Metamath Proof Explorer


Theorem fta1glem2

Description: Lemma for fta1g . (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses fta1g.p P = Poly 1 R
fta1g.b B = Base P
fta1g.d D = deg 1 R
fta1g.o O = eval 1 R
fta1g.w W = 0 R
fta1g.z 0 ˙ = 0 P
fta1g.1 φ R IDomn
fta1g.2 φ F B
fta1glem.k K = Base R
fta1glem.x X = var 1 R
fta1glem.m - ˙ = - P
fta1glem.a A = algSc P
fta1glem.g G = X - ˙ A T
fta1glem.3 φ N 0
fta1glem.4 φ D F = N + 1
fta1glem.5 φ T O F -1 W
fta1glem.6 φ g B D g = N O g -1 W D g
Assertion fta1glem2 φ O F -1 W D F

Proof

Step Hyp Ref Expression
1 fta1g.p P = Poly 1 R
2 fta1g.b B = Base P
3 fta1g.d D = deg 1 R
4 fta1g.o O = eval 1 R
5 fta1g.w W = 0 R
6 fta1g.z 0 ˙ = 0 P
7 fta1g.1 φ R IDomn
8 fta1g.2 φ F B
9 fta1glem.k K = Base R
10 fta1glem.x X = var 1 R
11 fta1glem.m - ˙ = - P
12 fta1glem.a A = algSc P
13 fta1glem.g G = X - ˙ A T
14 fta1glem.3 φ N 0
15 fta1glem.4 φ D F = N + 1
16 fta1glem.5 φ T O F -1 W
17 fta1glem.6 φ g B D g = N O g -1 W D g
18 eqid R 𝑠 K = R 𝑠 K
19 eqid Base R 𝑠 K = Base R 𝑠 K
20 9 fvexi K V
21 20 a1i φ K V
22 isidom R IDomn R CRing R Domn
23 22 simplbi R IDomn R CRing
24 7 23 syl φ R CRing
25 4 1 18 9 evl1rhm R CRing O P RingHom R 𝑠 K
26 24 25 syl φ O P RingHom R 𝑠 K
27 2 19 rhmf O P RingHom R 𝑠 K O : B Base R 𝑠 K
28 26 27 syl φ O : B Base R 𝑠 K
29 28 8 ffvelrnd φ O F Base R 𝑠 K
30 18 9 19 7 21 29 pwselbas φ O F : K K
31 30 ffnd φ O F Fn K
32 fniniseg O F Fn K T O F -1 W T K O F T = W
33 31 32 syl φ T O F -1 W T K O F T = W
34 16 33 mpbid φ T K O F T = W
35 34 simprd φ O F T = W
36 22 simprbi R IDomn R Domn
37 domnnzr R Domn R NzRing
38 36 37 syl R IDomn R NzRing
39 7 38 syl φ R NzRing
40 34 simpld φ T K
41 eqid r P = r P
42 1 2 9 10 11 12 13 4 39 24 40 8 5 41 facth1 φ G r P F O F T = W
43 35 42 mpbird φ G r P F
44 nzrring R NzRing R Ring
45 39 44 syl φ R Ring
46 eqid Monic 1p R = Monic 1p R
47 1 2 9 10 11 12 13 4 39 24 40 46 3 5 ply1remlem φ G Monic 1p R D G = 1 O G -1 W = T
48 47 simp1d φ G Monic 1p R
49 eqid Unic 1p R = Unic 1p R
50 49 46 mon1puc1p R Ring G Monic 1p R G Unic 1p R
51 45 48 50 syl2anc φ G Unic 1p R
52 eqid P = P
53 eqid quot 1p R = quot 1p R
54 1 41 2 49 52 53 dvdsq1p R Ring F B G Unic 1p R G r P F F = F quot 1p R G P G
55 45 8 51 54 syl3anc φ G r P F F = F quot 1p R G P G
56 43 55 mpbid φ F = F quot 1p R G P G
57 56 fveq2d φ O F = O F quot 1p R G P G
58 53 1 2 49 q1pcl R Ring F B G Unic 1p R F quot 1p R G B
59 45 8 51 58 syl3anc φ F quot 1p R G B
