| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fta1g.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
fta1g.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
fta1g.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 4 |
|
fta1g.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 5 |
|
fta1g.w |
⊢ 𝑊 = ( 0g ‘ 𝑅 ) |
| 6 |
|
fta1g.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
| 7 |
|
fta1g.1 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 8 |
|
fta1g.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 9 |
|
fta1glem.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 10 |
|
fta1glem.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 11 |
|
fta1glem.m |
⊢ − = ( -g ‘ 𝑃 ) |
| 12 |
|
fta1glem.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 13 |
|
fta1glem.g |
⊢ 𝐺 = ( 𝑋 − ( 𝐴 ‘ 𝑇 ) ) |
| 14 |
|
fta1glem.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 15 |
|
fta1glem.4 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) = ( 𝑁 + 1 ) ) |
| 16 |
|
fta1glem.5 |
⊢ ( 𝜑 → 𝑇 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ) |
| 17 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 18 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
| 19 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
| 20 |
18 19
|
simplbiim |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ NzRing ) |
| 21 |
7 20
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 22 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 24 |
18
|
simplbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ CRing ) |
| 25 |
7 24
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 26 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐾 ) = ( 𝑅 ↑s 𝐾 ) |
| 27 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) |
| 28 |
9
|
fvexi |
⊢ 𝐾 ∈ V |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 30 |
4 1 26 9
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
| 31 |
25 30
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
| 32 |
2 27
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 34 |
33 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 35 |
26 9 27 7 29 34
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) : 𝐾 ⟶ 𝐾 ) |
| 36 |
35
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) Fn 𝐾 ) |
| 37 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ 𝐹 ) Fn 𝐾 → ( 𝑇 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ↔ ( 𝑇 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) ) |
| 38 |
36 37
|
syl |
⊢ ( 𝜑 → ( 𝑇 ∈ ( ◡ ( 𝑂 ‘ 𝐹 ) “ { 𝑊 } ) ↔ ( 𝑇 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) ) |
| 39 |
16 38
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) |
| 40 |
39
|
simpld |
⊢ ( 𝜑 → 𝑇 ∈ 𝐾 ) |
| 41 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
| 42 |
1 2 9 10 11 12 13 4 21 25 40 41 3 5
|
ply1remlem |
⊢ ( 𝜑 → ( 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ∧ ( 𝐷 ‘ 𝐺 ) = 1 ∧ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { 𝑊 } ) = { 𝑇 } ) ) |
| 43 |
42
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) |
| 44 |
|
eqid |
⊢ ( Unic1p ‘ 𝑅 ) = ( Unic1p ‘ 𝑅 ) |
| 45 |
44 41
|
mon1puc1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
| 46 |
23 43 45
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
| 47 |
|
eqid |
⊢ ( quot1p ‘ 𝑅 ) = ( quot1p ‘ 𝑅 ) |
| 48 |
47 1 2 44
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ) |
| 49 |
23 8 46 48
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ) |
| 50 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 51 |
14 50
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 52 |
15 51
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
| 53 |
3 1 6 2
|
deg1nn0clb |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐹 ≠ 0 ↔ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) ) |
| 54 |
23 8 53
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ≠ 0 ↔ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) ) |
| 55 |
52 54
|
mpbird |
⊢ ( 𝜑 → 𝐹 ≠ 0 ) |
| 56 |
39
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) |
| 57 |
|
eqid |
⊢ ( ∥r ‘ 𝑃 ) = ( ∥r ‘ 𝑃 ) |
| 58 |
1 2 9 10 11 12 13 4 21 25 40 8 5 57
|
facth1 |
⊢ ( 𝜑 → ( 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑇 ) = 𝑊 ) ) |
| 59 |
56 58
|
mpbird |
⊢ ( 𝜑 → 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ) |
| 60 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 61 |
1 57 2 44 60 47
|
dvdsq1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → ( 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ↔ 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
| 62 |
23 8 46 61
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ( ∥r ‘ 𝑃 ) 𝐹 ↔ 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
| 63 |
59 62
|
mpbid |
⊢ ( 𝜑 → 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) |
| 64 |
63
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) = 𝐹 ) |
| 65 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 66 |
25 65
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
| 67 |
|
crngring |
⊢ ( 𝑃 ∈ CRing → 𝑃 ∈ Ring ) |
| 68 |
66 67
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 69 |
1 2 41
|
mon1pcl |
⊢ ( 𝐺 ∈ ( Monic1p ‘ 𝑅 ) → 𝐺 ∈ 𝐵 ) |
| 70 |
43 69
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 71 |
2 60 6
|
ringlz |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑃 ) 𝐺 ) = 0 ) |
| 72 |
68 70 71
|
syl2anc |
⊢ ( 𝜑 → ( 0 ( .r ‘ 𝑃 ) 𝐺 ) = 0 ) |
| 73 |
55 64 72
|
3netr4d |
⊢ ( 𝜑 → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ≠ ( 0 ( .r ‘ 𝑃 ) 𝐺 ) ) |
| 74 |
|
oveq1 |
⊢ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) = 0 → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) = ( 0 ( .r ‘ 𝑃 ) 𝐺 ) ) |
| 75 |
74
|
necon3i |
⊢ ( ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ≠ ( 0 ( .r ‘ 𝑃 ) 𝐺 ) → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ≠ 0 ) |
| 76 |
73 75
|
syl |
⊢ ( 𝜑 → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ≠ 0 ) |
| 77 |
3 1 6 2
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ∧ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ≠ 0 ) → ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∈ ℕ0 ) |
| 78 |
23 49 76 77
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∈ ℕ0 ) |
| 79 |
78
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∈ ℂ ) |
| 80 |
14
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 81 |
2 60
|
crngcom |
⊢ ( ( 𝑃 ∈ CRing ∧ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) = ( 𝐺 ( .r ‘ 𝑃 ) ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) |
| 82 |
66 49 70 81
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) = ( 𝐺 ( .r ‘ 𝑃 ) ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) |
| 83 |
63 82
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( 𝐺 ( .r ‘ 𝑃 ) ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) |
| 84 |
83
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ ( 𝐺 ( .r ‘ 𝑃 ) ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) ) |
| 85 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
| 86 |
42
|
simp2d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) = 1 ) |
| 87 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 88 |
86 87
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
| 89 |
3 1 6 2
|
deg1nn0clb |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ≠ 0 ↔ ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) ) |
| 90 |
23 70 89
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ≠ 0 ↔ ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) ) |
| 91 |
88 90
|
mpbird |
⊢ ( 𝜑 → 𝐺 ≠ 0 ) |
| 92 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 93 |
85 92
|
unitrrg |
⊢ ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
| 94 |
23 93
|
syl |
⊢ ( 𝜑 → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
| 95 |
3 92 44
|
uc1pldg |
⊢ ( 𝐺 ∈ ( Unic1p ‘ 𝑅 ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 96 |
46 95
|
syl |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 97 |
94 96
|
sseldd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
| 98 |
3 1 85 2 60 6 23 70 91 97 49 76
|
deg1mul2 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐺 ( .r ‘ 𝑃 ) ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) = ( ( 𝐷 ‘ 𝐺 ) + ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) ) |
| 99 |
84 15 98
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑁 + 1 ) = ( ( 𝐷 ‘ 𝐺 ) + ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) ) |
| 100 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 101 |
|
addcom |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑁 + 1 ) = ( 1 + 𝑁 ) ) |
| 102 |
80 100 101
|
sylancl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) = ( 1 + 𝑁 ) ) |
| 103 |
86
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐺 ) + ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) = ( 1 + ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) ) |
| 104 |
99 102 103
|
3eqtr3rd |
⊢ ( 𝜑 → ( 1 + ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ) = ( 1 + 𝑁 ) ) |
| 105 |
17 79 80 104
|
addcanad |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) = 𝑁 ) |