Metamath Proof Explorer


Theorem fnimaeq0

Description: Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 . (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Assertion fnimaeq0 FFnABAFB=B=

Proof

Step Hyp Ref Expression
1 imadisj FB=domFB=
2 incom domFB=BdomF
3 fndm FFnAdomF=A
4 3 sseq2d FFnABdomFBA
5 4 biimpar FFnABABdomF
6 df-ss BdomFBdomF=B
7 5 6 sylib FFnABABdomF=B
8 2 7 eqtrid FFnABAdomFB=B
9 8 eqeq1d FFnABAdomFB=B=
10 1 9 bitrid FFnABAFB=B=