60 1 2 46 mon1pcl G Monic 1p R G B
61 48 60 syl φ G B
62 eqid R 𝑠 K = R 𝑠 K
63 2 52 62 rhmmul O P RingHom R 𝑠 K F quot 1p R G B G B O F quot 1p R G P G = O F quot 1p R G R 𝑠 K O G
64 26 59 61 63 syl3anc φ O F quot 1p R G P G = O F quot 1p R G R 𝑠 K O G
65 28 59 ffvelrnd φ O F quot 1p R G Base R 𝑠 K
66 28 61 ffvelrnd φ O G Base R 𝑠 K
67 eqid R = R
68 18 19 7 21 65 66 67 62 pwsmulrval φ O F quot 1p R G R 𝑠 K O G = O F quot 1p R G R f O G
69 57 64 68 3eqtrd φ O F = O F quot 1p R G R f O G
70 69 fveq1d φ O F x = O F quot 1p R G R f O G x
71 70 adantr φ x K O F x = O F quot 1p R G R f O G x
72 18 9 19 7 21 65 pwselbas φ O F quot 1p R G : K K
73 72 ffnd φ O F quot 1p R G Fn K
74 73 adantr φ x K O F quot 1p R G Fn K
75 18 9 19 7 21 66 pwselbas φ O G : K K
76 75 ffnd φ O G Fn K
77 76 adantr φ x K O G Fn K
78 20 a1i φ x K K V
79 simpr φ x K x K
80 fnfvof O F quot 1p R G Fn K O G Fn K K V x K O F quot 1p R G R f O G x = O F quot 1p R G x R O G x
81 74 77 78 79 80 syl22anc φ x K O F quot 1p R G R f O G x = O F quot 1p R G x R O G x
82 71 81 eqtrd φ x K O F x = O F quot 1p R G x R O G x
83 82 eqeq1d φ x K O F x = W O F quot 1p R G x R O G x = W
84 7 36 syl φ R Domn
85 84 adantr φ x K R Domn
86 72 ffvelrnda φ x K O F quot 1p R G x K
87 75 ffvelrnda φ x K O G x K
88 9 67 5 domneq0 R Domn O F quot 1p R G x K O G x K O F quot 1p R G x R O G x = W O F quot 1p R G x = W O G x = W
89 85 86 87 88 syl3anc φ x K O F quot 1p R G x R O G x = W O F quot 1p R G x = W O G x = W
90 83 89 bitrd φ x K O F x = W O F quot 1p R G x = W O G x = W
91 90 pm5.32da φ x K O F x = W x K O F quot 1p R G x = W O G x = W
92 andi x K O F quot 1p R G x = W O G x = W x K O F quot 1p R G x = W x K O G x = W
93 91 92 bitrdi φ x K O F x = W x K O F quot 1p R G x = W x K O G x = W
94 fniniseg O F Fn K x O F -1 W x K O F x = W
95 31 94 syl φ x O F -1 W x K O F x = W
96 elun x O F quot 1p R G -1 W T x O F quot 1p R G -1 W x T
97 fniniseg O F quot 1p R G Fn K x O F quot 1p R G -1 W x K O F quot 1p R G x = W
98 73 97 syl φ x O F quot 1p R G -1 W x K O F quot 1p R G x = W
99 47 simp3d φ O G -1 W = T
100 99 eleq2d φ x O G -1 W x T
101 fniniseg O G Fn K x O G -1 W x K O G x = W
102 76 101 syl φ x O G -1 W x K O G x = W
103 100 102 bitr3d φ x T x K O G x = W
104 98 103 orbi12d φ x O F quot 1p R G -1 W x T x K O F quot 1p R G x = W x K O G x = W
105 96 104 syl5bb φ x O F quot 1p R G -1 W T x K O F quot 1p R G x = W x K O G x = W
106 93 95 105 3bitr4d φ x O F -1 W x O F quot 1p R G -1 W T
