Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c6.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
2 |
|
aks6d1c6.2 |
|- P = ( chr ` K ) |
3 |
|
aks6d1c6.3 |
|- ( ph -> K e. Field ) |
4 |
|
aks6d1c6.4 |
|- ( ph -> P e. Prime ) |
5 |
|
aks6d1c6.5 |
|- ( ph -> R e. NN ) |
6 |
|
aks6d1c6.6 |
|- ( ph -> N e. NN ) |
7 |
|
aks6d1c6.7 |
|- ( ph -> P || N ) |
8 |
|
aks6d1c6.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
9 |
|
aks6d1c6.9 |
|- ( ph -> A < P ) |
10 |
|
aks6d1c6.10 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
11 |
|
aks6d1c6.11 |
|- ( ph -> A e. NN0 ) |
12 |
|
aks6d1c6.12 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
13 |
|
aks6d1c6.13 |
|- L = ( ZRHom ` ( Z/nZ ` R ) ) |
14 |
|
aks6d1c6.14 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
15 |
|
aks6d1c6.15 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
16 |
|
aks6d1c6.16 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
17 |
|
aks6d1c6.17 |
|- H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |
18 |
|
aks6d1c6.18 |
|- D = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
19 |
|
aks6d1c6.19 |
|- S = { s e. ( NN0 ^m ( 0 ... A ) ) | sum_ t e. ( 0 ... A ) ( s ` t ) <_ ( D - 1 ) } |
20 |
|
aks6d1c6lem1.1 |
|- ( ph -> U e. ( NN0 ^m ( 0 ... A ) ) ) |
21 |
10
|
a1i |
|- ( ph -> G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
22 |
21
|
fveq1d |
|- ( ph -> ( G ` U ) = ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) |
23 |
22
|
fveq2d |
|- ( ph -> ( ( deg1 ` K ) ` ( G ` U ) ) = ( ( deg1 ` K ) ` ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) ) |
24 |
|
eqidd |
|- ( ph -> ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
25 |
|
simplr |
|- ( ( ( ph /\ g = U ) /\ i e. ( 0 ... A ) ) -> g = U ) |
26 |
25
|
fveq1d |
|- ( ( ( ph /\ g = U ) /\ i e. ( 0 ... A ) ) -> ( g ` i ) = ( U ` i ) ) |
27 |
26
|
oveq1d |
|- ( ( ( ph /\ g = U ) /\ i e. ( 0 ... A ) ) -> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) |
28 |
27
|
mpteq2dva |
|- ( ( ph /\ g = U ) -> ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) |
29 |
28
|
oveq2d |
|- ( ( ph /\ g = U ) -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
30 |
|
ovexd |
|- ( ph -> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. _V ) |
31 |
24 29 20 30
|
fvmptd |
|- ( ph -> ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) = ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
32 |
31
|
fveq2d |
|- ( ph -> ( ( deg1 ` K ) ` ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) = ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
33 |
|
fldidom |
|- ( K e. Field -> K e. IDomn ) |
34 |
3 33
|
syl |
|- ( ph -> K e. IDomn ) |
35 |
|
fzfid |
|- ( ph -> ( 0 ... A ) e. Fin ) |
36 |
|
eqid |
|- ( mulGrp ` ( Poly1 ` K ) ) = ( mulGrp ` ( Poly1 ` K ) ) |
37 |
|
eqid |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( Poly1 ` K ) ) |
38 |
36 37
|
mgpbas |
|- ( Base ` ( Poly1 ` K ) ) = ( Base ` ( mulGrp ` ( Poly1 ` K ) ) ) |
39 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
40 |
3
|
fldcrngd |
|- ( ph -> K e. CRing ) |
41 |
|
crngring |
|- ( K e. CRing -> K e. Ring ) |
42 |
40 41
|
syl |
|- ( ph -> K e. Ring ) |
43 |
|
eqid |
|- ( Poly1 ` K ) = ( Poly1 ` K ) |
44 |
43
|
ply1ring |
|- ( K e. Ring -> ( Poly1 ` K ) e. Ring ) |
45 |
42 44
|
syl |
|- ( ph -> ( Poly1 ` K ) e. Ring ) |
46 |
36
|
ringmgp |
|- ( ( Poly1 ` K ) e. Ring -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
47 |
45 46
|
syl |
|- ( ph -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
48 |
47
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( mulGrp ` ( Poly1 ` K ) ) e. Mnd ) |
49 |
|
nn0ex |
|- NN0 e. _V |
50 |
49
|
a1i |
|- ( ph -> NN0 e. _V ) |
51 |
|
ovexd |
|- ( ph -> ( 0 ... A ) e. _V ) |
52 |
50 51
|
elmapd |
|- ( ph -> ( U e. ( NN0 ^m ( 0 ... A ) ) <-> U : ( 0 ... A ) --> NN0 ) ) |
53 |
20 52
|
mpbid |
|- ( ph -> U : ( 0 ... A ) --> NN0 ) |
54 |
53
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> U : ( 0 ... A ) --> NN0 ) |
55 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> i e. ( 0 ... A ) ) |
56 |
54 55
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( U ` i ) e. NN0 ) |
57 |
|
2fveq3 |
|- ( t = i -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) = ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) |
58 |
57
|
oveq2d |
|- ( t = i -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) = ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) |
59 |
58
|
eleq1d |
|- ( t = i -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) <-> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) ) |
60 |
|
ringmnd |
|- ( ( Poly1 ` K ) e. Ring -> ( Poly1 ` K ) e. Mnd ) |
61 |
45 60
|
syl |
|- ( ph -> ( Poly1 ` K ) e. Mnd ) |
62 |
61
|
adantr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( Poly1 ` K ) e. Mnd ) |
63 |
42
|
adantr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> K e. Ring ) |
64 |
|
eqid |
|- ( var1 ` K ) = ( var1 ` K ) |
65 |
64 43 37
|
vr1cl |
