Metamath Proof Explorer


Theorem sticksstones22

Description: Non-exhaustive sticks and stones. (Contributed by metakunt, 26-Oct-2024)

Ref Expression
Hypotheses sticksstones22.1 ( 𝜑𝑁 ∈ ℕ0 )
sticksstones22.2 ( 𝜑𝑆 ∈ Fin )
sticksstones22.3 ( 𝜑𝑆 ≠ ∅ )
sticksstones22.4 𝐴 = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) }
Assertion sticksstones22 ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 sticksstones22.1 ( 𝜑𝑁 ∈ ℕ0 )
2 sticksstones22.2 ( 𝜑𝑆 ∈ Fin )
3 sticksstones22.3 ( 𝜑𝑆 ≠ ∅ )
4 sticksstones22.4 𝐴 = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) }
5 4 a1i ( 𝜑𝐴 = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } )
6 5 fveq2d ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } ) )
7 breq2 ( 𝑥 = 0 → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ↔ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) )
8 7 anbi2d ( 𝑥 = 0 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) )
9 8 abbidv ( 𝑥 = 0 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) } )
10 9 fveq2d ( 𝑥 = 0 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) } ) )
11 oveq1 ( 𝑥 = 0 → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( 0 + ( ♯ ‘ 𝑆 ) ) )
12 11 oveq1d ( 𝑥 = 0 → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
13 10 12 eqeq12d ( 𝑥 = 0 → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) } ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) )
14 breq2 ( 𝑥 = 𝑦 → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ↔ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) )
15 14 anbi2d ( 𝑥 = 𝑦 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) )
16 15 abbidv ( 𝑥 = 𝑦 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } )
17 16 fveq2d ( 𝑥 = 𝑦 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) )
18 oveq1 ( 𝑥 = 𝑦 → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( 𝑦 + ( ♯ ‘ 𝑆 ) ) )
19 18 oveq1d ( 𝑥 = 𝑦 → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
20 17 19 eqeq12d ( 𝑥 = 𝑦 → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) )
21 breq2 ( 𝑥 = ( 𝑦 + 1 ) → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ↔ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) )
22 21 anbi2d ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) )
23 22 abbidv ( 𝑥 = ( 𝑦 + 1 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) } )
24 23 fveq2d ( 𝑥 = ( 𝑦 + 1 ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) )
25 oveq1 ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) )
26 25 oveq1d ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
27 24 26 eqeq12d ( 𝑥 = ( 𝑦 + 1 ) → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) )
28 breq2 ( 𝑥 = 𝑁 → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ↔ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) )
29 28 anbi2d ( 𝑥 = 𝑁 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) ) )
30 29 abbidv ( 𝑥 = 𝑁 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } )
31 30 fveq2d ( 𝑥 = 𝑁 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } ) )
32 oveq1 ( 𝑥 = 𝑁 → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( 𝑁 + ( ♯ ‘ 𝑆 ) ) )
33 32 oveq1d ( 𝑥 = 𝑁 → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
34 31 33 eqeq12d ( 𝑥 = 𝑁 → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) )
35 simprl ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 )
36 simprr ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 )
37 2 adantr ( ( 𝜑𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑆 ∈ Fin )
38 simpr ( ( 𝜑𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑓 : 𝑆 ⟶ ℕ0 )
39 38 ffvelrnda ( ( ( 𝜑𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖𝑆 ) → ( 𝑓𝑖 ) ∈ ℕ0 )
40 37 39 fsumnn0cl ( ( 𝜑𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℕ0 )
41 35 40 syldan ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℕ0 )
42 41 nn0ge0d ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → 0 ≤ Σ 𝑖𝑆 ( 𝑓𝑖 ) )
43 0red ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → 0 ∈ ℝ )
44 41 nn0red ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℝ )
45 43 44 lenltd ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → ( 0 ≤ Σ 𝑖𝑆 ( 𝑓𝑖 ) ↔ ¬ Σ 𝑖𝑆 ( 𝑓𝑖 ) < 0 ) )
46 42 45 mpbid ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → ¬ Σ 𝑖𝑆 ( 𝑓𝑖 ) < 0 )
47 36 46 jca ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ∧ ¬ Σ 𝑖𝑆 ( 𝑓𝑖 ) < 0 ) )
48 44 43 eqleltd ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ↔ ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ∧ ¬ Σ 𝑖𝑆 ( 𝑓𝑖 ) < 0 ) ) )
49 47 48 mpbird ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 )
50 35 49 jca ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) )
51 50 ex ( 𝜑 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) ) )
52 simprl ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 )
53 simprr ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 )
54 0red ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) ) → 0 ∈ ℝ )
55 54 leidd ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) ) → 0 ≤ 0 )
