| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fta1g.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
fta1g.b |
|- B = ( Base ` P ) |
| 3 |
|
fta1g.d |
|- D = ( deg1 ` R ) |
| 4 |
|
fta1g.o |
|- O = ( eval1 ` R ) |
| 5 |
|
fta1g.w |
|- W = ( 0g ` R ) |
| 6 |
|
fta1g.z |
|- .0. = ( 0g ` P ) |
| 7 |
|
fta1g.1 |
|- ( ph -> R e. IDomn ) |
| 8 |
|
fta1g.2 |
|- ( ph -> F e. B ) |
| 9 |
|
fta1glem.k |
|- K = ( Base ` R ) |
| 10 |
|
fta1glem.x |
|- X = ( var1 ` R ) |
| 11 |
|
fta1glem.m |
|- .- = ( -g ` P ) |
| 12 |
|
fta1glem.a |
|- A = ( algSc ` P ) |
| 13 |
|
fta1glem.g |
|- G = ( X .- ( A ` T ) ) |
| 14 |
|
fta1glem.3 |
|- ( ph -> N e. NN0 ) |
| 15 |
|
fta1glem.4 |
|- ( ph -> ( D ` F ) = ( N + 1 ) ) |
| 16 |
|
fta1glem.5 |
|- ( ph -> T e. ( `' ( O ` F ) " { W } ) ) |
| 17 |
|
fta1glem.6 |
|- ( ph -> A. g e. B ( ( D ` g ) = N -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) ) |
| 18 |
|
eqid |
|- ( R ^s K ) = ( R ^s K ) |
| 19 |
|
eqid |
|- ( Base ` ( R ^s K ) ) = ( Base ` ( R ^s K ) ) |
| 20 |
9
|
fvexi |
|- K e. _V |
| 21 |
20
|
a1i |
|- ( ph -> K e. _V ) |
| 22 |
|
isidom |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
| 23 |
22
|
simplbi |
|- ( R e. IDomn -> R e. CRing ) |
| 24 |
7 23
|
syl |
|- ( ph -> R e. CRing ) |
| 25 |
4 1 18 9
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s K ) ) ) |
| 26 |
24 25
|
syl |
|- ( ph -> O e. ( P RingHom ( R ^s K ) ) ) |
| 27 |
2 19
|
rhmf |
|- ( O e. ( P RingHom ( R ^s K ) ) -> O : B --> ( Base ` ( R ^s K ) ) ) |
| 28 |
26 27
|
syl |
|- ( ph -> O : B --> ( Base ` ( R ^s K ) ) ) |
| 29 |
28 8
|
ffvelcdmd |
|- ( ph -> ( O ` F ) e. ( Base ` ( R ^s K ) ) ) |
| 30 |
18 9 19 7 21 29
|
pwselbas |
|- ( ph -> ( O ` F ) : K --> K ) |
| 31 |
30
|
ffnd |
|- ( ph -> ( O ` F ) Fn K ) |
| 32 |
|
fniniseg |
|- ( ( O ` F ) Fn K -> ( T e. ( `' ( O ` F ) " { W } ) <-> ( T e. K /\ ( ( O ` F ) ` T ) = W ) ) ) |
| 33 |
31 32
|
syl |
|- ( ph -> ( T e. ( `' ( O ` F ) " { W } ) <-> ( T e. K /\ ( ( O ` F ) ` T ) = W ) ) ) |
| 34 |
16 33
|
mpbid |
|- ( ph -> ( T e. K /\ ( ( O ` F ) ` T ) = W ) ) |
| 35 |
34
|
simprd |
|- ( ph -> ( ( O ` F ) ` T ) = W ) |
| 36 |
22
|
simprbi |
|- ( R e. IDomn -> R e. Domn ) |
| 37 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
| 38 |
36 37
|
syl |
|- ( R e. IDomn -> R e. NzRing ) |
| 39 |
7 38
|
syl |
|- ( ph -> R e. NzRing ) |
| 40 |
34
|
simpld |
|- ( ph -> T e. K ) |
| 41 |
|
eqid |
|- ( ||r ` P ) = ( ||r ` P ) |
| 42 |
1 2 9 10 11 12 13 4 39 24 40 8 5 41
|
facth1 |
|- ( ph -> ( G ( ||r ` P ) F <-> ( ( O ` F ) ` T ) = W ) ) |
| 43 |
35 42
|
mpbird |
|- ( ph -> G ( ||r ` P ) F ) |
| 44 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 45 |
39 44
|
syl |
|- ( ph -> R e. Ring ) |
| 46 |
|
eqid |
|- ( Monic1p ` R ) = ( Monic1p ` R ) |
| 47 |
1 2 9 10 11 12 13 4 39 24 40 46 3 5
|
ply1remlem |
|- ( ph -> ( G e. ( Monic1p ` R ) /\ ( D ` G ) = 1 /\ ( `' ( O ` G ) " { W } ) = { T } ) ) |
| 48 |
47
|
simp1d |
|- ( ph -> G e. ( Monic1p ` R ) ) |
| 49 |
|
eqid |
|- ( Unic1p ` R ) = ( Unic1p ` R ) |
| 50 |
49 46
|
mon1puc1p |
|- ( ( R e. Ring /\ G e. ( Monic1p ` R ) ) -> G e. ( Unic1p ` R ) ) |
