Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones22.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones22.2 |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
3 |
|
sticksstones22.3 |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
4 |
|
sticksstones22.4 |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } |
5 |
4
|
a1i |
⊢ ( 𝜑 → 𝐴 = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) |
6 |
5
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) ) |
7 |
|
breq2 |
⊢ ( 𝑥 = 0 → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) |
8 |
7
|
anbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) ) |
9 |
8
|
abbidv |
⊢ ( 𝑥 = 0 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } ) |
10 |
9
|
fveq2d |
⊢ ( 𝑥 = 0 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } ) ) |
11 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( 0 + ( ♯ ‘ 𝑆 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) ) |
14 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) |
15 |
14
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ) |
16 |
15
|
abbidv |
⊢ ( 𝑥 = 𝑦 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) |
17 |
16
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( 𝑦 + ( ♯ ‘ 𝑆 ) ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
20 |
17 19
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) ) |
21 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) |
22 |
21
|
anbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) ) |
23 |
22
|
abbidv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) |
24 |
23
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) ) |
25 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
27 |
24 26
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) ) |
28 |
|
breq2 |
⊢ ( 𝑥 = 𝑁 → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) ) |
29 |
28
|
anbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) ) ) |
30 |
29
|
abbidv |
⊢ ( 𝑥 = 𝑁 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) |
31 |
30
|
fveq2d |
⊢ ( 𝑥 = 𝑁 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) ) |
32 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( 𝑁 + ( ♯ ‘ 𝑆 ) ) ) |
33 |
32
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
34 |
31 33
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) ) |
35 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
36 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) |
37 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑆 ∈ Fin ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
39 |
38
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
40 |
37 39
|
fsumnn0cl |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
41 |
35 40
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
42 |
41
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → 0 ≤ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
43 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → 0 ∈ ℝ ) |
44 |
41
|
nn0red |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
45 |
43 44
|
lenltd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → ( 0 ≤ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ↔ ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < 0 ) ) |
46 |
42 45
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < 0 ) |
47 |
36 46
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ∧ ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < 0 ) ) |
48 |
44 43
|
eqleltd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ↔ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ∧ ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < 0 ) ) ) |
49 |
47 48
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) |
50 |
35 49
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) |
51 |
50
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) ) |
52 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
53 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) |
54 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → 0 ∈ ℝ ) |
55 |
54
|
leidd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → 0 ≤ 0 ) |
56 |
53 55
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) |
57 |
52 56
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) |
58 |
57
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) ) |
59 |
51 58
|
impbid |
⊢ ( 𝜑 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) ) |
60 |
59
|
abbidv |
⊢ ( 𝜑 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } ) |
61 |
60
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } ) ) |
62 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
63 |
62
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
64 |
|
eqid |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } |
65 |
63 2 3 64
|
sticksstones21 |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } ) = ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) |
66 |
|
hashnncl |
⊢ ( 𝑆 ∈ Fin → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ↔ 𝑆 ≠ ∅ ) ) |
67 |
2 66
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ↔ 𝑆 ≠ ∅ ) ) |
68 |
67
|
bicomd |
⊢ ( 𝜑 → ( 𝑆 ≠ ∅ ↔ ( ♯ ‘ 𝑆 ) ∈ ℕ ) ) |
69 |
68
|
biimpd |
⊢ ( 𝜑 → ( 𝑆 ≠ ∅ → ( ♯ ‘ 𝑆 ) ∈ ℕ ) ) |
70 |
3 69
|
mpd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℕ ) |
71 |
70
|
nncnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
72 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
73 |
71 72
|
subcld |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℂ ) |
74 |
73
|
addid2d |
⊢ ( 𝜑 → ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( ♯ ‘ 𝑆 ) − 1 ) ) |
75 |
74
|
oveq1d |
⊢ ( 𝜑 → ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( ( ♯ ‘ 𝑆 ) − 1 ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) |
76 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℕ0 ) |
77 |
70 76
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℕ0 ) |
78 |
|
bcnn |
⊢ ( ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑆 ) − 1 ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = 1 ) |
79 |
77 78
|
syl |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑆 ) − 1 ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = 1 ) |
80 |
75 79
|
eqtrd |
⊢ ( 𝜑 → ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = 1 ) |
81 |
|
eqidd |
⊢ ( 𝜑 → 1 = 1 ) |
82 |
70
|
nnnn0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
83 |
|
bcnn |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) = 1 ) |
84 |
82 83
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) = 1 ) |
85 |
84
|
eqcomd |
⊢ ( 𝜑 → 1 = ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) ) |
86 |
71
|
addid2d |
⊢ ( 𝜑 → ( 0 + ( ♯ ‘ 𝑆 ) ) = ( ♯ ‘ 𝑆 ) ) |
87 |
86
|
eqcomd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( 0 + ( ♯ ‘ 𝑆 ) ) ) |
88 |
87
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
89 |
85 88
|
eqtrd |