56 53 55 eqbrtrd ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 )
57 52 56 jca ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) )
58 57 ex ( 𝜑 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ) )
59 51 58 impbid ( 𝜑 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) ) )
60 59 abbidv ( 𝜑 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) } )
61 60 fveq2d ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) } ) )
62 0nn0 0 ∈ ℕ0
63 62 a1i ( 𝜑 → 0 ∈ ℕ0 )
64 eqid { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) }
65 63 2 3 64 sticksstones21 ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) } ) = ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) )
66 hashnncl ( 𝑆 ∈ Fin → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ↔ 𝑆 ≠ ∅ ) )
67 2 66 syl ( 𝜑 → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ↔ 𝑆 ≠ ∅ ) )
68 67 bicomd ( 𝜑 → ( 𝑆 ≠ ∅ ↔ ( ♯ ‘ 𝑆 ) ∈ ℕ ) )
69 68 biimpd ( 𝜑 → ( 𝑆 ≠ ∅ → ( ♯ ‘ 𝑆 ) ∈ ℕ ) )
70 3 69 mpd ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℕ )
71 70 nncnd ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℂ )
72 1cnd ( 𝜑 → 1 ∈ ℂ )
73 71 72 subcld ( 𝜑 → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℂ )
74 73 addid2d ( 𝜑 → ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( ♯ ‘ 𝑆 ) − 1 ) )
75 74 oveq1d ( 𝜑 → ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( ( ♯ ‘ 𝑆 ) − 1 ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) )
76 nnm1nn0 ( ( ♯ ‘ 𝑆 ) ∈ ℕ → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℕ0 )
77 70 76 syl ( 𝜑 → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℕ0 )
78 bcnn ( ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑆 ) − 1 ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = 1 )
79 77 78 syl ( 𝜑 → ( ( ( ♯ ‘ 𝑆 ) − 1 ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = 1 )
80 75 79 eqtrd ( 𝜑 → ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = 1 )
81 eqidd ( 𝜑 → 1 = 1 )
82 70 nnnn0d ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 )
83 bcnn ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) = 1 )
84 82 83 syl ( 𝜑 → ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) = 1 )
85 84 eqcomd ( 𝜑 → 1 = ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) )
86 71 addid2d ( 𝜑 → ( 0 + ( ♯ ‘ 𝑆 ) ) = ( ♯ ‘ 𝑆 ) )
87 86 eqcomd ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( 0 + ( ♯ ‘ 𝑆 ) ) )
88 87 oveq1d ( 𝜑 → ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
89 85 88 eqtrd ( 𝜑 → 1 = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
90 80 81 89 3eqtrd ( 𝜑 → ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
91 65 90 eqtrd ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = 0 ) } ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
92 61 91 eqtrd ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 0 ) } ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
93 simprl ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 𝑓 : 𝑆 ⟶ ℕ0 )
94 simprr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) )
95 2 ad2antrr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑆 ∈ Fin )
96 simpr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑓 : 𝑆 ⟶ ℕ0 )
97 96 ffvelrnda ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖𝑆 ) → ( 𝑓𝑖 ) ∈ ℕ0 )
98 95 97 fsumnn0cl ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℕ0 )
99 93 98 syldan ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℕ0 )
100 99 nn0red ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℝ )
101 nn0re ( 𝑦 ∈ ℕ0𝑦 ∈ ℝ )
102 101 adantl ( ( 𝜑𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℝ )
103 102 adantr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 𝑦 ∈ ℝ )
104 1red ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 1 ∈ ℝ )
105 103 104 readdcld ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ℝ )
106 100 105 leloed ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ↔ ( Σ 𝑖𝑆 ( 𝑓𝑖 ) < ( 𝑦 + 1 ) ∨ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) )
107 94 106 mpbid ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) < ( 𝑦 + 1 ) ∨ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) )
108 99 nn0zd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℤ )
109 nn0z ( 𝑦 ∈ ℕ0𝑦 ∈ ℤ )
110 109 adantl ( ( 𝜑𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℤ )
111 110 adantr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 𝑦 ∈ ℤ )
112 zleltp1 ( ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ↔ Σ 𝑖𝑆 ( 𝑓𝑖 ) < ( 𝑦 + 1 ) ) )
113 112 bicomd ( ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) < ( 𝑦 + 1 ) ↔ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) )
114 108 111 113 syl2anc ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) < ( 𝑦 + 1 ) ↔ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) )
115 114 orbi1d ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( ( Σ 𝑖𝑆 ( 𝑓𝑖 ) < ( 𝑦 + 1 ) ∨ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ↔ ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ∨ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) )