|- ( K e. Ring -> ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) ) |
66 |
63 65
|
syl |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) ) |
67 |
|
eqid |
|- ( ZRHom ` K ) = ( ZRHom ` K ) |
68 |
67
|
zrhrhm |
|- ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
69 |
42 68
|
syl |
|- ( ph -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
70 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
71 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
72 |
70 71
|
rhmf |
|- ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
73 |
69 72
|
syl |
|- ( ph -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
74 |
73
|
adantr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
75 |
|
elfzelz |
|- ( t e. ( 0 ... A ) -> t e. ZZ ) |
76 |
75
|
adantl |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> t e. ZZ ) |
77 |
74 76
|
ffvelcdmd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( ZRHom ` K ) ` t ) e. ( Base ` K ) ) |
78 |
|
eqid |
|- ( algSc ` ( Poly1 ` K ) ) = ( algSc ` ( Poly1 ` K ) ) |
79 |
43 78 71 37
|
ply1sclcl |
|- ( ( K e. Ring /\ ( ( ZRHom ` K ) ` t ) e. ( Base ` K ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
80 |
63 77 79
|
syl2anc |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
81 |
|
eqid |
|- ( +g ` ( Poly1 ` K ) ) = ( +g ` ( Poly1 ` K ) ) |
82 |
37 81
|
mndcl |
|- ( ( ( Poly1 ` K ) e. Mnd /\ ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
83 |
62 66 80 82
|
syl3anc |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
84 |
83
|
ralrimiva |
|- ( ph -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
85 |
84
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
86 |
59 85 55
|
rspcdva |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
87 |
38 39 48 56 86
|
mulgnn0cld |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) |
88 |
43
|
ply1idom |
|- ( K e. IDomn -> ( Poly1 ` K ) e. IDomn ) |
89 |
34 88
|
syl |
|- ( ph -> ( Poly1 ` K ) e. IDomn ) |
90 |
89
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( Poly1 ` K ) e. IDomn ) |
91 |
58
|
neeq1d |
|- ( t = i -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) <-> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) ) |
92 |
|
eqid |
|- ( deg1 ` K ) = ( deg1 ` K ) |
93 |
92 43 37
|
deg1xrcl |
|- ( ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) e. ( Base ` ( Poly1 ` K ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. RR* ) |
94 |
80 93
|
syl |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. RR* ) |
95 |
|
0xr |
|- 0 e. RR* |
96 |
95
|
a1i |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> 0 e. RR* ) |
97 |
|
1xr |
|- 1 e. RR* |
98 |
97
|
a1i |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> 1 e. RR* ) |
99 |
92 43 71 78
|
deg1sclle |
|- ( ( K e. Ring /\ ( ( ZRHom ` K ) ` t ) e. ( Base ` K ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) <_ 0 ) |
100 |
63 77 99
|
syl2anc |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) <_ 0 ) |
101 |
|
0lt1 |
|- 0 < 1 |
102 |
101
|
a1i |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> 0 < 1 ) |
103 |
94 96 98 100 102
|
xrlelttrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) < 1 ) |
104 |
38 39
|
mulg1 |
|- ( ( var1 ` K ) e. ( Base ` ( Poly1 ` K ) ) -> ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) = ( var1 ` K ) ) |
105 |
66 104
|
syl |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) = ( var1 ` K ) ) |
106 |
105
|
eqcomd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( var1 ` K ) = ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) |
107 |
106
|
fveq2d |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( var1 ` K ) ) = ( ( deg1 ` K ) ` ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) ) |
108 |
|
isfld |
|- ( K e. Field <-> ( K e. DivRing /\ K e. CRing ) ) |
109 |
|
drngnzr |
|- ( K e. DivRing -> K e. NzRing ) |
110 |
109
|
adantr |
|- ( ( K e. DivRing /\ K e. CRing ) -> K e. NzRing ) |
111 |
108 110
|
sylbi |
|- ( K e. Field -> K e. NzRing ) |
112 |
3 111
|
syl |
|- ( ph -> K e. NzRing ) |
113 |
112
|
adantr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> K e. NzRing ) |
114 |
|
1nn0 |
|- 1 e. NN0 |
115 |
114
|
a1i |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> 1 e. NN0 ) |
116 |
92 43 64 36 39
|
deg1pw |
|- ( ( K e. NzRing /\ 1 e. NN0 ) -> ( ( deg1 ` K ) ` ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) = 1 ) |
117 |
113 115 116
|
syl2anc |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( 1 ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) = 1 ) |
118 |
107 117
|
eqtr2d |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> 1 = ( ( deg1 ` K ) ` ( var1 ` K ) ) ) |
119 |
103 118
|
breqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) < ( ( deg1 ` K ) ` ( var1 ` K ) ) ) |
120 |
43 92 63 37 81 66 80 119
|
deg1add |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) = ( ( deg1 ` K ) ` ( var1 ` K ) ) ) |
121 |
107 117
|
eqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( var1 ` K ) ) = 1 ) |
