| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sticksstones23.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
sticksstones23.2 |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 3 |
|
sticksstones23.3 |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 4 |
|
sticksstones23.4 |
⊢ 𝐴 = { 𝑓 ∈ ( ℕ0 ↑m 𝑆 ) ∣ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 } |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → 𝐴 = { 𝑓 ∈ ( ℕ0 ↑m 𝑆 ) ∣ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 } ) |
| 6 |
|
df-rab |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝑆 ) ∣ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 } = { 𝑓 ∣ ( 𝑓 ∈ ( ℕ0 ↑m 𝑆 ) ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝑆 ) ∣ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 } = { 𝑓 ∣ ( 𝑓 ∈ ( ℕ0 ↑m 𝑆 ) ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) |
| 8 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 10 |
|
elmapg |
⊢ ( ( ℕ0 ∈ V ∧ 𝑆 ∈ Fin ) → ( 𝑓 ∈ ( ℕ0 ↑m 𝑆 ) ↔ 𝑓 : 𝑆 ⟶ ℕ0 ) ) |
| 11 |
9 2 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ℕ0 ↑m 𝑆 ) ↔ 𝑓 : 𝑆 ⟶ ℕ0 ) ) |
| 12 |
11
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ( ℕ0 ↑m 𝑆 ) ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) ) ) |
| 13 |
12
|
abbidv |
⊢ ( 𝜑 → { 𝑓 ∣ ( 𝑓 ∈ ( ℕ0 ↑m 𝑆 ) ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) |
| 14 |
7 13
|
eqtrd |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝑆 ) ∣ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) |
| 15 |
5 14
|
eqtrd |
⊢ ( 𝜑 → 𝐴 = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) ) |
| 17 |
|
eqid |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } |
| 18 |
1 2 3 17
|
sticksstones22 |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 19 |
16 18
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |