 0 ... A ) ) -> g = U ) | 
						
							| 26 | 25 | fveq1d |  |-  ( ( ( ph /\ g = U ) /\ i e. ( 0 ... A ) ) -> ( g ` i ) = ( U ` i ) ) | 
						
							| 27 | 26 | oveq1d |  |-  ( ( ( ph /\ g = U ) /\ i e. ( 0 ... A ) ) -> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) | 
						
							| 28 | 27 | mpteq2dva |  |-  ( ( ph /\ g = U ) -> ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) | 
						
							| 29 | 28 | oveq2d |  |-  ( ( ph /\ g = U ) -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 30 |  | ovexd |  |-  ( ph -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. _V ) | 
						
							| 31 | 24 29 20 30 | fvmptd |  |-  ( ph -> ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) = ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) = ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) | 
						
							| 33 |  | fldidom |  |-  ( K e. Field -> K e. IDomn ) | 
						
							| 34 | 3 33 | syl |  |-  ( ph -> K e. IDomn ) | 
						
							| 35 |  | fzfid |  |-  ( ph -> ( 0 ... A ) e. Fin ) | 
						
							| 36 |  | eqid |  |-  ( mulGrp ` ( Poly1 ` K ) ) = ( mulGrp ` ( Poly1 ` K ) ) | 
						
							| 37 |  | eqid |  |-  ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) | 
						
							| 38 | 36 37 | mgpbas |  |-  ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 39 |  | eqid |  |-  ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 40 | 3 | fldcrngd |  |-  ( ph -> K e. CRing ) | 
						
							| 41 |  | crngring |  |-  ( K e. CRing -> K e. Ring ) | 
						
							| 42 | 40 41 | syl |  |-  ( ph -> K e. Ring ) | 
						
							| 43 |  | eqid |  |-  ( Poly1 ` K ) = ( Poly1 ` K ) | 
						
							| 44 | 43 | ply1ring |  |-  ( K e. Ring -> ( Poly1 ` K ) e. Ring ) | 
						
							| 45 | 42 44 | syl |  |-  ( ph -> ( Poly1 ` K ) e. Ring ) | 
						
							| 46 | 36 | ringmgp |  |-  ( ( Poly1 ` K ) e. Ring -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) | 
						
							| 47 | 45 46 | syl |  |-  ( ph -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) | 
						
							| 49 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 50 | 49 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 51 |  | ovexd |  |-  ( ph -> ( 0 ... A ) e. _V ) | 
						
							| 52 | 50 51 | elmapd |  |-  ( ph -> ( U e. ( NN0 ^m ( 0 ... A ) ) <-> U : ( 0 ... A ) --> NN0 ) ) | 
						
							| 53 | 20 52 | mpbid |  |-  ( ph -> U : ( 0 ... A ) --> NN0 ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> U : ( 0 ... A ) --> NN0 ) | 
						
							| 55 |  | simpr |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> i e. ( 0 ... A ) ) | 
						
							| 56 | 54 55 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( U ` i ) e. NN0 ) | 
						
							| 57 |  | 2fveq3 |  |-  ( t = i -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) = ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( t = i -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) = ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) | 
						
							| 59 | 58 | eleq1d |  |-  ( t = i -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) <-> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) ) | 
						
							| 60 |  | ringmnd |  |-  ( ( Poly1 ` K ) e. Ring -> ( Poly1 ` K ) e. Mnd ) | 
						
							| 61 | 45 60 | syl |  |-  ( ph -> ( Poly1 ` K ) e. Mnd ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( Poly1 ` K ) e. Mnd ) | 
						
							| 63 | 42 | adantr |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> K e. Ring ) | 
						
							| 64 |  | eqid |  |-  ( var1 ` K ) = ( var1 ` K ) | 
						
							| 65 | 64 43 37 | vr1cl |  |-  ( K e. Ring -> ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 66 | 63 65 | syl |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 67 |  | eqid |  |-  ( ZRHom ` K ) = ( ZRHom ` K ) | 
						
							| 68 | 67 | zrhrhm |  |-  ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) | 
						
							| 69 | 42 68 | syl |  |-  ( ph -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) | 
						
							| 70 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 71 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 72 | 70 71 | rhmf |  |-  ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 73 | 69 72 | syl |  |-  ( ph -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 75 |  | elfzelz |  |-  ( t e. ( 0 ... A ) -> t e. ZZ ) | 
						
							| 76 | 75 | adantl |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> t e. ZZ ) | 
						
							| 77 | 74 76 | ffvelcdmd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( ZRHom ` K ) ` t ) e. ( Base ` K ) ) | 
						
							| 78 |  | eqid |  |-  ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) | 
						
							| 79 | 43 78 71 37 | ply1sclcl |  |-  ( ( K e. Ring /\ ( ( ZRHom ` K ) ` t ) e. ( Base ` K ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 80 | 63 77 79 | syl2anc |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 81 |  | eqid |  |-  ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) | 
						
							| 82 | 37 81 | mndcl |  |-  ( ( ( Poly1 ` K ) e. Mnd /\ ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 83 | 62 66 80 82 | syl3anc |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 84 | 83 | ralrimiva |  |-  ( ph -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 85 | 84 | adantr |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 86 | 59 85 55 | rspcdva |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 87 | 38 39 48 56 86 | mulgnn0cld |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 88 | 43 | ply1idom |  |-  ( K e. IDomn -> ( Poly1 ` K ) e. IDomn ) | 
						
							| 89 | 34 88 | syl |  |-  ( ph -> ( Poly1 ` K ) e. IDomn ) | 
						
							| 90 | 89 | adantr |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( Poly1 ` K ) e. IDomn ) | 
						
							| 91 | 58 | neeq1d |  |-  ( t = i -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) <-> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) ) | 
						
							| 92 |  | eqid |  |-  ( deg1 ` K ) = ( deg1 ` K ) | 
						
							| 93 | 92 43 37 | deg1xrcl |  |-  ( ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. RR* ) | 
						
							| 94 | 80 93 | syl |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. RR* ) | 
						
							| 95 |  | 0xr |  |-  0 e. RR* | 
						
							| 96 | 95 | a1i |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> 0 e. RR* ) | 
						
							| 97 |  | 1xr |  |-  1 e. RR* | 
						
							| 98 | 97 | a1i |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> 1 e. RR* ) | 
						
							| 99 | 92 43 71 78 | deg1sclle |  |-  ( ( K e. Ring /\ ( ( ZRHom ` K ) ` t ) e. ( Base ` K ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) <_ 0 ) | 
						
							| 100 | 63 77 99 | syl2anc |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) <_ 0 ) | 
						
							| 101 |  | 0lt1 |  |-  0 < 1 | 
						
							| 102 | 101 | a1i |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> 0 < 1 ) | 
						
							| 103 | 94 96 98 100 102 | xrlelttrd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) < 1 ) | 
						
							| 104 | 38 39 | mulg1 |  |-  ( ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) -> ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) = ( var1 ` K ) ) | 
						
							| 105 | 66 104 | syl |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) = ( var1 ` K ) ) | 
						
							| 106 | 105 | eqcomd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( var1 ` K ) = ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) | 
						
							| 107 | 106 | fveq2d |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( var1 ` K ) ) = ( ( deg1 ` K ) ` ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) ) | 
						
							| 108 |  | isfld |  |-  ( K e. Field <-> ( K e. DivRing /\ K e. CRing ) ) | 
						
							| 109 |  | drngnzr |  |-  ( K e. DivRing -> K e. NzRing ) | 
						
							| 110 | 109 | adantr |  |-  ( ( K e. DivRing /\ K e. CRing ) -> K e. NzRing ) | 
						
							| 111 | 108 110 | sylbi |  |-  ( K e. Field -> K e. NzRing ) | 
						
							| 112 | 3 111 | syl |  |-  ( ph -> K e. NzRing ) | 
						
							| 113 | 112 | adantr |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> K e. NzRing ) | 
						
							| 114 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 115 | 114 | a1i |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> 1 e. NN0 ) | 
						
							| 116 | 92 43 64 36 39 | deg1pw |  |-  ( ( K e. NzRing /\ 1 e. NN0 ) -> ( ( deg1 ` K ) ` ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) = 1 ) | 
						
							| 117 | 113 115 116 | syl2anc |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) = 1 ) | 
						
