| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fta1g.p |
|
| 2 |
|
fta1g.b |
|
| 3 |
|
fta1g.d |
|
| 4 |
|
fta1g.o |
|
| 5 |
|
fta1g.w |
|
| 6 |
|
fta1g.z |
|
| 7 |
|
fta1g.1 |
|
| 8 |
|
fta1g.2 |
|
| 9 |
|
fta1glem.k |
|
| 10 |
|
fta1glem.x |
|
| 11 |
|
fta1glem.m |
|
| 12 |
|
fta1glem.a |
|
| 13 |
|
fta1glem.g |
|
| 14 |
|
fta1glem.3 |
|
| 15 |
|
fta1glem.4 |
|
| 16 |
|
fta1glem.5 |
|
| 17 |
|
fta1glem.6 |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
9
|
fvexi |
|
| 21 |
20
|
a1i |
|
| 22 |
|
isidom |
|
| 23 |
22
|
simplbi |
|
| 24 |
7 23
|
syl |
|
| 25 |
4 1 18 9
|
evl1rhm |
|
| 26 |
24 25
|
syl |
|
| 27 |
2 19
|
rhmf |
|
| 28 |
26 27
|
syl |
|
| 29 |
28 8
|
ffvelcdmd |
|
| 30 |
18 9 19 7 21 29
|
pwselbas |
|
| 31 |
30
|
ffnd |
|
| 32 |
|
fniniseg |
|
| 33 |
31 32
|
syl |
|
| 34 |
16 33
|
mpbid |
|
| 35 |
34
|
simprd |
|
| 36 |
22
|
simprbi |
|
| 37 |
|
domnnzr |
|
| 38 |
36 37
|
syl |
|
| 39 |
7 38
|
syl |
|
| 40 |
34
|
simpld |
|
| 41 |
|
eqid |
|
| 42 |
1 2 9 10 11 12 13 4 39 24 40 8 5 41
|
facth1 |
|
| 43 |
35 42
|
mpbird |
|
| 44 |
|
nzrring |
|
| 45 |
39 44
|
syl |
|
| 46 |
|
eqid |
|
| 47 |
1 2 9 10 11 12 13 4 39 24 40 46 3 5
|
ply1remlem |
|
| 48 |
47
|
simp1d |
|
| 49 |
|
eqid |
|
| 50 |
49 46
|
mon1puc1p |
|
| 51 |
45 48 50
|
syl2anc |
|
| 52 |
|
eqid |
|
| 53 |
|
eqid |
|
| 54 |
1 41 2 49 52 53
|
dvdsq1p |
|
| 55 |
45 8 51 54
|
syl3anc |
|
| 56 |
43 55
|
mpbid |
|
| 57 |
56
|
fveq2d |
|
| 58 |
53 1 2 49
|
q1pcl |
|
| 59 |
45 8 51 58
|
syl3anc |
|
| 60 |
1 2 46
|
mon1pcl |
|
| 61 |
48 60
|
syl |
|
| 62 |
|
eqid |
|
| 63 |
2 52 62
|
rhmmul |
|
| 64 |
26 59 61 63
|
syl3anc |
|
| 65 |
28 59
|
ffvelcdmd |
|
| 66 |
28 61
|
ffvelcdmd |
|
| 67 |
|
eqid |
|
| 68 |
18 19 7 21 65 66 67 62
|
pwsmulrval |
|
| 69 |
57 64 68
|
3eqtrd |
|
| 70 |
69
|
fveq1d |
|
| 71 |
70
|
adantr |
|
| 72 |
18 9 19 7 21 65
|
pwselbas |
|
| 73 |
72
|
ffnd |
|
| 74 |
73
|
adantr |
|
| 75 |
18 9 19 7 21 66
|
pwselbas |
|
| 76 |
75
|
ffnd |
|
| 77 |
76
|
adantr |
|
| 78 |
20
|
a1i |
|
| 79 |
|
simpr |
|
| 80 |
|
fnfvof |
|
| 81 |
74 77 78 79 80
|
syl22anc |
|
| 82 |
71 81
|
eqtrd |
|
| 83 |
82
|
eqeq1d |
|
| 84 |
7 36
|
syl |
|
| 85 |
84
|
adantr |
|
| 86 |
72
|
ffvelcdmda |
|
| 87 |
75
|
ffvelcdmda |
|
| 88 |
9 67 5
|
domneq0 |
|
| 89 |
85 86 87 88
|
syl3anc |
|
| 90 |
83 89
|
bitrd |
|
| 91 |
90
|
pm5.32da |
|
| 92 |
|
andi |
|
| 93 |
91 92
|
bitrdi |
|
| 94 |
|
fniniseg |
|
| 95 |
31 94
|
syl |
|
| 96 |
|
elun |
|
| 97 |
|
fniniseg |
|
| 98 |
73 97
|
syl |
|
| 99 |
47
|
simp3d |
|
| 100 |
99
|
eleq2d |
|
| 101 |
|
fniniseg |
|
| 102 |
76 101
|
syl |
|
| 103 |
100 102
|
bitr3d |
|
| 104 |
98 103
|
orbi12d |
|
| 105 |
96 104
|
bitrid |
|
| 106 |
93 95 105
|
3bitr4d |
|
| 107 |
106
|
eqrdv |
|
| 108 |
107
|
fveq2d |
|
| 109 |
|
fvex |
|
| 110 |
109
|
cnvex |
|
| 111 |
110
|
imaex |
|
| 112 |
111
|
a1i |
|
| 113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
fta1glem1 |
|
| 114 |
|
fveq2 |
|
| 115 |
114
|
eqeq1d |
|
| 116 |
|
fveq2 |
|
| 117 |
116
|
cnveqd |
|
| 118 |
117
|
imaeq1d |
|
| 119 |
118
|
fveq2d |
|
| 120 |
119 114
|
breq12d |
|
| 121 |
115 120
|
imbi12d |
|
| 122 |
121 17 59
|
rspcdva |
|
| 123 |
113 122
|
mpd |
|
| 124 |
123 113
|
breqtrd |
|
| 125 |
|
hashbnd |
|
| 126 |
112 14 124 125
|
syl3anc |
|
| 127 |
|
snfi |
|
| 128 |
|
unfi |
|
| 129 |
126 127 128
|
sylancl |
|
| 130 |
|
hashcl |
|
| 131 |
129 130
|
syl |
|
| 132 |
131
|
nn0red |
|
| 133 |
|
hashcl |
|
| 134 |
126 133
|
syl |
|
| 135 |
134
|
nn0red |
|
| 136 |
|
peano2re |
|
| 137 |
135 136
|
syl |
|
| 138 |
|
peano2nn0 |
|
| 139 |
14 138
|
syl |
|
| 140 |
15 139
|
eqeltrd |
|
| 141 |
140
|
nn0red |
|
| 142 |
|
hashun2 |
|
| 143 |
126 127 142
|
sylancl |
|
| 144 |
|
hashsng |
|
| 145 |
16 144
|
syl |
|
| 146 |
145
|
oveq2d |
|
| 147 |
143 146
|
breqtrd |
|
| 148 |
14
|
nn0red |
|
| 149 |
|
1red |
|
| 150 |
135 148 149 124
|
leadd1dd |
|
| 151 |
150 15
|
breqtrrd |
|
| 152 |
132 137 141 147 151
|
letrd |
|
| 153 |
108 152
|
eqbrtrd |
|