| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c6.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
| 2 |
|
aks6d1c6.2 |
|- P = ( chr ` K ) |
| 3 |
|
aks6d1c6.3 |
|- ( ph -> K e. Field ) |
| 4 |
|
aks6d1c6.4 |
|- ( ph -> P e. Prime ) |
| 5 |
|
aks6d1c6.5 |
|- ( ph -> R e. NN ) |
| 6 |
|
aks6d1c6.6 |
|- ( ph -> N e. NN ) |
| 7 |
|
aks6d1c6.7 |
|- ( ph -> P || N ) |
| 8 |
|
aks6d1c6.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
| 9 |
|
aks6d1c6.9 |
|- ( ph -> A < P ) |
| 10 |
|
aks6d1c6.10 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
| 11 |
|
aks6d1c6.11 |
|- ( ph -> A e. NN0 ) |
| 12 |
|
aks6d1c6.12 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
| 13 |
|
aks6d1c6.13 |
|- L = ( ZRHom ` ( Z/nZ ` R ) ) |
| 14 |
|
aks6d1c6.14 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
| 15 |
|
aks6d1c6.15 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
| 16 |
|
aks6d1c6.16 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
| 17 |
|
aks6d1c6.17 |
|- H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |
| 18 |
|
aks6d1c6.18 |
|- D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
| 19 |
|
aks6d1c6.19 |
|- S = { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } |
| 20 |
|
aks6d1c6lem1.1 |
|- ( ph -> U e. ( NN0 ^m ( 0 ... A ) ) ) |
| 21 |
10
|
a1i |
|- ( ph -> G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
| 22 |
21
|
fveq1d |
|- ( ph -> ( G ` U ) = ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) |
| 23 |
22
|
fveq2d |
|- ( ph -> ( ( deg1 ` K ) ` ( G ` U ) ) = ( ( deg1 ` K ) ` ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) ) |
| 24 |
|
eqidd |
|- ( ph -> ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
| 25 |
|
simplr |
|- ( ( ( ph /\ g = U ) /\ i e. ( 0 ... A ) ) -> g = U ) |
| 26 |
25
|
fveq1d |
|- ( ( ( ph /\ g = U ) /\ i e. ( 0 ... A ) ) -> ( g ` i ) = ( U ` i ) ) |
| 27 |
26
|
oveq1d |
|- ( ( ( ph /\ g = U ) /\ i e. ( 0 ... A ) ) -> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) |
| 28 |
27
|
mpteq2dva |
|- ( ( ph /\ g = U ) -> ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) |
| 29 |
28
|
oveq2d |
|- ( ( ph /\ g = U ) -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
| 30 |
|
ovexd |
|- ( ph -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. _V ) |
| 31 |
24 29 20 30
|
fvmptd |
|- ( ph -> ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) = ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
| 32 |
31
|
fveq2d |
|- ( ph -> ( ( deg1 ` K ) ` ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) = ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
| 33 |
|
fldidom |
|- ( K e. Field -> K e. IDomn ) |
| 34 |
3 33
|
syl |
|- ( ph -> K e. IDomn ) |
| 35 |
|
fzfid |
|- ( ph -> ( 0 ... A ) e. Fin ) |
| 36 |
|
eqid |
|- ( mulGrp ` ( Poly1 ` K ) ) = ( mulGrp ` ( Poly1 ` K ) ) |
| 37 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
| 38 |
36 37
|
mgpbas |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 39 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
| 40 |
3
|
fldcrngd |
|- ( ph -> K e. CRing ) |
| 41 |
|
crngring |
|- ( K e. CRing -> K e. Ring ) |
| 42 |
40 41
|
syl |
|- ( ph -> K e. Ring ) |
| 43 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
| 44 |
43
|
ply1ring |
|- ( K e. Ring -> ( Poly1 ` K ) e. Ring ) |
| 45 |
42 44
|
syl |
|- ( ph -> ( Poly1 ` K ) e. Ring ) |
| 46 |
36
|
ringmgp |
|- ( ( Poly1 ` K ) e. Ring -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
| 47 |
45 46
|
syl |
|- ( ph -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
| 49 |
|
nn0ex |
|- NN0 e. _V |
| 50 |
49
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 51 |
|
ovexd |
|- ( ph -> ( 0 ... A ) e. _V ) |
| 52 |
50 51
|
elmapd |
|- ( ph -> ( U e. ( NN0 ^m ( 0 ... A ) ) <-> U : ( 0 ... A ) --> NN0 ) ) |
| 53 |
20 52
|
mpbid |
|- ( ph -> U : ( 0 ... A ) --> NN0 ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> U : ( 0 ... A ) --> NN0 ) |
| 55 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> i e. ( 0 ... A ) ) |
| 56 |
54 55
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( U ` i ) e. NN0 ) |
| 57 |
|
2fveq3 |
|- ( t = i -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) = ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) |
| 58 |
57
|
oveq2d |
|- ( t = i -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) = ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) |
| 59 |
58
|
eleq1d |
|- ( t = i -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) <-> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) ) |
| 60 |
|
ringmnd |
|- ( ( Poly1 ` K ) e. Ring -> ( Poly1 ` K ) e. Mnd ) |
| 61 |
45 60
|
syl |
|- ( ph -> ( Poly1 ` K ) e. Mnd ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( Poly1 ` K ) e. Mnd ) |