⊢ ( 𝜑 → 1 = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
90 |
80 81 89
|
3eqtrd |
⊢ ( 𝜑 → ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
91 |
65 90
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
92 |
61 91
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
93 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
94 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) |
95 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑆 ∈ Fin ) |
96 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
97 |
96
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
98 |
95 97
|
fsumnn0cl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
99 |
93 98
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
100 |
99
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
101 |
|
nn0re |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) |
102 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℝ ) |
103 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 𝑦 ∈ ℝ ) |
104 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 1 ∈ ℝ ) |
105 |
103 104
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
106 |
100 105
|
leloed |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ↔ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
107 |
94 106
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) |
108 |
99
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℤ ) |
109 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℤ ) |
111 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 𝑦 ∈ ℤ ) |
112 |
|
zleltp1 |
⊢ ( ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ) ) |
113 |
112
|
bicomd |
⊢ ( ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) |
114 |
108 111 113
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) |
115 |
114
|
orbi1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ↔ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
116 |
107 115
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) |
117 |
93 116
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
118 |
|
andi |
⊢ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ↔ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
119 |
118
|
bicomi |
⊢ ( ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
120 |
117 119
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
121 |
120
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) ) |
122 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
123 |
122 98
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
124 |
123
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
125 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
126 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 1 ∈ ℝ ) |
127 |
125 126
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
128 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) |
129 |
125
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑦 ≤ ( 𝑦 + 1 ) ) |
130 |
124 125 127 128 129
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) |
131 |
122 130
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) |
132 |
131
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) ) |
133 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
134 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) |
135 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑦 ∈ ℝ ) |
136 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → 1 ∈ ℝ ) |
137 |
135 136
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
138 |
137
|
leidd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ≤ ( 𝑦 + 1 ) ) |
139 |
134 138
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) |
140 |
133 139
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) |
141 |
140
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) ) |
142 |
132 141
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) ) |
143 |
121 142
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ↔ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) ) |
144 |
143
|
abbidv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } ) |
145 |
|
unab |
⊢ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } |
146 |
145
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } ) |
147 |
146
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } = ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) |
148 |
144 147
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } = ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) |
149 |
148
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } = ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) |
150 |
149
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) = ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) ) |
151 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑆 ∈ Fin ) |
152 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 0 ... 𝑦 ) ∈ Fin ) |
153 |
151 152
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑆 ∈ Fin ∧ ( 0 ... 𝑦 ) ∈ Fin ) ) |
154 |
|
xpfi |
⊢ ( ( 𝑆 ∈ Fin ∧ ( 0 ... 𝑦 ) ∈ Fin ) → ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin ) |
155 |
153 154
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin ) |
156 |
|
pwfi |
⊢ ( ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin ↔ 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin ) |
157 |
155 156
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin ) |
158 |
|
fsetsspwxp |
⊢ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) ) |
159 |
158
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) ) ) |
160 |
157 159
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } ∈ Fin ) |
161 |
|
ffn |
⊢ ( 𝑓 : 𝑆 ⟶ ℕ0 → 𝑓 Fn 𝑆 ) |
162 |
122 161
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑓 Fn 𝑆 ) |
163 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 0 ∈ ℤ ) |
164 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑦 ∈ ℤ ) |
165 |
164
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ ℤ ) |
166 |
122
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℕ0 ) |
167 |
166
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℤ ) |
168 |
166
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 0 ≤ ( 𝑓 ‘ 𝑠 ) ) |
169 |
128
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) |
170 |
125
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → 𝑦 ∈ ℝ ) |
171 |
166
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℝ ) |
172 |
171
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ∈ ℝ ) |
173 |
124
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
174 |
173
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
175 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → 𝑦 < ( 𝑓 ‘ 𝑠 ) ) |
176 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝜑 ) |
177 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ ℕ0 ) |
178 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