107 106 eqrdv φ O F -1 W = O F quot 1p R G -1 W T
108 107 fveq2d φ O F -1 W = O F quot 1p R G -1 W T
109 fvex O F quot 1p R G V
110 109 cnvex O F quot 1p R G -1 V
111 110 imaex O F quot 1p R G -1 W V
112 111 a1i φ O F quot 1p R G -1 W V
113 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 fta1glem1 φ D F quot 1p R G = N
114 fveq2 g = F quot 1p R G D g = D F quot 1p R G
115 114 eqeq1d g = F quot 1p R G D g = N D F quot 1p R G = N
116 fveq2 g = F quot 1p R G O g = O F quot 1p R G
117 116 cnveqd g = F quot 1p R G O g -1 = O F quot 1p R G -1
118 117 imaeq1d g = F quot 1p R G O g -1 W = O F quot 1p R G -1 W
119 118 fveq2d g = F quot 1p R G O g -1 W = O F quot 1p R G -1 W
120 119 114 breq12d g = F quot 1p R G O g -1 W D g O F quot 1p R G -1 W D F quot 1p R G
121 115 120 imbi12d g = F quot 1p R G D g = N O g -1 W D g D F quot 1p R G = N O F quot 1p R G -1 W D F quot 1p R G
122 121 17 59 rspcdva φ D F quot 1p R G = N O F quot 1p R G -1 W D F quot 1p R G
123 113 122 mpd φ O F quot 1p R G -1 W D F quot 1p R G
124 123 113 breqtrd φ O F quot 1p R G -1 W N
125 hashbnd O F quot 1p R G -1 W V N 0 O F quot 1p R G -1 W N O F quot 1p R G -1 W Fin
126 112 14 124 125 syl3anc φ O F quot 1p R G -1 W Fin
127 snfi T Fin
128 unfi O F quot 1p R G -1 W Fin T Fin O F quot 1p R G -1 W T Fin
129 126 127 128 sylancl φ O F quot 1p R G -1 W T Fin
130 hashcl O F quot 1p R G -1 W T Fin O F quot 1p R G -1 W T 0
131 129 130 syl φ O F quot 1p R G -1 W T 0
132 131 nn0red φ O F quot 1p R G -1 W T
133 hashcl O F quot 1p R G -1 W Fin O F quot 1p R G -1 W 0
134 126 133 syl φ O F quot 1p R G -1 W 0
135 134 nn0red φ O F quot 1p R G -1 W
136 peano2re O F quot 1p R G -1 W O F quot 1p R G -1 W + 1
137 135 136 syl φ O F quot 1p R G -1 W + 1
138 peano2nn0 N 0 N + 1 0
139 14 138 syl φ N + 1 0
140 15 139 eqeltrd φ D F 0
141 140 nn0red φ D F
142 hashun2 O F quot 1p R G -1 W Fin T Fin O F quot 1p R G -1 W T O F quot 1p R G -1 W + T
143 126 127 142 sylancl φ O F quot 1p R G -1 W T O F quot 1p R G -1 W + T
144 hashsng T O F -1 W T = 1
145 16 144 syl φ T = 1
146 145 oveq2d φ O F quot 1p R G -1 W + T = O F quot 1p R G -1 W + 1
147 143 146 breqtrd φ O F quot 1p R G -1 W T O F quot 1p R G -1 W + 1
148 14 nn0red φ N
149 1red φ 1
150 135 148 149 124 leadd1dd φ O F quot 1p R G -1 W + 1 N + 1
151 150 15 breqtrrd φ O F quot 1p R G -1 W + 1 D F
152 132 137 141 147 151 letrd φ O F quot 1p R G -1 W T D F
153 108 152 eqbrtrd φ O F -1 W D F