| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1scl.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1scl.a |
|- A = ( algSc ` P ) |
| 3 |
|
ply1sclid.k |
|- K = ( Base ` R ) |
| 4 |
|
ply1sclf1.b |
|- B = ( Base ` P ) |
| 5 |
1 2 3 4
|
ply1sclf |
|- ( R e. Ring -> A : K --> B ) |
| 6 |
|
fveq2 |
|- ( ( A ` x ) = ( A ` y ) -> ( coe1 ` ( A ` x ) ) = ( coe1 ` ( A ` y ) ) ) |
| 7 |
6
|
fveq1d |
|- ( ( A ` x ) = ( A ` y ) -> ( ( coe1 ` ( A ` x ) ) ` 0 ) = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) |
| 8 |
1 2 3
|
ply1sclid |
|- ( ( R e. Ring /\ x e. K ) -> x = ( ( coe1 ` ( A ` x ) ) ` 0 ) ) |
| 9 |
8
|
adantrr |
|- ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> x = ( ( coe1 ` ( A ` x ) ) ` 0 ) ) |
| 10 |
1 2 3
|
ply1sclid |
|- ( ( R e. Ring /\ y e. K ) -> y = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) |
| 11 |
10
|
adantrl |
|- ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> y = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) |
| 12 |
9 11
|
eqeq12d |
|- ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> ( x = y <-> ( ( coe1 ` ( A ` x ) ) ` 0 ) = ( ( coe1 ` ( A ` y ) ) ` 0 ) ) ) |
| 13 |
7 12
|
imbitrrid |
|- ( ( R e. Ring /\ ( x e. K /\ y e. K ) ) -> ( ( A ` x ) = ( A ` y ) -> x = y ) ) |
| 14 |
13
|
ralrimivva |
|- ( R e. Ring -> A. x e. K A. y e. K ( ( A ` x ) = ( A ` y ) -> x = y ) ) |
| 15 |
|
dff13 |
|- ( A : K -1-1-> B <-> ( A : K --> B /\ A. x e. K A. y e. K ( ( A ` x ) = ( A ` y ) -> x = y ) ) ) |
| 16 |
5 14 15
|
sylanbrc |
|- ( R e. Ring -> A : K -1-1-> B ) |