							| 118 | 107 117 | eqtr2d |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> 1 = ( ( deg1 ` K ) ` ( var1 ` K ) ) ) | 
						
							| 119 | 103 118 | breqtrd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) < ( ( deg1 ` K ) ` ( var1 ` K ) ) ) | 
						
							| 120 | 43 92 63 37 81 66 80 119 | deg1add |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) = ( ( deg1 ` K ) ` ( var1 ` K ) ) ) | 
						
							| 121 | 107 117 | eqtrd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( var1 ` K ) ) = 1 ) | 
						
							| 122 | 120 121 | eqtrd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) = 1 ) | 
						
							| 123 | 122 115 | eqeltrd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. NN0 ) | 
						
							| 124 |  | eqid |  |-  ( 0g ` ( Poly1 ` K ) ) = ( 0g ` ( Poly1 ` K ) ) | 
						
							| 125 | 92 43 124 37 | deg1nn0clb |  |-  ( ( K e. Ring /\ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) <-> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. NN0 ) ) | 
						
							| 126 | 63 83 125 | syl2anc |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) <-> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. NN0 ) ) | 
						
							| 127 | 123 126 | mpbird |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) | 
						
							| 128 | 127 | ralrimiva |  |-  ( ph -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) | 
						
							| 129 | 128 | adantr |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) | 
						
							| 130 | 91 129 55 | rspcdva |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) | 
						
							| 131 | 90 86 130 56 39 | idomnnzpownz |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) | 
						
							| 132 | 87 131 | jca |  |-  ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) ) | 
						
							| 133 | 132 | ralrimiva |  |-  ( ph -> A. i e. ( 0 ... A ) ( ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) ) | 
						
							| 134 | 34 35 133 | deg1gprod |  |-  ( ph -> ( ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = sum_ t e. ( 0 ... A ) ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) /\ 0 <_ ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ) | 
						
							| 135 | 134 | simpld |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = sum_ t e. ( 0 ... A ) ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) ) | 
						
							| 136 |  | eqidd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) | 
						
							| 137 |  | simpr |  |-  ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> i = t ) | 
						
							| 138 | 137 | fveq2d |  |-  ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( U ` i ) = ( U ` t ) ) | 
						
							| 139 | 137 | fveq2d |  |-  ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( ZRHom ` K ) ` i ) = ( ( ZRHom ` K ) ` t ) ) | 
						
							| 140 | 139 | fveq2d |  |-  ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) = ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) | 
						
							| 141 | 140 | oveq2d |  |-  ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) = ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) | 
						
							| 142 | 138 141 | oveq12d |  |-  ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) | 
						
							| 143 |  | simpr |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> t e. ( 0 ... A ) ) | 
						
							| 144 |  | ovexd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. _V ) | 
						
							| 145 | 136 142 143 144 | fvmptd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) = ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) | 
						
							| 146 | 145 | fveq2d |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) = ( ( deg1 ` K ) ` ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) ) | 
						
							| 147 | 34 | adantr |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> K e. IDomn ) | 
						
							| 148 | 53 | ffvelcdmda |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( U ` t ) e. NN0 ) | 
						
							| 149 | 147 83 127 148 39 92 | deg1pow |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( ( U ` t ) x. ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) ) | 
						
							| 150 | 122 | oveq2d |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) x. ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( ( U ` t ) x. 1 ) ) | 
						
							| 151 | 148 | nn0cnd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( U ` t ) e. CC ) | 
						
							| 152 | 151 | mulridd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) x. 1 ) = ( U ` t ) ) | 
						
							| 153 | 150 152 | eqtrd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) x. ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( U ` t ) ) | 
						
							| 154 | 149 153 | eqtrd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( U ` t ) ) | 
						
							| 155 | 146 154 | eqtrd |  |-  ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) = ( U ` t ) ) | 
						
							| 156 | 155 | sumeq2dv |  |-  ( ph -> sum_ t e. ( 0 ... A ) ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) | 
						
							| 157 | 135 156 | eqtrd |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) | 
						
							| 158 | 32 157 | eqtrd |  |-  ( ph -> ( ( deg1 ` K ) ` ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) | 
						
							| 159 | 23 158 | eqtrd |  |-  ( ph -> ( ( deg1 ` K ) ` ( G ` U ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) |