| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sticksstones22.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
sticksstones22.2 |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 3 |
|
sticksstones22.3 |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 4 |
|
sticksstones22.4 |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → 𝐴 = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) ) |
| 7 |
|
breq2 |
⊢ ( 𝑥 = 0 → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) |
| 8 |
7
|
anbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 9 |
8
|
abbidv |
⊢ ( 𝑥 = 0 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝑥 = 0 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( 0 + ( ♯ ‘ 𝑆 ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 13 |
10 12
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) ) |
| 14 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) |
| 15 |
14
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ) |
| 16 |
15
|
abbidv |
⊢ ( 𝑥 = 𝑦 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) ) |
| 18 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( 𝑦 + ( ♯ ‘ 𝑆 ) ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 20 |
17 19
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) ) |
| 21 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) |
| 22 |
21
|
anbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) ) |
| 23 |
22
|
abbidv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) |
| 24 |
23
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) ) |
| 25 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) ) |
| 26 |
25
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 27 |
24 26
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) ) |
| 28 |
|
breq2 |
⊢ ( 𝑥 = 𝑁 → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) ) |
| 29 |
28
|
anbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) ) ) |
| 30 |
29
|
abbidv |
⊢ ( 𝑥 = 𝑁 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) |
| 31 |
30
|
fveq2d |
⊢ ( 𝑥 = 𝑁 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) ) |
| 32 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( 𝑁 + ( ♯ ‘ 𝑆 ) ) ) |
| 33 |
32
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 34 |
31 33
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑥 ) } ) = ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) ) |
| 35 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
| 36 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) |
| 37 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑆 ∈ Fin ) |
| 38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
| 39 |
38
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 40 |
37 39
|
fsumnn0cl |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 41 |
35 40
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 42 |
41
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → 0 ≤ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
| 43 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → 0 ∈ ℝ ) |
| 44 |
41
|
nn0red |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
| 45 |
43 44
|
lenltd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → ( 0 ≤ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ↔ ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < 0 ) ) |
| 46 |
42 45
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < 0 ) |
| 47 |
36 46
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ∧ ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < 0 ) ) |
| 48 |
44 43
|
eqleltd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ↔ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ∧ ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < 0 ) ) ) |
| 49 |
47 48
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) |
| 50 |
35 49
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) |
| 51 |
50
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) ) |
| 52 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
| 53 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) |
| 54 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → 0 ∈ ℝ ) |
| 55 |
54
|
leidd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → 0 ≤ 0 ) |
| 56 |
53 55
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) |
| 57 |
52 56
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) |
| 58 |
57
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 59 |
51 58
|
impbid |
⊢ ( 𝜑 → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) ) ) |
| 60 |
59
|
abbidv |
⊢ ( 𝜑 → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } ) |
| 61 |
60
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } ) ) |
| 62 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 64 |
|
eqid |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } |
| 65 |
63 2 3 64
|
sticksstones21 |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } ) = ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) |
| 66 |
|
hashnncl |
⊢ ( 𝑆 ∈ Fin → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ↔ 𝑆 ≠ ∅ ) ) |
| 67 |
2 66
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ↔ 𝑆 ≠ ∅ ) ) |
| 68 |
67
|
bicomd |
⊢ ( 𝜑 → ( 𝑆 ≠ ∅ ↔ ( ♯ ‘ 𝑆 ) ∈ ℕ ) ) |
| 69 |
68
|
biimpd |
⊢ ( 𝜑 → ( 𝑆 ≠ ∅ → ( ♯ ‘ 𝑆 ) ∈ ℕ ) ) |
| 70 |
3 69
|
mpd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℕ ) |
| 71 |
70
|
nncnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 72 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 73 |
71 72
|
subcld |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℂ ) |
| 74 |
73
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( ♯ ‘ 𝑆 ) − 1 ) ) |
| 75 |
74
|
oveq1d |
⊢ ( 𝜑 → ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( ( ♯ ‘ 𝑆 ) − 1 ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) |
| 76 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℕ0 ) |
| 77 |
70 76
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℕ0 ) |