179 |
176 177 178
|
jca31 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ) |
180 |
|
difssd |
⊢ ( 𝜑 → ( 𝑆 ∖ { 𝑠 } ) ⊆ 𝑆 ) |
181 |
2 180
|
ssfid |
⊢ ( 𝜑 → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin ) |
182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin ) |
183 |
182
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin ) |
184 |
|
eldifi |
⊢ ( 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) → 𝑖 ∈ 𝑆 ) |
185 |
184
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ) → 𝑖 ∈ 𝑆 ) |
186 |
97
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
187 |
185 186
|
mpdan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ) → ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
188 |
183 187
|
fsumnn0cl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
189 |
179 188
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
190 |
189
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) |
191 |
|
difssd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ⊆ 𝑆 ) |
192 |
95 191
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin ) |
193 |
192 187
|
fsumnn0cl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
194 |
179 193
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
195 |
194
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
196 |
171 195
|
addge01d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ↔ ( 𝑓 ‘ 𝑠 ) ≤ ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) ) |
197 |
190 196
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ≤ ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
198 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑆 ) |
199 |
179 198
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ) |
200 |
|
nfv |
⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) |
201 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑓 ‘ 𝑠 ) |
202 |
95
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → 𝑆 ∈ Fin ) |
203 |
97
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
204 |
203
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℂ ) |
205 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑆 ) |
206 |
|
fveq2 |
⊢ ( 𝑖 = 𝑠 → ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑠 ) ) |
207 |
200 201 202 204 205 206
|
fsumsplit1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
208 |
199 207
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
209 |
208
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) = Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
210 |
197 209
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ≤ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
211 |
210
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ≤ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
212 |
170 172 174 175 211
|
ltletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → 𝑦 < Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
213 |
170 174
|
ltnled |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑦 < Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ↔ ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) |
214 |
212 213
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) |
215 |
169 214
|
pm2.21dd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → ¬ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) |
216 |
215
|
pm2.01da |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ¬ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) |
217 |
177 101
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ ℝ ) |
218 |
171 217
|
lenltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝑓 ‘ 𝑠 ) ≤ 𝑦 ↔ ¬ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) ) |
219 |
216 218
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ≤ 𝑦 ) |
220 |
163 165 167 168 219
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... 𝑦 ) ) |
221 |
220
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... 𝑦 ) ) |
222 |
162 221
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... 𝑦 ) ) ) |
223 |
|
ffnfv |
⊢ ( 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) ↔ ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... 𝑦 ) ) ) |
224 |
222 223
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) ) |
225 |
224
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) → 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) ) ) |
226 |
225
|
ss2abdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ⊆ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } ) |
227 |
160 226
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∈ Fin ) |
228 |
227
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∈ Fin ) |
229 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 0 ... ( 𝑦 + 1 ) ) ∈ Fin ) |
230 |
151 229
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑆 ∈ Fin ∧ ( 0 ... ( 𝑦 + 1 ) ) ∈ Fin ) ) |
231 |
|
xpfi |
⊢ ( ( 𝑆 ∈ Fin ∧ ( 0 ... ( 𝑦 + 1 ) ) ∈ Fin ) → ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin ) |
232 |
230 231
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin ) |
233 |
|
pwfi |
⊢ ( ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin ↔ 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin ) |
234 |
232 233
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin ) |
235 |
|
fsetsspwxp |
⊢ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) |
236 |
235
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ) |
237 |
234 236
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } ∈ Fin ) |
238 |
161
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑓 Fn 𝑆 ) |
239 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → 0 ∈ ℤ ) |
240 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ ℕ0 ) |
241 |
240
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ ℤ ) |
242 |
241
|
peano2zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑦 + 1 ) ∈ ℤ ) |
243 |
133
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℕ0 ) |
244 |
243
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℤ ) |
245 |
243
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → 0 ≤ ( 𝑓 ‘ 𝑠 ) ) |
246 |
134
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) |
247 |
137
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
248 |
133
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
249 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → 𝑠 ∈ 𝑆 ) |
250 |
248 249
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ∈ ℕ0 ) |
251 |
250
|
nn0red |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ∈ ℝ ) |
252 |
246 247
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
253 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) |
254 |
133 188
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
255 |
254
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
256 |
255
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
257 |
256
|