116 107 115 mpbid ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ∨ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) )
117 93 116 jca ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ∨ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) )
118 andi ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ∨ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ↔ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) )
119 118 bicomi ( ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ ( Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ∨ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) )
120 117 119 sylibr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) )
121 120 ex ( ( 𝜑𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ) )
122 simprl ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 )
123 122 98 syldan ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℕ0 )
124 123 nn0red ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℝ )
125 102 adantr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → 𝑦 ∈ ℝ )
126 1red ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → 1 ∈ ℝ )
127 125 126 readdcld ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → ( 𝑦 + 1 ) ∈ ℝ )
128 simprr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 )
129 125 lep1d ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → 𝑦 ≤ ( 𝑦 + 1 ) )
130 124 125 127 128 129 letrd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) )
131 122 130 jca ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) )
132 131 ex ( ( 𝜑𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) )
133 simprl ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑓 : 𝑆 ⟶ ℕ0 )
134 simprr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) )
135 102 adantr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑦 ∈ ℝ )
136 1red ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → 1 ∈ ℝ )
137 135 136 readdcld ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ℝ )
138 137 leidd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ≤ ( 𝑦 + 1 ) )
139 134 138 eqbrtrd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) )
140 133 139 jca ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) )
141 140 ex ( ( 𝜑𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) )
142 132 141 jaod ( ( 𝜑𝑦 ∈ ℕ0 ) → ( ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ) )
143 121 142 impbid ( ( 𝜑𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) ↔ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ) )
144 143 abbidv ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) } = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) } )
145 unab ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) }
146 145 a1i ( ( 𝜑𝑦 ∈ ℕ0 ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) } )
147 146 eqcomd ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) } = ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) )
148 144 147 eqtrd ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) } = ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) )
149 148 adantr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) } = ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) )
150 149 fveq2d ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) = ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) ) )
151 2 adantr ( ( 𝜑𝑦 ∈ ℕ0 ) → 𝑆 ∈ Fin )
152 fzfid ( ( 𝜑𝑦 ∈ ℕ0 ) → ( 0 ... 𝑦 ) ∈ Fin )
153 151 152 jca ( ( 𝜑𝑦 ∈ ℕ0 ) → ( 𝑆 ∈ Fin ∧ ( 0 ... 𝑦 ) ∈ Fin ) )
154 xpfi ( ( 𝑆 ∈ Fin ∧ ( 0 ... 𝑦 ) ∈ Fin ) → ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin )
155 153 154 syl ( ( 𝜑𝑦 ∈ ℕ0 ) → ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin )
156 pwfi ( ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin ↔ 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin )
157 155 156 sylib ( ( 𝜑𝑦 ∈ ℕ0 ) → 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin )
158 fsetsspwxp { 𝑓𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) )
159 158 a1i ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) ) )
160 157 159 ssfid ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } ∈ Fin )
161 ffn ( 𝑓 : 𝑆 ⟶ ℕ0𝑓 Fn 𝑆 )
162 122 161 syl ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → 𝑓 Fn 𝑆 )
163 0zd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → 0 ∈ ℤ )
164 110 adantr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → 𝑦 ∈ ℤ )
165 164 adantr ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → 𝑦 ∈ ℤ )
166 122 ffvelrnda ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ∈ ℕ0 )
167 166 nn0zd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ∈ ℤ )
168 166 nn0ge0d ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → 0 ≤ ( 𝑓𝑠 ) )
169 128 ad2antrr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) ∧ 𝑦 < ( 𝑓𝑠 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 )
170 125 ad2antrr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) ∧ 𝑦 < ( 𝑓𝑠 ) ) → 𝑦 ∈ ℝ )
171 166 nn0red ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ∈ ℝ )
