Metamath Proof Explorer


Theorem bccmpl

Description: "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005) (Revised by Mario Carneiro, 5-Mar-2014)

Ref Expression
Assertion bccmpl N0K(NK)=(NNK)

Proof

Step Hyp Ref Expression
1 bcval2 K0N(NK)=N!NK!K!
2 fznn0sub2 K0NNK0N
3 bcval2 NK0N(NNK)=N!NNK!NK!
4 2 3 syl K0N(NNK)=N!NNK!NK!
5 elfznn0 NK0NNK0
6 5 faccld NK0NNK!
7 6 nncnd NK0NNK!
8 2 7 syl K0NNK!
9 elfznn0 K0NK0
10 9 faccld K0NK!
11 10 nncnd K0NK!
12 8 11 mulcomd K0NNK!K!=K!NK!
13 elfz3nn0 K0NN0
14 elfzelz K0NK
15 nn0cn N0N
16 zcn KK
17 nncan NKNNK=K
18 15 16 17 syl2an N0KNNK=K
19 13 14 18 syl2anc K0NNNK=K
20 19 fveq2d K0NNNK!=K!
21 20 oveq1d K0NNNK!NK!=K!NK!
22 12 21 eqtr4d K0NNK!K!=NNK!NK!
23 22 oveq2d K0NN!NK!K!=N!NNK!NK!
24 4 23 eqtr4d K0N(NNK)=N!NK!K!
25 1 24 eqtr4d K0N(NK)=(NNK)
26 25 adantl N0KK0N(NK)=(NNK)
27 bcval3 N0K¬K0N(NK)=0
28 simp1 N0K¬K0NN0
29 nn0z N0N
30 zsubcl NKNK
31 29 30 sylan N0KNK
32 31 3adant3 N0K¬K0NNK
33 fznn0sub2 NK0NNNK0N
34 18 eleq1d N0KNNK0NK0N
35 33 34 imbitrid N0KNK0NK0N
36 35 con3d N0K¬K0N¬NK0N
37 36 3impia N0K¬K0N¬NK0N
38 bcval3 N0NK¬NK0N(NNK)=0
39 28 32 37 38 syl3anc N0K¬K0N(NNK)=0
40 27 39 eqtr4d N0K¬K0N(NK)=(NNK)
41 40 3expa N0K¬K0N(NK)=(NNK)
42 26 41 pm2.61dan N0K(NK)=(NNK)