| 51 |
45 48 50
|
syl2anc |
|- ( ph -> G e. ( Unic1p ` R ) ) |
| 52 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 53 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
| 54 |
1 41 2 49 52 53
|
dvdsq1p |
|- ( ( R e. Ring /\ F e. B /\ G e. ( Unic1p ` R ) ) -> ( G ( ||r ` P ) F <-> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
| 55 |
45 8 51 54
|
syl3anc |
|- ( ph -> ( G ( ||r ` P ) F <-> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
| 56 |
43 55
|
mpbid |
|- ( ph -> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) |
| 57 |
56
|
fveq2d |
|- ( ph -> ( O ` F ) = ( O ` ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
| 58 |
53 1 2 49
|
q1pcl |
|- ( ( R e. Ring /\ F e. B /\ G e. ( Unic1p ` R ) ) -> ( F ( quot1p ` R ) G ) e. B ) |
| 59 |
45 8 51 58
|
syl3anc |
|- ( ph -> ( F ( quot1p ` R ) G ) e. B ) |
| 60 |
1 2 46
|
mon1pcl |
|- ( G e. ( Monic1p ` R ) -> G e. B ) |
| 61 |
48 60
|
syl |
|- ( ph -> G e. B ) |
| 62 |
|
eqid |
|- ( .r ` ( R ^s K ) ) = ( .r ` ( R ^s K ) ) |
| 63 |
2 52 62
|
rhmmul |
|- ( ( O e. ( P RingHom ( R ^s K ) ) /\ ( F ( quot1p ` R ) G ) e. B /\ G e. B ) -> ( O ` ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) = ( ( O ` ( F ( quot1p ` R ) G ) ) ( .r ` ( R ^s K ) ) ( O ` G ) ) ) |
| 64 |
26 59 61 63
|
syl3anc |
|- ( ph -> ( O ` ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) = ( ( O ` ( F ( quot1p ` R ) G ) ) ( .r ` ( R ^s K ) ) ( O ` G ) ) ) |
| 65 |
28 59
|
ffvelcdmd |
|- ( ph -> ( O ` ( F ( quot1p ` R ) G ) ) e. ( Base ` ( R ^s K ) ) ) |
| 66 |
28 61
|
ffvelcdmd |
|- ( ph -> ( O ` G ) e. ( Base ` ( R ^s K ) ) ) |
| 67 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 68 |
18 19 7 21 65 66 67 62
|
pwsmulrval |
|- ( ph -> ( ( O ` ( F ( quot1p ` R ) G ) ) ( .r ` ( R ^s K ) ) ( O ` G ) ) = ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ) |
| 69 |
57 64 68
|
3eqtrd |
|- ( ph -> ( O ` F ) = ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ) |
| 70 |
69
|
fveq1d |
|- ( ph -> ( ( O ` F ) ` x ) = ( ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ` x ) ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ x e. K ) -> ( ( O ` F ) ` x ) = ( ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ` x ) ) |
| 72 |
18 9 19 7 21 65
|
pwselbas |
|- ( ph -> ( O ` ( F ( quot1p ` R ) G ) ) : K --> K ) |
| 73 |
72
|
ffnd |
|- ( ph -> ( O ` ( F ( quot1p ` R ) G ) ) Fn K ) |
| 74 |
73
|
adantr |
|- ( ( ph /\ x e. K ) -> ( O ` ( F ( quot1p ` R ) G ) ) Fn K ) |
| 75 |
18 9 19 7 21 66
|
pwselbas |
|- ( ph -> ( O ` G ) : K --> K ) |
| 76 |
75
|
ffnd |
|- ( ph -> ( O ` G ) Fn K ) |
| 77 |
76
|
adantr |
|- ( ( ph /\ x e. K ) -> ( O ` G ) Fn K ) |
| 78 |
20
|
a1i |
|- ( ( ph /\ x e. K ) -> K e. _V ) |
| 79 |
|
simpr |
|- ( ( ph /\ x e. K ) -> x e. K ) |
| 80 |
|
fnfvof |
|- ( ( ( ( O ` ( F ( quot1p ` R ) G ) ) Fn K /\ ( O ` G ) Fn K ) /\ ( K e. _V /\ x e. K ) ) -> ( ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ` x ) = ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) ) |
| 81 |
74 77 78 79 80
|
syl22anc |
|- ( ( ph /\ x e. K ) -> ( ( ( O ` ( F ( quot1p ` R ) G ) ) oF ( .r ` R ) ( O ` G ) ) ` x ) = ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) ) |