| 78 |
|
bcnn |
⊢ ( ( ( ♯ ‘ 𝑆 ) − 1 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑆 ) − 1 ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = 1 ) |
| 79 |
77 78
|
syl |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑆 ) − 1 ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = 1 ) |
| 80 |
75 79
|
eqtrd |
⊢ ( 𝜑 → ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = 1 ) |
| 81 |
|
eqidd |
⊢ ( 𝜑 → 1 = 1 ) |
| 82 |
70
|
nnnn0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 83 |
|
bcnn |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) = 1 ) |
| 84 |
82 83
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) = 1 ) |
| 85 |
84
|
eqcomd |
⊢ ( 𝜑 → 1 = ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) ) |
| 86 |
71
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ♯ ‘ 𝑆 ) ) = ( ♯ ‘ 𝑆 ) ) |
| 87 |
86
|
eqcomd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( 0 + ( ♯ ‘ 𝑆 ) ) ) |
| 88 |
87
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) C ( ♯ ‘ 𝑆 ) ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 89 |
85 88
|
eqtrd |
⊢ ( 𝜑 → 1 = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 90 |
80 81 89
|
3eqtrd |
⊢ ( 𝜑 → ( ( 0 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 91 |
65 90
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 0 ) } ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 92 |
61 91
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 0 ) } ) = ( ( 0 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 93 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
| 94 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) |
| 95 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑆 ∈ Fin ) |
| 96 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
| 97 |
96
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 98 |
95 97
|
fsumnn0cl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 99 |
93 98
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 100 |
99
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
| 101 |
|
nn0re |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) |
| 102 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℝ ) |
| 103 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 𝑦 ∈ ℝ ) |
| 104 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 1 ∈ ℝ ) |
| 105 |
103 104
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 106 |
100 105
|
leloed |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ↔ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
| 107 |
94 106
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) |
| 108 |
99
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℤ ) |
| 109 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
| 110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℤ ) |
| 111 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → 𝑦 ∈ ℤ ) |
| 112 |
|
zleltp1 |
⊢ ( ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ) ) |
| 113 |
112
|
bicomd |
⊢ ( ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) |
| 114 |
108 111 113
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ↔ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) |
| 115 |
114
|
orbi1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ↔ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
| 116 |
107 115
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) |
| 117 |
93 116
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
| 118 |
|
andi |
⊢ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ↔ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
| 119 |
118
|
bicomi |
⊢ ( ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ∨ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
| 120 |
117 119
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
| 121 |
120
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) ) |
| 122 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
| 123 |
122 98
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 124 |
123
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
| 125 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 126 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 1 ∈ ℝ ) |
| 127 |
125 126
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 128 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) |
| 129 |
125
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑦 ≤ ( 𝑦 + 1 ) ) |
| 130 |
124 125 127 128 129
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) |
| 131 |
122 130
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) |
| 132 |
131
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) ) |
| 133 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
| 134 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) |
| 135 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑦 ∈ ℝ ) |
| 136 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → 1 ∈ ℝ ) |
| 137 |
135 136
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 138 |
137
|
leidd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ≤ ( 𝑦 + 1 ) ) |
| 139 |
134 138
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) |
| 140 |
133 139
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) |
| 141 |
140
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) ) |
| 142 |
132 141
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ) ) |
| 143 |
121 142
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) ↔ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) ) |
| 144 |
143
|
abbidv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } ) |
| 145 |
|
unab |
⊢ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } |
| 146 |
145
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } ) |
| 147 |
146
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∨ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } = ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) |
| 148 |
144 147
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } = ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) |
| 149 |
148
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } = ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) |
| 150 |
149
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) = ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) ) |
| 151 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑆 ∈ Fin ) |
| 152 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 0 ... 𝑦 ) ∈ Fin ) |
| 153 |
151 152
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑆 ∈ Fin ∧ ( 0 ... 𝑦 ) ∈ Fin ) ) |
| 154 |
|
xpfi |
⊢ ( ( 𝑆 ∈ Fin ∧ ( 0 ... 𝑦 ) ∈ Fin ) → ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin ) |
| 155 |
153 154
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin ) |
| 156 |
|
pwfi |
⊢ ( ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin ↔ 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin ) |
| 157 |
155 156
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) ) ∈ Fin ) |
| 158 |
|
fsetsspwxp |
⊢ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) ) |
| 159 |
158
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... 𝑦 ) ) ) |
| 160 |
157 159
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } ∈ Fin ) |
| 161 |
|
ffn |
⊢ ( 𝑓 : 𝑆 ⟶ ℕ0 → 𝑓 Fn 𝑆 ) |
| 162 |
122 161
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑓 Fn 𝑆 ) |
| 163 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 0 ∈ ℤ ) |
| 164 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑦 ∈ ℤ ) |
| 165 |
164
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ ℤ ) |
| 166 |
122
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℕ0 ) |
| 167 |
166
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℤ ) |
| 168 |
166
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 0 ≤ ( 𝑓 ‘ 𝑠 ) ) |
| 169 |
128
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) |
| 170 |
125
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → 𝑦 ∈ ℝ ) |
| 171 |
166
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℝ ) |
| 172 |
171
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ∈ ℝ ) |
| 173 |
124
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
| 174 |
173
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
| 175 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → 𝑦 < ( 𝑓 ‘ 𝑠 ) ) |
| 176 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝜑 ) |
| 177 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ ℕ0 ) |
| 178 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
| 179 |
176 177 178
|
jca31 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ) |
| 180 |
|
difssd |
⊢ ( 𝜑 → ( 𝑆 ∖ { 𝑠 } ) ⊆ 𝑆 ) |
| 181 |
2 180
|
ssfid |
⊢ ( 𝜑 → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin ) |
| 183 |
182
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin ) |
| 184 |
|
eldifi |
⊢ ( 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) → 𝑖 ∈ 𝑆 ) |
| 185 |
184
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ) → 𝑖 ∈ 𝑆 ) |
| 186 |
97
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 187 |
185 186
|
mpdan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ) → ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 188 |
183 187
|
fsumnn0cl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 189 |
179 188
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 190 |
189
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) |
| 191 |
|
difssd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ⊆ 𝑆 ) |
| 192 |
95 191
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → ( 𝑆 ∖ { 𝑠 } ) ∈ Fin ) |
| 193 |
192 187
|
fsumnn0cl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 194 |
179 193
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 195 |
194
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
| 196 |
171 195
|
addge01d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ↔ ( 𝑓 ‘ 𝑠 ) ≤ ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 197 |
190 196
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ≤ ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
| 198 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑆 ) |
| 199 |
179 198
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ) |
| 200 |
|
nfv |
⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) |
| 201 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑓 ‘ 𝑠 ) |
| 202 |
95
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → 𝑆 ∈ Fin ) |
| 203 |
97
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 204 |
203
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑖 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℂ ) |
| 205 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝑆 ) |
| 206 |
|
fveq2 |
⊢ ( 𝑖 = 𝑠 → ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑠 ) ) |
| 207 |
200 201 202 204 205 206
|
fsumsplit1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑓 : 𝑆 ⟶ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
| 208 |
199 207
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
| 209 |
208
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) = Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
| 210 |
197 209
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ≤ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
| 211 |
210
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ≤ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
| 212 |
170 172 174 175 211
|
ltletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → 𝑦 < Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
| 213 |
170 174
|
ltnled |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑦 < Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ↔ ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) |
| 214 |
212 213
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) |
| 215 |
169 214
|
pm2.21dd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) → ¬ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) |
| 216 |
215
|
pm2.01da |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ¬ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) |
| 217 |
177 101
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ ℝ ) |
| 218 |
171 217
|
lenltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝑓 ‘ 𝑠 ) ≤ 𝑦 ↔ ¬ 𝑦 < ( 𝑓 ‘ 𝑠 ) ) ) |
| 219 |
216 218
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ≤ 𝑦 ) |
| 220 |
163 165 167 168 219
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... 𝑦 ) ) |
| 221 |
220
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... 𝑦 ) ) |
| 222 |
162 221
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... 𝑦 ) ) ) |
| 223 |
|
ffnfv |
⊢ ( 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) ↔ ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... 𝑦 ) ) ) |
| 224 |
222 223
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) ) |
| 225 |
224
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) → 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) ) ) |
| 226 |
225
|
ss2abdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ⊆ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... 𝑦 ) } ) |
| 227 |
160 226
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∈ Fin ) |
| 228 |
227
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∈ Fin ) |
| 229 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 0 ... ( 𝑦 + 1 ) ) ∈ Fin ) |
| 230 |
151 229
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑆 ∈ Fin ∧ ( 0 ... ( 𝑦 + 1 ) ) ∈ Fin ) ) |
| 231 |
|
xpfi |
⊢ ( ( 𝑆 ∈ Fin ∧ ( 0 ... ( 𝑦 + 1 ) ) ∈ Fin ) → ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin ) |
| 232 |
230 231
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin ) |
| 233 |
|
pwfi |
⊢ ( ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin ↔ 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin ) |
| 234 |
232 233
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ∈ Fin ) |
| 235 |
|
fsetsspwxp |
⊢ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) |
| 236 |
235
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } ⊆ 𝒫 ( 𝑆 × ( 0 ... ( 𝑦 + 1 ) ) ) ) |
| 237 |
234 236
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } ∈ Fin ) |
| 238 |
161
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑓 Fn 𝑆 ) |
| 239 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → 0 ∈ ℤ ) |
| 240 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ ℕ0 ) |
| 241 |
240
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → 𝑦 ∈ ℤ ) |
| 242 |
241
|
peano2zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑦 + 1 ) ∈ ℤ ) |
| 243 |
133
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℕ0 ) |
| 244 |
243
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℤ ) |
| 245 |
243
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → 0 ≤ ( 𝑓 ‘ 𝑠 ) ) |
| 246 |
134
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) |
| 247 |
137
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 248 |
133
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → 𝑓 : 𝑆 ⟶ ℕ0 ) |
| 249 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → 𝑠 ∈ 𝑆 ) |
| 250 |
248 249
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ∈ ℕ0 ) |
| 251 |
250
|
nn0red |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ∈ ℝ ) |
| 252 |
246 247
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
| 253 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) |
| 254 |
133 188
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 255 |
254
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 256 |
255
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 257 |
256
|
nn0ge0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) |
| 258 |
256
|
nn0red |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
| 259 |
251 258
|
addge01d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 0 ≤ Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ↔ ( 𝑓 ‘ 𝑠 ) ≤ ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) ) |
| 260 |
257 259
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ≤ ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
| 261 |
133 207
|
syldanl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
| 262 |
261
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) ) |
| 263 |
262
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( ( 𝑓 ‘ 𝑠 ) + Σ 𝑖 ∈ ( 𝑆 ∖ { 𝑠 } ) ( 𝑓 ‘ 𝑖 ) ) = Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
| 264 |
260 263
|
breqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑓 ‘ 𝑠 ) ≤ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
| 265 |
247 251 252 253 264
|
ltletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑦 + 1 ) < Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
| 266 |
247 265
|
ltned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ( 𝑦 + 1 ) ≠ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ) |
| 267 |
266
|
necomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≠ ( 𝑦 + 1 ) ) |
| 268 |
246 267
|
pm2.21ddne |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) → ¬ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) |
| 269 |
268
|
pm2.01da |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ¬ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) |
| 270 |
243
|
nn0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ℝ ) |
| 271 |
137
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 272 |
270 271
|
lenltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝑓 ‘ 𝑠 ) ≤ ( 𝑦 + 1 ) ↔ ¬ ( 𝑦 + 1 ) < ( 𝑓 ‘ 𝑠 ) ) ) |
| 273 |
269 272
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ≤ ( 𝑦 + 1 ) ) |
| 274 |
239 242 244 245 273
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 275 |
274
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 276 |
238 275
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) ) |
| 277 |
|
ffnfv |
⊢ ( 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) ↔ ( 𝑓 Fn 𝑆 ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ‘ 𝑠 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) ) |
| 278 |
276 277
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) → 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 279 |
278
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) → 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) ) ) |
| 280 |
279
|
ss2abdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ⊆ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ ( 0 ... ( 𝑦 + 1 ) ) } ) |
| 281 |
237 280
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ∈ Fin ) |
| 282 |
281
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ∈ Fin ) |
| 283 |
|
inab |
⊢ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } |
| 284 |
283
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } ) |
| 285 |
98
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℕ0 ) |
| 286 |
285
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℤ ) |
| 287 |
286
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
| 288 |
125
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → 𝑦 < ( 𝑦 + 1 ) ) |
| 289 |
287 125 127 128 288
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) < ( 𝑦 + 1 ) ) |
| 290 |
287 289
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≠ ( 𝑦 + 1 ) ) |
| 291 |
290
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ¬ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) |
| 292 |
291
|
intnand |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ¬ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) |
| 293 |
|
nan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ) → ¬ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
| 294 |
292 293
|
mpbir |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
| 295 |
294
|
alrimiv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ∀ 𝑓 ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
| 296 |
|
ab0 |
⊢ ( { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } = ∅ ↔ ∀ 𝑓 ¬ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) ) |
| 297 |
295 296
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → { 𝑓 ∣ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) ∧ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) ) } = ∅ ) |
| 298 |
284 297
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = ∅ ) |
| 299 |
298
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = ∅ ) |
| 300 |
|
hashun |
⊢ ( ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∈ Fin ∧ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ∈ Fin ∧ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∩ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) ) |
| 301 |
228 282 299 300
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) ) |
| 302 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 303 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑦 ∈ ℕ0 ) |
| 304 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 305 |
304
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 1 ∈ ℕ0 ) |
| 306 |
303 305
|
nn0addcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 307 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑆 ∈ Fin ) |
| 308 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑆 ≠ ∅ ) |
| 309 |
|
eqid |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } |
| 310 |
306 307 308 309
|
sticksstones21 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) = ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) |
| 311 |
302 310
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) ) |
| 312 |
303
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 𝑦 ∈ ℂ ) |
| 313 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → 1 ∈ ℂ ) |
| 314 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 315 |
312 313 314
|
ppncand |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( 𝑦 + ( ♯ ‘ 𝑆 ) ) ) |
| 316 |
315
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) |
| 317 |
316
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) ) |
| 318 |
82
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 319 |
303 318
|
nn0addcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( 𝑦 + ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 ) |
| 320 |
318
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
| 321 |
|
bcpasc |
⊢ ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) ) |
| 322 |
319 320 321
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) ) |
| 323 |
317 322
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) ) |
| 324 |
312 314 313
|
add32d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) = ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) ) |
| 325 |
324
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) + 1 ) C ( ♯ ‘ 𝑆 ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 326 |
323 325
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) + ( ( ( 𝑦 + 1 ) + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 327 |
311 326
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 328 |
301 327
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ∪ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = ( 𝑦 + 1 ) ) } ) ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 329 |
150 328
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑦 ) } ) = ( ( 𝑦 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ ( 𝑦 + 1 ) ) } ) = ( ( ( 𝑦 + 1 ) + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 330 |
13 20 27 34 92 329
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 331 |
1 330
|
mpdan |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) ≤ 𝑁 ) } ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |
| 332 |
6 331
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ( 𝑁 + ( ♯ ‘ 𝑆 ) ) C ( ♯ ‘ 𝑆 ) ) ) |