172 171 adantr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) ∧ 𝑦 < ( 𝑓𝑠 ) ) → ( 𝑓𝑠 ) ∈ ℝ )
173 124 adantr ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℝ )
174 173 adantr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) ∧ 𝑦 < ( 𝑓𝑠 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℝ )
175 simpr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) ∧ 𝑦 < ( 𝑓𝑠 ) ) → 𝑦 < ( 𝑓𝑠 ) )
176 simplll ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → 𝜑 )
177 simpllr ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → 𝑦 ∈ ℕ0 )
178 simplrl ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → 𝑓 : 𝑆 ⟶ ℕ0 )
179 176 177 178 jca31 ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) )
180 difssd ( 𝜑 → ( 𝑆 ∖ { 𝑠 } ) ⊆ 𝑆 )
181 2 180 ssfid ( 𝜑 → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin )
182 181 adantr ( ( 𝜑𝑦 ∈ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin )
183 182 adantr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin )
184 eldifi ( 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) → 𝑖𝑆 )
185 184 adantl ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ) → 𝑖𝑆 )
186 97 adantlr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ) ∧ 𝑖𝑆 ) → ( 𝑓𝑖 ) ∈ ℕ0 )
187 185 186 mpdan ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ) → ( 𝑓𝑖 ) ∈ ℕ0 )
188 183 187 fsumnn0cl ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ∈ ℕ0 )
189 179 188 syl ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ∈ ℕ0 )
190 189 nn0ge0d ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) )
191 difssd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ⊆ 𝑆 )
192 95 191 ssfid ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin )
193 192 187 fsumnn0cl ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ∈ ℕ0 )
194 179 193 syl ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ∈ ℕ0 )
195 194 nn0red ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ∈ ℝ )
196 171 195 addge01d ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ↔ ( 𝑓𝑠 ) ≤ ( ( 𝑓𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ) ) )
197 190 196 mpbid ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ≤ ( ( 𝑓𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ) )
198 simpr ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → 𝑠𝑆 )
199 179 198 jca ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠𝑆 ) )
200 nfv 𝑖 ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠𝑆 )
201 nfcv 𝑖 ( 𝑓𝑠 )
202 95 adantr ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠𝑆 ) → 𝑆 ∈ Fin )
203 97 adantlr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠𝑆 ) ∧ 𝑖𝑆 ) → ( 𝑓𝑖 ) ∈ ℕ0 )
204 203 nn0cnd ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠𝑆 ) ∧ 𝑖𝑆 ) → ( 𝑓𝑖 ) ∈ ℂ )
205 simpr ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠𝑆 ) → 𝑠𝑆 )
206 fveq2 ( 𝑖 = 𝑠 → ( 𝑓𝑖 ) = ( 𝑓𝑠 ) )
207 200 201 202 204 205 206 fsumsplit1 ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠𝑆 ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( ( 𝑓𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ) )
208 199 207 syl ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( ( 𝑓𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ) )
209 208 eqcomd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( ( 𝑓𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ) = Σ 𝑖𝑆 ( 𝑓𝑖 ) )
210 197 209 breqtrd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ≤ Σ 𝑖𝑆 ( 𝑓𝑖 ) )
211 210 adantr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) ∧ 𝑦 < ( 𝑓𝑠 ) ) → ( 𝑓𝑠 ) ≤ Σ 𝑖𝑆 ( 𝑓𝑖 ) )
212 170 172 174 175 211 ltletrd ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) ∧ 𝑦 < ( 𝑓𝑠 ) ) → 𝑦 < Σ 𝑖𝑆 ( 𝑓𝑖 ) )
213 170 174 ltnled ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) ∧ 𝑦 < ( 𝑓𝑠 ) ) → ( 𝑦 < Σ 𝑖𝑆 ( 𝑓𝑖 ) ↔ ¬ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) )
214 212 213 mpbid ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) ∧ 𝑦 < ( 𝑓𝑠 ) ) → ¬ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 )
215 169 214 pm2.21dd ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) ∧ 𝑦 < ( 𝑓𝑠 ) ) → ¬ 𝑦 < ( 𝑓𝑠 ) )
216 215 pm2.01da ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ¬ 𝑦 < ( 𝑓𝑠 ) )
217 177 101 syl ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → 𝑦 ∈ ℝ )
218 171 217 lenltd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( ( 𝑓𝑠 ) ≤ 𝑦 ↔ ¬ 𝑦 < ( 𝑓𝑠 ) ) )
219 216 218 mpbird ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ≤ 𝑦 )
220 163 165 167 168 219 elfzd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ∈ ( 0 ... 𝑦 ) )
221 220 ralrimiva ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ ( 0 ... 𝑦 ) )
222 162 221 jca ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ ( 0 ... 𝑦 ) ) )
223 ffnfv ( 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) ↔ ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ ( 0 ... 𝑦 ) ) )
224 222 223 sylibr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) )
225 224 ex ( ( 𝜑𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) → 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) ) )
226 225 ss2abdv ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ⊆ { 𝑓𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } )
227 160 226 ssfid ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∈ Fin )
228 227 adantr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∈ Fin )
229 fzfid ( ( 𝜑𝑦 ∈ ℕ0 ) → ( 0 ... ( 𝑦 + 1 ) ) ∈ Fin )
230 151 229 jca ( ( 𝜑𝑦 ∈ ℕ0 ) → ( 𝑆 ∈ Fin ∧ ( 0 ... ( 𝑦 + 1 ) ) ∈ Fin ) )
231 xpfi ( ( 𝑆 ∈ Fin ∧ ( 0 ... ( 𝑦 + 1 ) ) ∈ Fin ) → ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin )
232 230 231 syl ( ( 𝜑𝑦 ∈ ℕ0 ) → ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin )
233 pwfi ( ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin ↔ 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin )
234 232 233 sylib ( ( 𝜑𝑦 ∈ ℕ0 ) → 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin )
235 fsetsspwxp { 𝑓𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) )
236 235 a1i ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) )
237 234 236 ssfid ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } ∈ Fin )
238 161 ad2antrl ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑓 Fn 𝑆 )
239 0zd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → 0 ∈ ℤ )
240 simpllr ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → 𝑦 ∈ ℕ0 )
241 240 nn0zd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → 𝑦 ∈ ℤ )
242 241 peano2zd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → ( 𝑦 + 1 ) ∈ ℤ )
243 133 ffvelrnda ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ∈ ℕ0 )
244 243 nn0zd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ∈ ℤ )
245 243 nn0ge0d ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → 0 ≤ ( 𝑓𝑠 ) )
246 134 ad2antrr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) )
247 137 ad2antrr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → ( 𝑦 + 1 ) ∈ ℝ )
248 133 ad2antrr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 )
249 simplr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → 𝑠𝑆 )
250 248 249 ffvelrnd ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → ( 𝑓𝑠 ) ∈ ℕ0 )
251 250 nn0red ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → ( 𝑓𝑠 ) ∈ ℝ )
252 246 247 eqeltrd ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℝ )
253 simpr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → ( 𝑦 + 1 ) < ( 𝑓𝑠 ) )
254 133 188 syldan ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ∈ ℕ0 )
255 254 adantr ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ∈ ℕ0 )
256 255 adantr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ∈ ℕ0 )
257 256 nn0ge0d ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) )
258 256 nn0red ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ∈ ℝ )
259 251 258 addge01d ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → ( 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ↔ ( 𝑓𝑠 ) ≤ ( ( 𝑓𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ) ) )
260 257 259 mpbid ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → ( 𝑓𝑠 ) ≤ ( ( 𝑓𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ) )
261 133 207 syldanl ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( ( 𝑓𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ) )
262 261 adantr ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( ( 𝑓𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ) )
263 262 eqcomd ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → ( ( 𝑓𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓𝑖 ) ) = Σ 𝑖𝑆 ( 𝑓𝑖 ) )
264 260 263 breqtrd ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → ( 𝑓𝑠 ) ≤ Σ 𝑖𝑆 ( 𝑓𝑖 ) )
265 247 251 252 253 264 ltletrd ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → ( 𝑦 + 1 ) < Σ 𝑖𝑆 ( 𝑓𝑖 ) )
266 247 265 ltned ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → ( 𝑦 + 1 ) ≠ Σ 𝑖𝑆 ( 𝑓𝑖 ) )
267 266 necomd ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ≠ ( 𝑦 + 1 ) )
268 246 267 pm2.21ddne ( ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) → ¬ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) )
269 268 pm2.01da ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → ¬ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) )
270 243 nn0red ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ∈ ℝ )
271 137 adantr ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → ( 𝑦 + 1 ) ∈ ℝ )
272 270 271 lenltd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → ( ( 𝑓𝑠 ) ≤ ( 𝑦 + 1 ) ↔ ¬ ( 𝑦 + 1 ) < ( 𝑓𝑠 ) ) )
273 269 272 mpbird ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ≤ ( 𝑦 + 1 ) )
274 239 242 244 245 273 elfzd ( ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠𝑆 ) → ( 𝑓𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) )
275 274 ralrimiva ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) )
276 238 275 jca ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) )
277 ffnfv ( 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) ↔ ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) )