| 82 |
71 81
|
eqtrd |
|- ( ( ph /\ x e. K ) -> ( ( O ` F ) ` x ) = ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) ) |
| 83 |
82
|
eqeq1d |
|- ( ( ph /\ x e. K ) -> ( ( ( O ` F ) ` x ) = W <-> ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) = W ) ) |
| 84 |
7 36
|
syl |
|- ( ph -> R e. Domn ) |
| 85 |
84
|
adantr |
|- ( ( ph /\ x e. K ) -> R e. Domn ) |
| 86 |
72
|
ffvelcdmda |
|- ( ( ph /\ x e. K ) -> ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) e. K ) |
| 87 |
75
|
ffvelcdmda |
|- ( ( ph /\ x e. K ) -> ( ( O ` G ) ` x ) e. K ) |
| 88 |
9 67 5
|
domneq0 |
|- ( ( R e. Domn /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) e. K /\ ( ( O ` G ) ` x ) e. K ) -> ( ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) = W <-> ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W \/ ( ( O ` G ) ` x ) = W ) ) ) |
| 89 |
85 86 87 88
|
syl3anc |
|- ( ( ph /\ x e. K ) -> ( ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) ( .r ` R ) ( ( O ` G ) ` x ) ) = W <-> ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W \/ ( ( O ` G ) ` x ) = W ) ) ) |
| 90 |
83 89
|
bitrd |
|- ( ( ph /\ x e. K ) -> ( ( ( O ` F ) ` x ) = W <-> ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W \/ ( ( O ` G ) ` x ) = W ) ) ) |
| 91 |
90
|
pm5.32da |
|- ( ph -> ( ( x e. K /\ ( ( O ` F ) ` x ) = W ) <-> ( x e. K /\ ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W \/ ( ( O ` G ) ` x ) = W ) ) ) ) |
| 92 |
|
andi |
|- ( ( x e. K /\ ( ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W \/ ( ( O ` G ) ` x ) = W ) ) <-> ( ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) \/ ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) |
| 93 |
91 92
|
bitrdi |
|- ( ph -> ( ( x e. K /\ ( ( O ` F ) ` x ) = W ) <-> ( ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) \/ ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) ) |
| 94 |
|
fniniseg |
|- ( ( O ` F ) Fn K -> ( x e. ( `' ( O ` F ) " { W } ) <-> ( x e. K /\ ( ( O ` F ) ` x ) = W ) ) ) |
| 95 |
31 94
|
syl |
|- ( ph -> ( x e. ( `' ( O ` F ) " { W } ) <-> ( x e. K /\ ( ( O ` F ) ` x ) = W ) ) ) |
| 96 |
|
elun |
|- ( x e. ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) <-> ( x e. ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) \/ x e. { T } ) ) |
| 97 |
|
fniniseg |
|- ( ( O ` ( F ( quot1p ` R ) G ) ) Fn K -> ( x e. ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) <-> ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) ) ) |
| 98 |
73 97
|
syl |
|- ( ph -> ( x e. ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) <-> ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) ) ) |
| 99 |
47
|
simp3d |
|- ( ph -> ( `' ( O ` G ) " { W } ) = { T } ) |
| 100 |
99
|
eleq2d |
|- ( ph -> ( x e. ( `' ( O ` G ) " { W } ) <-> x e. { T } ) ) |
| 101 |
|
fniniseg |
|- ( ( O ` G ) Fn K -> ( x e. ( `' ( O ` G ) " { W } ) <-> ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) |
| 102 |
76 101
|
syl |
|- ( ph -> ( x e. ( `' ( O ` G ) " { W } ) <-> ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) |
| 103 |
100 102
|
bitr3d |
|- ( ph -> ( x e. { T } <-> ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) |
| 104 |
98 103
|
orbi12d |
|- ( ph -> ( ( x e. ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) \/ x e. { T } ) <-> ( ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) \/ ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) ) |
| 105 |
96 104
|
bitrid |
|- ( ph -> ( x e. ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) <-> ( ( x e. K /\ ( ( O ` ( F ( quot1p ` R ) G ) ) ` x ) = W ) \/ ( x e. K /\ ( ( O ` G ) ` x ) = W ) ) ) ) |
| 106 |
93 95 105
|
3bitr4d |
|- ( ph -> ( x e. ( `' ( O ` F ) " { W } ) <-> x e. ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) ) |
| 107 |
106
|
eqrdv |
|- ( ph -> ( `' ( O ` F ) " { W } ) = ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) |
| 108 |
107
|
fveq2d |
|- ( ph -> ( # ` ( `' ( O ` F ) " { W } ) ) = ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) ) |
| 109 |
|
fvex |
|- ( O ` ( F ( quot1p ` R ) G ) ) e. _V |
| 110 |
109
|
cnvex |
|- `' ( O ` ( F ( quot1p ` R ) G ) ) e. _V |
| 111 |
110
|
imaex |
|- ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. _V |
| 112 |
111
|
a1i |
|- ( ph -> ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. _V ) |
| 113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
fta1glem1 |
|- ( ph -> ( D ` ( F ( quot1p ` R ) G ) ) = N ) |
| 114 |
|
fveq2 |
|- ( g = ( F ( quot1p ` R ) G ) -> ( D ` g ) = ( D ` ( F ( quot1p ` R ) G ) ) ) |
| 115 |
114
|
eqeq1d |
|- ( g = ( F ( quot1p ` R ) G ) -> ( ( D ` g ) = N <-> ( D ` ( F ( quot1p ` R ) G ) ) = N ) ) |
| 116 |
|
fveq2 |
|- ( g = ( F ( quot1p ` R ) G ) -> ( O ` g ) = ( O ` ( F ( quot1p ` R ) G ) ) ) |
| 117 |
116
|
cnveqd |
|- ( g = ( F ( quot1p ` R ) G ) -> `' ( O ` g ) = `' ( O ` ( F ( quot1p ` R ) G ) ) ) |
| 118 |
117
|
imaeq1d |
|- ( g = ( F ( quot1p ` R ) G ) -> ( `' ( O ` g ) " { W } ) = ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) |
| 119 |
118
|
fveq2d |
|- ( g = ( F ( quot1p ` R ) G ) -> ( # ` ( `' ( O ` g ) " { W } ) ) = ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) ) |
| 120 |
119 114
|
breq12d |
|- ( g = ( F ( quot1p ` R ) G ) -> ( ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) <-> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ ( D ` ( F ( quot1p ` R ) G ) ) ) ) |
| 121 |
115 120
|
imbi12d |
|- ( g = ( F ( quot1p ` R ) G ) -> ( ( ( D ` g ) = N -> ( # ` ( `' ( O ` g ) " { W } ) ) <_ ( D ` g ) ) <-> ( ( D ` ( F ( quot1p ` R ) G ) ) = N -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ ( D ` ( F ( quot1p ` R ) G ) ) ) ) ) |
| 122 |
121 17 59
|
rspcdva |
|- ( ph -> ( ( D ` ( F ( quot1p ` R ) G ) ) = N -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ ( D ` ( F ( quot1p ` R ) G ) ) ) ) |
| 123 |
113 122
|
mpd |
|- ( ph -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ ( D ` ( F ( quot1p ` R ) G ) ) ) |
| 124 |
123 113
|
breqtrd |
|- ( ph -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ N ) |
| 125 |
|
hashbnd |
|- ( ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. _V /\ N e. NN0 /\ ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) <_ N ) -> ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. Fin ) |
