Step |
Hyp |
Ref |
Expression |
1 |
|
sticksstones21.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
sticksstones21.2 |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
3 |
|
sticksstones21.3 |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
4 |
|
sticksstones21.4 |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 𝑁 ) } |
5 |
|
hashnncl |
⊢ ( 𝑆 ∈ Fin → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ↔ 𝑆 ≠ ∅ ) ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ↔ 𝑆 ≠ ∅ ) ) |
7 |
3 6
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℕ ) |
8 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑔 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑘 ) ) |
9 |
8
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( 1 ... ( ♯ ‘ 𝑆 ) ) ( 𝑔 ‘ 𝑗 ) = Σ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑆 ) ) ( 𝑔 ‘ 𝑘 ) |
10 |
9
|
eqeq1i |
⊢ ( Σ 𝑗 ∈ ( 1 ... ( ♯ ‘ 𝑆 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ↔ Σ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑆 ) ) ( 𝑔 ‘ 𝑘 ) = 𝑁 ) |
11 |
10
|
anbi2i |
⊢ ( ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑆 ) ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... ( ♯ ‘ 𝑆 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) ↔ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑆 ) ) ⟶ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑆 ) ) ( 𝑔 ‘ 𝑘 ) = 𝑁 ) ) |
12 |
11
|
abbii |
⊢ { 𝑔 ∣ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑆 ) ) ⟶ ℕ0 ∧ Σ 𝑗 ∈ ( 1 ... ( ♯ ‘ 𝑆 ) ) ( 𝑔 ‘ 𝑗 ) = 𝑁 ) } = { 𝑔 ∣ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑆 ) ) ⟶ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑆 ) ) ( 𝑔 ‘ 𝑘 ) = 𝑁 ) } |
13 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑘 ) ) |
14 |
13
|
cbvsumv |
⊢ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = Σ 𝑘 ∈ 𝑆 ( 𝑓 ‘ 𝑘 ) |
15 |
14
|
eqeq1i |
⊢ ( Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 𝑁 ↔ Σ 𝑘 ∈ 𝑆 ( 𝑓 ‘ 𝑘 ) = 𝑁 ) |
16 |
15
|
anbi2i |
⊢ ( ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 𝑁 ) ↔ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑆 ( 𝑓 ‘ 𝑘 ) = 𝑁 ) ) |
17 |
16
|
abbii |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑖 ∈ 𝑆 ( 𝑓 ‘ 𝑖 ) = 𝑁 ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑆 ( 𝑓 ‘ 𝑘 ) = 𝑁 ) } |
18 |
4 17
|
eqtri |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : 𝑆 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑆 ( 𝑓 ‘ 𝑘 ) = 𝑁 ) } |
19 |
|
eqidd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( ♯ ‘ 𝑆 ) ) |
20 |
1 2 7 12 18 19
|
sticksstones20 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ( 𝑁 + ( ( ♯ ‘ 𝑆 ) − 1 ) ) C ( ( ♯ ‘ 𝑆 ) − 1 ) ) ) |