nn0ge0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) |
258 |
256
|
nn0red |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
259 |
251 258
|
addge01d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ↔ ( 𝑓 ‘ 𝑠 ) ≤ ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) ) |
260 |
257 259
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ≤ ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
261 |
133 207
|
syldanl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
262 |
261
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
263 |
262
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) = Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
264 |
260 263
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ≤ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
265 |
247 251 252 253 264
|
ltletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑦 + 1 ) < Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
266 |
247 265
|
ltned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑦 + 1 ) ≠ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
267 |
266
|
necomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≠ ( 𝑦 + 1 ) ) |
268 |
246 267
|
pm2.21ddne |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ¬ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) |
269 |
268
|
pm2.01da |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ¬ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) |
270 |
243
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℝ ) |
271 |
137
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑦 + 1 ) ∈ ℝ ) |
272 |
270 271
|
lenltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝑓 ‘ 𝑠 ) ≤ ( 𝑦 + 1 ) ↔ ¬ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) ) |
273 |
269 272
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ≤ ( 𝑦 + 1 ) ) |
274 |
239 242 244 245 273
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
275 |
274
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
276 |
238 275
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) ) |
277 |
|
ffnfv |
⊢ ( 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) ↔ ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) ) |
278 |
276 277
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) ) |
279 |
278
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) → 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) ) ) |
280 |
279
|
ss2abdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ⊆ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } ) |
281 |
237 280
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ∈ Fin ) |
282 |
281
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ∈ Fin ) |
283 |
|
inab |
⊢ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } |
284 |
283
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } ) |
285 |
98
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
286 |
285
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℤ ) |
287 |
286
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
288 |
125
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑦 < ( 𝑦 + 1 ) ) |
289 |
287 125 127 128 288
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ) |
290 |
287 289
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≠ ( 𝑦 + 1 ) ) |
291 |
290
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) |
292 |
291
|
intnand |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ¬ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) |
293 |
|
nan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ¬ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
294 |
292 293
|
mpbir |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
295 |
294
|
alrimiv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ∀ 𝑓 ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
296 |
|
ab0 |
⊢ ( { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } = ∅ ↔ ∀ 𝑓 ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
297 |
295 296
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } = ∅ ) |
298 |
284 297
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = ∅ ) |
299 |
298
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = ∅ ) |
300 |
|
hashun |
⊢ ( ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∈ Fin ∧ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ∈ Fin ∧ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) ) |
301 |
228 282 299 300
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) ) |
302 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
303 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑦 ∈ ℕ0 ) |
304 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
305 |
304
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 1 ∈ ℕ0 ) |
306 |
303 305
|
nn0addcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
307 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑆 ∈ Fin ) |
308 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑆 ≠ ∅ ) |
309 |
|
eqid |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } |
310 |
306 307 308 309
|
sticksstones21 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) |
311 |
302 310
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) ) |
312 |
303
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑦 ∈ ℂ ) |
313 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 1 ∈ ℂ ) |
314 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
315 |
312 313 314
|
ppncand |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( 𝑦 + ( ♯ ‘ 𝑆 ) ) ) |
316 |
315
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) |
317 |
316
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) ) |
318 |
82
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
319 |
303 318
|
nn0addcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( 𝑦 + ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 ) |
320 |
318
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
321 |
|
bcpasc |
⊢ ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) ) |
322 |
319 320 321
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) ) |
323 |
317 322
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) ) |
324 |
312 314 313
|
add32d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) = ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) ) |
325 |
324
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
326 |
323 325
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
327 |
311 326
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
328 |
301 327
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
329 |
150 328
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
330 |
13 20 27 34 92 329
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
331 |
1 330
|
mpdan |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
332 |
6 331
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |