| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1rem.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1rem.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
ply1rem.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 4 |
|
ply1rem.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 5 |
|
ply1rem.m |
⊢ − = ( -g ‘ 𝑃 ) |
| 6 |
|
ply1rem.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 7 |
|
ply1rem.g |
⊢ 𝐺 = ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) |
| 8 |
|
ply1rem.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 9 |
|
ply1rem.1 |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 10 |
|
ply1rem.2 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 11 |
|
ply1rem.3 |
⊢ ( 𝜑 → 𝑁 ∈ 𝐾 ) |
| 12 |
|
ply1rem.4 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 13 |
|
facth1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 14 |
|
facth1.d |
⊢ ∥ = ( ∥r ‘ 𝑃 ) |
| 15 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 16 |
9 15
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 17 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
| 18 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 11 17 18 13
|
ply1remlem |
⊢ ( 𝜑 → ( 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) = 1 ∧ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 0 } ) = { 𝑁 } ) ) |
| 20 |
19
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) |
| 21 |
|
eqid |
⊢ ( Unic1p ‘ 𝑅 ) = ( Unic1p ‘ 𝑅 ) |
| 22 |
21 17
|
mon1puc1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
| 23 |
16 20 22
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 25 |
|
eqid |
⊢ ( rem1p ‘ 𝑅 ) = ( rem1p ‘ 𝑅 ) |
| 26 |
1 14 2 21 24 25
|
dvdsr1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → ( 𝐺 ∥ 𝐹 ↔ ( 𝐹 ( rem1p ‘ 𝑅 ) 𝐺 ) = ( 0g ‘ 𝑃 ) ) ) |
| 27 |
16 12 23 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ∥ 𝐹 ↔ ( 𝐹 ( rem1p ‘ 𝑅 ) 𝐺 ) = ( 0g ‘ 𝑃 ) ) ) |
| 28 |
1 2 3 4 5 6 7 8 9 10 11 12 25
|
ply1rem |
⊢ ( 𝜑 → ( 𝐹 ( rem1p ‘ 𝑅 ) 𝐺 ) = ( 𝐴 ‘ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ) ) |
| 29 |
1 6 13 24
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
| 30 |
16 29
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
| 31 |
30
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐴 ‘ 0 ) ) |
| 32 |
28 31
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐹 ( rem1p ‘ 𝑅 ) 𝐺 ) = ( 0g ‘ 𝑃 ) ↔ ( 𝐴 ‘ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ) = ( 𝐴 ‘ 0 ) ) ) |
| 33 |
1 6 3 2
|
ply1sclf1 |
⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 –1-1→ 𝐵 ) |
| 34 |
16 33
|
syl |
⊢ ( 𝜑 → 𝐴 : 𝐾 –1-1→ 𝐵 ) |
| 35 |
8 1 3 2 10 11 12
|
fveval1fvcl |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ∈ 𝐾 ) |
| 36 |
3 13
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
| 37 |
16 36
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
| 38 |
|
f1fveq |
⊢ ( ( 𝐴 : 𝐾 –1-1→ 𝐵 ∧ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ∈ 𝐾 ∧ 0 ∈ 𝐾 ) ) → ( ( 𝐴 ‘ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ) = ( 𝐴 ‘ 0 ) ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) = 0 ) ) |
| 39 |
34 35 37 38
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝐴 ‘ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ) = ( 𝐴 ‘ 0 ) ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) = 0 ) ) |
| 40 |
27 32 39
|
3bitrd |
⊢ ( 𝜑 → ( 𝐺 ∥ 𝐹 ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) = 0 ) ) |