278 276 277 sylibr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) )
279 278 ex ( ( 𝜑𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) → 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) ) )
280 279 ss2abdv ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ⊆ { 𝑓𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } )
281 237 280 ssfid ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ∈ Fin )
282 281 adantr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ∈ Fin )
283 inab ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) }
284 283 a1i ( ( 𝜑𝑦 ∈ ℕ0 ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) } )
285 98 adantrr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℕ0 )
286 285 nn0zd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℤ )
287 286 zred ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ∈ ℝ )
288 125 ltp1d ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → 𝑦 < ( 𝑦 + 1 ) )
289 287 125 127 128 288 lelttrd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) < ( 𝑦 + 1 ) )
290 287 289 ltned ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖𝑆 ( 𝑓𝑖 ) ≠ ( 𝑦 + 1 ) )
291 290 neneqd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → ¬ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) )
292 291 intnand ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → ¬ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) )
293 nan ( ( ( 𝜑𝑦 ∈ ℕ0 ) → ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) ) ↔ ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ) → ¬ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) )
294 292 293 mpbir ( ( 𝜑𝑦 ∈ ℕ0 ) → ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) )
295 294 alrimiv ( ( 𝜑𝑦 ∈ ℕ0 ) → ∀ 𝑓 ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) )
296 ab0 ( { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) } = ∅ ↔ ∀ 𝑓 ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) )
297 295 296 sylibr ( ( 𝜑𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) ) } = ∅ )
298 284 297 eqtrd ( ( 𝜑𝑦 ∈ ℕ0 ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) = ∅ )
299 298 adantr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) = ∅ )
300 hashun ( ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∈ Fin ∧ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ∈ Fin ∧ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) ) )
301 228 282 299 300 syl3anc ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) ) )
302 simpr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
303 simplr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑦 ∈ ℕ0 )
304 1nn0 1 ∈ ℕ0
305 304 a1i ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 1 ∈ ℕ0 )
306 303 305 nn0addcld ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( 𝑦 + 1 ) ∈ ℕ0 )
307 2 ad2antrr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑆 ∈ Fin )
308 3 ad2antrr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑆 ≠ ∅ )
309 eqid { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) }
310 306 307 308 309 sticksstones21 ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) = ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) )
311 302 310 oveq12d ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) )
312 303 nn0cnd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑦 ∈ ℂ )
313 1cnd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 1 ∈ ℂ )
314 71 ad2antrr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℂ )
315 312 313 314 ppncand ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( 𝑦 + ( ♯ ‘ 𝑆 ) ) )
316 315 oveq1d ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) )
317 316 oveq2d ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) )
318 82 ad2antrr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℕ0 )
319 303 318 nn0addcld ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( 𝑦 + ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 )
320 318 nn0zd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℤ )
321 bcpasc ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) )
322 319 320 321 syl2anc ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) )
323 317 322 eqtrd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) )
324 312 314 313 add32d ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) = ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) )
325 324 oveq1d ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
326 323 325 eqtrd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
327 311 326 eqtrd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
328 301 327 eqtrd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
329 150 328 eqtrd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
330 13 20 27 34 92 329 nn0indd ( ( 𝜑𝑁 ∈ ℕ0 ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
331 1 330 mpdan ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖𝑆 ( 𝑓𝑖 ) ≤ 𝑁 ) } ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )
332 6 331 eqtrd ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) )