Metamath Proof Explorer


Theorem ply1sclf1

Description: The polynomial scalar function is injective. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses ply1scl.p 𝑃 = ( Poly1𝑅 )
ply1scl.a 𝐴 = ( algSc ‘ 𝑃 )
ply1sclid.k 𝐾 = ( Base ‘ 𝑅 )
ply1sclf1.b 𝐵 = ( Base ‘ 𝑃 )
Assertion ply1sclf1 ( 𝑅 ∈ Ring → 𝐴 : 𝐾1-1𝐵 )

Proof

Step Hyp Ref Expression
1 ply1scl.p 𝑃 = ( Poly1𝑅 )
2 ply1scl.a 𝐴 = ( algSc ‘ 𝑃 )
3 ply1sclid.k 𝐾 = ( Base ‘ 𝑅 )
4 ply1sclf1.b 𝐵 = ( Base ‘ 𝑃 )
5 1 2 3 4 ply1sclf ( 𝑅 ∈ Ring → 𝐴 : 𝐾𝐵 )
6 fveq2 ( ( 𝐴𝑥 ) = ( 𝐴𝑦 ) → ( coe1 ‘ ( 𝐴𝑥 ) ) = ( coe1 ‘ ( 𝐴𝑦 ) ) )
7 6 fveq1d ( ( 𝐴𝑥 ) = ( 𝐴𝑦 ) → ( ( coe1 ‘ ( 𝐴𝑥 ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴𝑦 ) ) ‘ 0 ) )
8 1 2 3 ply1sclid ( ( 𝑅 ∈ Ring ∧ 𝑥𝐾 ) → 𝑥 = ( ( coe1 ‘ ( 𝐴𝑥 ) ) ‘ 0 ) )
9 8 adantrr ( ( 𝑅 ∈ Ring ∧ ( 𝑥𝐾𝑦𝐾 ) ) → 𝑥 = ( ( coe1 ‘ ( 𝐴𝑥 ) ) ‘ 0 ) )
10 1 2 3 ply1sclid ( ( 𝑅 ∈ Ring ∧ 𝑦𝐾 ) → 𝑦 = ( ( coe1 ‘ ( 𝐴𝑦 ) ) ‘ 0 ) )
11 10 adantrl ( ( 𝑅 ∈ Ring ∧ ( 𝑥𝐾𝑦𝐾 ) ) → 𝑦 = ( ( coe1 ‘ ( 𝐴𝑦 ) ) ‘ 0 ) )
12 9 11 eqeq12d ( ( 𝑅 ∈ Ring ∧ ( 𝑥𝐾𝑦𝐾 ) ) → ( 𝑥 = 𝑦 ↔ ( ( coe1 ‘ ( 𝐴𝑥 ) ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴𝑦 ) ) ‘ 0 ) ) )
13 7 12 syl5ibr ( ( 𝑅 ∈ Ring ∧ ( 𝑥𝐾𝑦𝐾 ) ) → ( ( 𝐴𝑥 ) = ( 𝐴𝑦 ) → 𝑥 = 𝑦 ) )
14 13 ralrimivva ( 𝑅 ∈ Ring → ∀ 𝑥𝐾𝑦𝐾 ( ( 𝐴𝑥 ) = ( 𝐴𝑦 ) → 𝑥 = 𝑦 ) )
15 dff13 ( 𝐴 : 𝐾1-1𝐵 ↔ ( 𝐴 : 𝐾𝐵 ∧ ∀ 𝑥𝐾𝑦𝐾 ( ( 𝐴𝑥 ) = ( 𝐴𝑦 ) → 𝑥 = 𝑦 ) ) )
16 5 14 15 sylanbrc ( 𝑅 ∈ Ring → 𝐴 : 𝐾1-1𝐵 )