| 63 |
42
|
adantr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> K e. Ring ) |
| 64 |
|
eqid |
|- ( var1 ` K ) = ( var1 ` K ) |
| 65 |
64 43 37
|
vr1cl |
|- ( K e. Ring -> ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 66 |
63 65
|
syl |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 67 |
|
eqid |
|- ( ZRHom ` K ) = ( ZRHom ` K ) |
| 68 |
67
|
zrhrhm |
|- ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
| 69 |
42 68
|
syl |
|- ( ph -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
| 70 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 71 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 72 |
70 71
|
rhmf |
|- ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 73 |
69 72
|
syl |
|- ( ph -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 74 |
73
|
adantr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
| 75 |
|
elfzelz |
|- ( t e. ( 0 ... A ) -> t e. ZZ ) |
| 76 |
75
|
adantl |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> t e. ZZ ) |
| 77 |
74 76
|
ffvelcdmd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( ZRHom ` K ) ` t ) e. ( Base ` K ) ) |
| 78 |
|
eqid |
|- ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) |
| 79 |
43 78 71 37
|
ply1sclcl |
|- ( ( K e. Ring /\ ( ( ZRHom ` K ) ` t ) e. ( Base ` K ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 80 |
63 77 79
|
syl2anc |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 81 |
|
eqid |
|- ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) |
| 82 |
37 81
|
mndcl |
|- ( ( ( Poly1 ` K ) e. Mnd /\ ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 83 |
62 66 80 82
|
syl3anc |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 84 |
83
|
ralrimiva |
|- ( ph -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 85 |
84
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 86 |
59 85 55
|
rspcdva |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 87 |
38 39 48 56 86
|
mulgnn0cld |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
| 88 |
43
|
ply1idom |
|- ( K e. IDomn -> ( Poly1 ` K ) e. IDomn ) |
| 89 |
34 88
|
syl |
|- ( ph -> ( Poly1 ` K ) e. IDomn ) |
| 90 |
89
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( Poly1 ` K ) e. IDomn ) |
| 91 |
58
|
neeq1d |
|- ( t = i -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) <-> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) ) |
| 92 |
|
eqid |
|- ( deg1 ` K ) = ( deg1 ` K ) |
| 93 |
92 43 37
|
deg1xrcl |
|- ( ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. RR* ) |
| 94 |
80 93
|
syl |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. RR* ) |
| 95 |
|
0xr |
|- 0 e. RR* |
| 96 |
95
|
a1i |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> 0 e. RR* ) |
| 97 |
|
1xr |
|- 1 e. RR* |
| 98 |
97
|
a1i |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> 1 e. RR* ) |
| 99 |
92 43 71 78
|
deg1sclle |
|- ( ( K e. Ring /\ ( ( ZRHom ` K ) ` t ) e. ( Base ` K ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) <_ 0 ) |
| 100 |
63 77 99
|
syl2anc |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) <_ 0 ) |
| 101 |
|
0lt1 |
|- 0 < 1 |
| 102 |
101
|
a1i |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> 0 < 1 ) |
| 103 |
94 96 98 100 102
|
xrlelttrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) < 1 ) |
| 104 |
38 39
|
mulg1 |
|- ( ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) -> ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) = ( var1 ` K ) ) |
| 105 |
66 104
|
syl |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) = ( var1 ` K ) ) |
| 106 |
105
|
eqcomd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( var1 ` K ) = ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) |
| 107 |
106
|
fveq2d |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( var1 ` K ) ) = ( ( deg1 ` K ) ` ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) ) |
| 108 |
|
isfld |
|- ( K e. Field <-> ( K e. DivRing /\ K e. CRing ) ) |
| 109 |
|
drngnzr |
|- ( K e. DivRing -> K e. NzRing ) |
| 110 |
109
|
adantr |
|- ( ( K e. DivRing /\ K e. CRing ) -> K e. NzRing ) |
| 111 |
108 110
|
sylbi |
|- ( K e. Field -> K e. NzRing ) |
| 112 |
3 111
|
syl |
|- ( ph -> K e. NzRing ) |
| 113 |
112
|
adantr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> K e. NzRing ) |
| 114 |
|
1nn0 |
|- 1 e. NN0 |
| 115 |
114
|
a1i |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> 1 e. NN0 ) |
| 116 |
92 43 64 36 39
|
deg1pw |
|- ( ( K e. NzRing /\ 1 e. NN0 ) -> ( ( deg1 ` K ) ` ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) = 1 ) |
| 117 |
113 115 116
|
syl2anc |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) = 1 ) |
| 118 |
107 117
|