122 |
120 121
|
eqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) = 1 ) |
123 |
122 115
|
eqeltrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. NN0 ) |
124 |
|
eqid |
|- ( 0g ` ( Poly1 ` K ) ) = ( 0g ` ( Poly1 ` K ) ) |
125 |
92 43 124 37
|
deg1nn0clb |
|- ( ( K e. Ring /\ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) e. ( Base ` ( Poly1 ` K ) ) ) -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) <-> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. NN0 ) ) |
126 |
63 83 125
|
syl2anc |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) <-> ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. NN0 ) ) |
127 |
123 126
|
mpbird |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) |
128 |
127
|
ralrimiva |
|- ( ph -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) |
129 |
128
|
adantr |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> A. t e. ( 0 ... A ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) |
130 |
91 129 55
|
rspcdva |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) |
131 |
90 86 130 56 39
|
idomnnzpownz |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) |
132 |
87 131
|
jca |
|- ( ( ph /\ i e. ( 0 ... A ) ) -> ( ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) ) |
133 |
132
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ... A ) ( ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) e. ( Base ` ( Poly1 ` K ) ) /\ ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) =/= ( 0g ` ( Poly1 ` K ) ) ) ) |
134 |
34 35 133
|
deg1gprod |
|- ( ph -> ( ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = sum_ t e. ( 0 ... A ) ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) /\ 0 <_ ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) ) |
135 |
134
|
simpld |
|- ( ph -> ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = sum_ t e. ( 0 ... A ) ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) ) |
136 |
|
eqidd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) |
137 |
|
simpr |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> i = t ) |
138 |
137
|
fveq2d |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( U ` i ) = ( U ` t ) ) |
139 |
137
|
fveq2d |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( ZRHom ` K ) ` i ) = ( ( ZRHom ` K ) ` t ) ) |
140 |
139
|
fveq2d |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) = ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) |
141 |
140
|
oveq2d |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) = ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) |
142 |
138 141
|
oveq12d |
|- ( ( ( ph /\ t e. ( 0 ... A ) ) /\ i = t ) -> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) |
143 |
|
simpr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> t e. ( 0 ... A ) ) |
144 |
|
ovexd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) e. _V ) |
145 |
136 142 143 144
|
fvmptd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) = ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) |
146 |
145
|
fveq2d |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) = ( ( deg1 ` K ) ` ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) ) |
147 |
34
|
adantr |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> K e. IDomn ) |
148 |
53
|
ffvelcdmda |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( U ` t ) e. NN0 ) |
149 |
147 83 127 148 39 92
|
deg1pow |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( ( U ` t ) x. ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) ) |
150 |
122
|
oveq2d |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) x. ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( ( U ` t ) x. 1 ) ) |
151 |
148
|
nn0cnd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( U ` t ) e. CC ) |
152 |
151
|
mulridd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) x. 1 ) = ( U ` t ) ) |
153 |
150 152
|
eqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( U ` t ) x. ( ( deg1 ` K ) ` ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( U ` t ) ) |
154 |
149 153
|
eqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( U ` t ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` t ) ) ) ) ) = ( U ` t ) ) |
155 |
146 154
|
eqtrd |
|- ( ( ph /\ t e. ( 0 ... A ) ) -> ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) = ( U ` t ) ) |
156 |
155
|
sumeq2dv |
|- ( ph -> sum_ t e. ( 0 ... A ) ( ( deg1 ` K ) ` ( ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ` t ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) |
157 |
135 156
|
eqtrd |
|- ( ph -> ( ( deg1 ` K ) ` ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( U ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) |
158 |
32 157
|
eqtrd |
|- ( ph -> ( ( deg1 ` K ) ` ( ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ` U ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) |
159 |
23 158
|
eqtrd |
|- ( ph -> ( ( deg1 ` K ) ` ( G ` U ) ) = sum_ t e. ( 0 ... A ) ( U ` t ) ) |