| 126 |
112 14 124 125
|
syl3anc |
|- ( ph -> ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. Fin ) |
| 127 |
|
snfi |
|- { T } e. Fin |
| 128 |
|
unfi |
|- ( ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. Fin /\ { T } e. Fin ) -> ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) e. Fin ) |
| 129 |
126 127 128
|
sylancl |
|- ( ph -> ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) e. Fin ) |
| 130 |
|
hashcl |
|- ( ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) e. Fin -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) e. NN0 ) |
| 131 |
129 130
|
syl |
|- ( ph -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) e. NN0 ) |
| 132 |
131
|
nn0red |
|- ( ph -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) e. RR ) |
| 133 |
|
hashcl |
|- ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. Fin -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) e. NN0 ) |
| 134 |
126 133
|
syl |
|- ( ph -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) e. NN0 ) |
| 135 |
134
|
nn0red |
|- ( ph -> ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) e. RR ) |
| 136 |
|
peano2re |
|- ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) e. RR -> ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) e. RR ) |
| 137 |
135 136
|
syl |
|- ( ph -> ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) e. RR ) |
| 138 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
| 139 |
14 138
|
syl |
|- ( ph -> ( N + 1 ) e. NN0 ) |
| 140 |
15 139
|
eqeltrd |
|- ( ph -> ( D ` F ) e. NN0 ) |
| 141 |
140
|
nn0red |
|- ( ph -> ( D ` F ) e. RR ) |
| 142 |
|
hashun2 |
|- ( ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) e. Fin /\ { T } e. Fin ) -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) <_ ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + ( # ` { T } ) ) ) |
| 143 |
126 127 142
|
sylancl |
|- ( ph -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) <_ ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + ( # ` { T } ) ) ) |
| 144 |
|
hashsng |
|- ( T e. ( `' ( O ` F ) " { W } ) -> ( # ` { T } ) = 1 ) |
| 145 |
16 144
|
syl |
|- ( ph -> ( # ` { T } ) = 1 ) |
| 146 |
145
|
oveq2d |
|- ( ph -> ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + ( # ` { T } ) ) = ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) ) |
| 147 |
143 146
|
breqtrd |
|- ( ph -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) <_ ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) ) |
| 148 |
14
|
nn0red |
|- ( ph -> N e. RR ) |
| 149 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 150 |
135 148 149 124
|
leadd1dd |
|- ( ph -> ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) <_ ( N + 1 ) ) |
| 151 |
150 15
|
breqtrrd |
|- ( ph -> ( ( # ` ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) ) + 1 ) <_ ( D ` F ) ) |
| 152 |
132 137 141 147 151
|
letrd |
|- ( ph -> ( # ` ( ( `' ( O ` ( F ( quot1p ` R ) G ) ) " { W } ) u. { T } ) ) <_ ( D ` F ) ) |
| 153 |
108 152
|
eqbrtrd |
|- ( ph -> ( # ` ( `' ( O ` F ) " { W } ) ) <_ ( D ` F ) ) |