| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1rem.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1rem.b |
|- B = ( Base ` P ) |
| 3 |
|
ply1rem.k |
|- K = ( Base ` R ) |
| 4 |
|
ply1rem.x |
|- X = ( var1 ` R ) |
| 5 |
|
ply1rem.m |
|- .- = ( -g ` P ) |
| 6 |
|
ply1rem.a |
|- A = ( algSc ` P ) |
| 7 |
|
ply1rem.g |
|- G = ( X .- ( A ` N ) ) |
| 8 |
|
ply1rem.o |
|- O = ( eval1 ` R ) |
| 9 |
|
ply1rem.1 |
|- ( ph -> R e. NzRing ) |
| 10 |
|
ply1rem.2 |
|- ( ph -> R e. CRing ) |
| 11 |
|
ply1rem.3 |
|- ( ph -> N e. K ) |
| 12 |
|
ply1rem.4 |
|- ( ph -> F e. B ) |
| 13 |
|
facth1.z |
|- .0. = ( 0g ` R ) |
| 14 |
|
facth1.d |
|- .|| = ( ||r ` P ) |
| 15 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 16 |
9 15
|
syl |
|- ( ph -> R e. Ring ) |
| 17 |
|
eqid |
|- ( Monic1p ` R ) = ( Monic1p ` R ) |
| 18 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 11 17 18 13
|
ply1remlem |
|- ( ph -> ( G e. ( Monic1p ` R ) /\ ( ( deg1 ` R ) ` G ) = 1 /\ ( `' ( O ` G ) " { .0. } ) = { N } ) ) |
| 20 |
19
|
simp1d |
|- ( ph -> G e. ( Monic1p ` R ) ) |
| 21 |
|
eqid |
|- ( Unic1p ` R ) = ( Unic1p ` R ) |
| 22 |
21 17
|
mon1puc1p |
|- ( ( R e. Ring /\ G e. ( Monic1p ` R ) ) -> G e. ( Unic1p ` R ) ) |
| 23 |
16 20 22
|
syl2anc |
|- ( ph -> G e. ( Unic1p ` R ) ) |
| 24 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 25 |
|
eqid |
|- ( rem1p ` R ) = ( rem1p ` R ) |
| 26 |
1 14 2 21 24 25
|
dvdsr1p |
|- ( ( R e. Ring /\ F e. B /\ G e. ( Unic1p ` R ) ) -> ( G .|| F <-> ( F ( rem1p ` R ) G ) = ( 0g ` P ) ) ) |
| 27 |
16 12 23 26
|
syl3anc |
|- ( ph -> ( G .|| F <-> ( F ( rem1p ` R ) G ) = ( 0g ` P ) ) ) |
| 28 |
1 2 3 4 5 6 7 8 9 10 11 12 25
|
ply1rem |
|- ( ph -> ( F ( rem1p ` R ) G ) = ( A ` ( ( O ` F ) ` N ) ) ) |
| 29 |
1 6 13 24
|
ply1scl0 |
|- ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) ) |
| 30 |
16 29
|
syl |
|- ( ph -> ( A ` .0. ) = ( 0g ` P ) ) |
| 31 |
30
|
eqcomd |
|- ( ph -> ( 0g ` P ) = ( A ` .0. ) ) |
| 32 |
28 31
|
eqeq12d |
|- ( ph -> ( ( F ( rem1p ` R ) G ) = ( 0g ` P ) <-> ( A ` ( ( O ` F ) ` N ) ) = ( A ` .0. ) ) ) |
| 33 |
1 6 3 2
|
ply1sclf1 |
|- ( R e. Ring -> A : K -1-1-> B ) |
| 34 |
16 33
|
syl |
|- ( ph -> A : K -1-1-> B ) |
| 35 |
8 1 3 2 10 11 12
|
fveval1fvcl |
|- ( ph -> ( ( O ` F ) ` N ) e. K ) |
| 36 |
3 13
|
ring0cl |
|- ( R e. Ring -> .0. e. K ) |
| 37 |
16 36
|
syl |
|- ( ph -> .0. e. K ) |
| 38 |
|
f1fveq |
|- ( ( A : K -1-1-> B /\ ( ( ( O ` F ) ` N ) e. K /\ .0. e. K ) ) -> ( ( A ` ( ( O ` F ) ` N ) ) = ( A ` .0. ) <-> ( ( O ` F ) ` N ) = .0. ) ) |
| 39 |
34 35 37 38
|
syl12anc |
|- ( ph -> ( ( A ` ( ( O ` F ) ` N ) ) = ( A ` .0. ) <-> ( ( O ` F ) ` N ) = .0. ) ) |
| 40 |
27 32 39
|
3bitrd |
|- ( ph -> ( G .|| F <-> ( ( O ` F ) ` N ) = .0. ) ) |