eqtr2d |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> 1 = ( ( deg1 ` K ) ` ( var1 ` K ) ) ) |
| 119 |
103 118
|
breqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) < ( ( deg1 ` K ) ` ( var1 ` K ) ) ) |
| 120 |
43 92 63 37 81 66 80 119
|
deg1add |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) = ( ( deg1 ` K ) ` ( var1 ` K ) ) ) |
| 121 |
107 117
|
eqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( var1 ` K ) ) = 1 ) |
| 122 |
120 121
|
eqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) = 1 ) |
| 123 |
122 115
|
eqeltrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. NN0 ) |
| 124 |
|
eqid |
|- ( 0g ` ( Poly1 ` K ) ) = ( 0g ` ( Poly1 ` K ) ) |
| 125 |
92 43 124 37
|
deg1nn0clb |
|- ( ( K e. Ring /\ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) <-> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. NN0 ) ) |
| 126 |
63 83 125
|
syl2anc |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) <-> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. NN0 ) ) |
| 127 |
123 126
|
mpbird |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) |
| 128 |
127
|
ralrimiva |
|- ( ph -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) |
| 129 |
128
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) |
| 130 |
91 129 55
|
rspcdva |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) |
| 131 |
90 86 130 56 39
|
idomnnzpownz |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) |
| 132 |
87 131
|
jca |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) ) |
| 133 |
132
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ... A ) ( ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) ) |
| 134 |
34 35 133
|
deg1gprod |
|- ( ph -> ( ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = sum_ t e. ( 0 ... A ) ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) /\ 0 <_ ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ) |
| 135 |
134
|
simpld |
|- ( ph -> ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = sum_ t e. ( 0 ... A ) ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) ) |
| 136 |
|
eqidd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) |
| 137 |
|
simpr |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> i = t ) |
| 138 |
137
|
fveq2d |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( U ` i ) = ( U ` t ) ) |
| 139 |
137
|
fveq2d |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( ZRHom ` K ) ` i ) = ( ( ZRHom ` K ) ` t ) ) |
| 140 |
139
|
fveq2d |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) = ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) |
| 141 |
140
|
oveq2d |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) = ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) |
| 142 |
138 141
|
oveq12d |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) |
| 143 |
|
simpr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> t e. ( 0 ... A ) ) |
| 144 |
|
ovexd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. _V ) |
| 145 |
136 142 143 144
|
fvmptd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) = ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) |
| 146 |
145
|
fveq2d |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) = ( ( deg1 ` K ) ` ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) ) |
| 147 |
34
|
adantr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> K e. IDomn ) |
| 148 |
53
|
ffvelcdmda |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( U ` t ) e. NN0 ) |
| 149 |
147 83 127 148 39 92
|
deg1pow |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( ( U ` t ) x. ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) ) |
| 150 |
122
|
oveq2d |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) x. ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( ( U ` t ) x. 1 ) ) |
| 151 |
148
|
nn0cnd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( U ` t ) e. CC ) |
| 152 |
151
|
mulridd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) x. 1 ) = ( U ` t ) ) |
| 153 |
150 152
|
eqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) x. ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( U ` t ) ) |
| 154 |
149 153
|
eqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( U ` t ) ) |
| 155 |
146 154
|
eqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) = ( U ` t ) ) |
| 156 |
155
|
sumeq2dv |
|- ( ph -> sum_ t e. ( 0 ... A ) ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) |
| 157 |
135 156
|
eqtrd |
|- ( ph -> ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) |
| 158 |
32 157
|
eqtrd |
|- ( ph -> ( ( deg1 ` K ) ` ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) |
| 159 |
23 158
|
eqtrd |
|- ( ph -> ( ( deg1 ` K ) ` ( G ` U ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) |