Metamath Proof Explorer


Theorem sticksstones23

Description: Non-exhaustive sticks and stones. (Contributed by metakunt, 7-May-2025)

Ref Expression
Hypotheses sticksstones23.1 ( 𝜑𝑁 ∈ ℕ0 )
sticksstones23.2 ( 𝜑𝑆 ∈ Fin )
sticksstones23.3 ( 𝜑𝑆 ≠ ∅ )
sticksstones23.4 𝐴 = { 𝑓 ∈ ( ℕ0m 𝑆 ) ∣ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 }
Assertion sticksstones23 ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 sticksstones23.1 ( 𝜑𝑁 ∈ ℕ0 )
2 sticksstones23.2 ( 𝜑𝑆 ∈ Fin )
3 sticksstones23.3 ( 𝜑𝑆 ≠ ∅ )
4 sticksstones23.4 𝐴 = { 𝑓 ∈ ( ℕ0m 𝑆 ) ∣ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 }
5 4 a1i ( 𝜑𝐴 = { 𝑓 ∈ ( ℕ0m 𝑆 ) ∣ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 } )
6 df-rab { 𝑓 ∈ ( ℕ0m 𝑆 ) ∣ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 } = { 𝑓 ∣ ( 𝑓 ∈ ( ℕ0m 𝑆 ) ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) }
7 6 a1i ( 𝜑 → { 𝑓 ∈ ( ℕ0m 𝑆 ) ∣ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 } = { 𝑓 ∣ ( 𝑓 ∈ ( ℕ0m 𝑆 ) ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } )
8 nn0ex 0 ∈ V
9 8 a1i ( 𝜑 → ℕ0 ∈ V )
10 elmapg ( ( ℕ0 ∈ V ∧ 𝑆 ∈ Fin ) → ( 𝑓 ∈ ( ℕ0m 𝑆 ) ↔ 𝑓 : 𝑆 ⟶ ℕ0 ) )
11 9 2 10 syl2anc ( 𝜑 → ( 𝑓 ∈ ( ℕ0m 𝑆 ) ↔ 𝑓 : 𝑆 ⟶ ℕ0 ) )
12 11 anbi1d ( 𝜑 → ( ( 𝑓 ∈ ( ℕ0m 𝑆 ) ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) ) )
13 12 abbidv ( 𝜑 → { 𝑓 ∣ ( 𝑓 ∈ ( ℕ0m 𝑆 ) ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } )
14 7 13 eqtrd ( 𝜑 → { 𝑓 ∈ ( ℕ0m 𝑆 ) ∣ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } )
15 5 14 eqtrd ( 𝜑𝐴 = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } )
16 15 fveq2d ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } ) )
17 eqid { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) }
18 1 2 3 17 sticksstones22 ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
19 16 18 eqtrd ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )