| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fta1g.p |
|
| 2 |
|
fta1g.b |
|
| 3 |
|
fta1g.d |
|
| 4 |
|
fta1g.o |
|
| 5 |
|
fta1g.w |
|
| 6 |
|
fta1g.z |
|
| 7 |
|
fta1g.1 |
|
| 8 |
|
fta1g.2 |
|
| 9 |
|
fta1g.3 |
|
| 10 |
|
eqid |
|
| 11 |
|
fveqeq2 |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
cnveqd |
|
| 14 |
13
|
imaeq1d |
|
| 15 |
14
|
fveq2d |
|
| 16 |
|
fveq2 |
|
| 17 |
15 16
|
breq12d |
|
| 18 |
11 17
|
imbi12d |
|
| 19 |
|
isidom |
|
| 20 |
19
|
simplbi |
|
| 21 |
|
crngring |
|
| 22 |
7 20 21
|
3syl |
|
| 23 |
3 1 6 2
|
deg1nn0cl |
|
| 24 |
22 8 9 23
|
syl3anc |
|
| 25 |
|
eqeq2 |
|
| 26 |
25
|
imbi1d |
|
| 27 |
26
|
ralbidv |
|
| 28 |
27
|
imbi2d |
|
| 29 |
|
eqeq2 |
|
| 30 |
29
|
imbi1d |
|
| 31 |
30
|
ralbidv |
|
| 32 |
31
|
imbi2d |
|
| 33 |
|
eqeq2 |
|
| 34 |
33
|
imbi1d |
|
| 35 |
34
|
ralbidv |
|
| 36 |
35
|
imbi2d |
|
| 37 |
|
eqeq2 |
|
| 38 |
37
|
imbi1d |
|
| 39 |
38
|
ralbidv |
|
| 40 |
39
|
imbi2d |
|
| 41 |
|
simprr |
|
| 42 |
|
0nn0 |
|
| 43 |
41 42
|
eqeltrdi |
|
| 44 |
20 21
|
syl |
|
| 45 |
|
simpl |
|
| 46 |
3 1 6 2
|
deg1nn0clb |
|
| 47 |
44 45 46
|
syl2an |
|
| 48 |
43 47
|
mpbird |
|
| 49 |
|
simplrr |
|
| 50 |
|
0le0 |
|
| 51 |
49 50
|
eqbrtrdi |
|
| 52 |
44
|
ad2antrr |
|
| 53 |
|
simplrl |
|
| 54 |
|
eqid |
|
| 55 |
3 1 2 54
|
deg1le0 |
|
| 56 |
52 53 55
|
syl2anc |
|
| 57 |
51 56
|
mpbid |
|
| 58 |
57
|
fveq2d |
|
| 59 |
20
|
adantr |
|
| 60 |
59
|
adantr |
|
| 61 |
|
eqid |
|
| 62 |
|
eqid |
|
| 63 |
61 2 1 62
|
coe1f |
|
| 64 |
53 63
|
syl |
|
| 65 |
|
ffvelcdm |
|
| 66 |
64 42 65
|
sylancl |
|
| 67 |
4 1 62 54
|
evl1sca |
|
| 68 |
60 66 67
|
syl2anc |
|
| 69 |
58 68
|
eqtrd |
|
| 70 |
69
|
fveq1d |
|
| 71 |
|
eqid |
|
| 72 |
|
eqid |
|
| 73 |
|
simpl |
|
| 74 |
|
fvexd |
|
| 75 |
4 1 71 62
|
evl1rhm |
|
| 76 |
2 72
|
rhmf |
|
| 77 |
59 75 76
|
3syl |
|
| 78 |
|
simprl |
|
| 79 |
77 78
|
ffvelcdmd |
|
| 80 |
71 62 72 73 74 79
|
pwselbas |
|
| 81 |
|
ffn |
|
| 82 |
|
fniniseg |
|
| 83 |
80 81 82
|
3syl |
|
| 84 |
83
|
simplbda |
|
| 85 |
83
|
simprbda |
|
| 86 |
|
fvex |
|
| 87 |
86
|
fvconst2 |
|
| 88 |
85 87
|
syl |
|
| 89 |
70 84 88
|
3eqtr3rd |
|
| 90 |
89
|
fveq2d |
|
| 91 |
1 54 5 6
|
ply1scl0 |
|
| 92 |
52 91
|
syl |
|
| 93 |
57 90 92
|
3eqtrd |
|
| 94 |
93
|
ex |
|
| 95 |
94
|
necon3ad |
|
| 96 |
48 95
|
mpd |
|
| 97 |
96
|
eq0rdv |
|
| 98 |
97
|
fveq2d |
|
| 99 |
|
hash0 |
|
| 100 |
98 99
|
eqtrdi |
|
| 101 |
50 41
|
breqtrrid |
|
| 102 |
100 101
|
eqbrtrd |
|
| 103 |
102
|
expr |
|
| 104 |
103
|
ralrimiva |
|
| 105 |
|
fveqeq2 |
|
| 106 |
|
fveq2 |
|
| 107 |
106
|
cnveqd |
|
| 108 |
107
|
imaeq1d |
|
| 109 |
108
|
fveq2d |
|
| 110 |
|
fveq2 |
|
| 111 |
109 110
|
breq12d |
|
| 112 |
105 111
|
imbi12d |
|
| 113 |
112
|
cbvralvw |
|
| 114 |
|
simprr |
|
| 115 |
|
peano2nn0 |
|
| 116 |
115
|
ad2antlr |
|
| 117 |
114 116
|
eqeltrd |
|
| 118 |
117
|
nn0ge0d |
|
| 119 |
|
fveq2 |
|
| 120 |
119 99
|
eqtrdi |
|
| 121 |
120
|
breq1d |
|
| 122 |
118 121
|
syl5ibrcom |
|
| 123 |
122
|
a1dd |
|
| 124 |
|
n0 |
|
| 125 |
|
simplll |
|
| 126 |
|
simplrl |
|
| 127 |
|
eqid |
|
| 128 |
|
eqid |
|
| 129 |
|
eqid |
|
| 130 |
|
simpllr |
|
| 131 |
|
simplrr |
|
| 132 |
|
simprl |
|
| 133 |
|
simprr |
|
| 134 |
1 2 3 4 5 6 125 126 62 127 128 54 129 130 131 132 133
|
fta1glem2 |
|
| 135 |
134
|
exp32 |
|
| 136 |
135
|
exlimdv |
|
| 137 |
124 136
|
biimtrid |
|
| 138 |
123 137
|
pm2.61dne |
|
| 139 |
138
|
expr |
|
| 140 |
139
|
com23 |
|
| 141 |
140
|
ralrimdva |
|
| 142 |
113 141
|
biimtrid |
|
| 143 |
142
|
expcom |
|
| 144 |
143
|
a2d |
|
| 145 |
28 32 36 40 104 144
|
nn0ind |
|
| 146 |
24 7 145
|
sylc |
|
| 147 |
18 146 8
|
rspcdva |
|
| 148 |
10 147
|
mpi |
|