| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsq1p.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
dvdsq1p.d |
⊢ ∥ = ( ∥r ‘ 𝑃 ) |
| 3 |
|
dvdsq1p.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
dvdsq1p.c |
⊢ 𝐶 = ( Unic1p ‘ 𝑅 ) |
| 5 |
|
dvdsq1p.t |
⊢ · = ( .r ‘ 𝑃 ) |
| 6 |
|
dvdsq1p.q |
⊢ 𝑄 = ( quot1p ‘ 𝑅 ) |
| 7 |
1 3 4
|
uc1pcl |
⊢ ( 𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵 ) |
| 8 |
7
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝐺 ∈ 𝐵 ) |
| 9 |
3 2 5
|
dvdsr2 |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐺 ∥ 𝐹 ↔ ∃ 𝑞 ∈ 𝐵 ( 𝑞 · 𝐺 ) = 𝐹 ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐺 ∥ 𝐹 ↔ ∃ 𝑞 ∈ 𝐵 ( 𝑞 · 𝐺 ) = 𝐹 ) ) |
| 11 |
|
eqcom |
⊢ ( ( 𝑞 · 𝐺 ) = 𝐹 ↔ 𝐹 = ( 𝑞 · 𝐺 ) ) |
| 12 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → 𝐹 = ( 𝑞 · 𝐺 ) ) |
| 13 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → 𝑞 ∈ 𝐵 ) |
| 14 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 15 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 16 |
14 15
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
| 17 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑃 ∈ Grp ) |
| 19 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑞 ∈ 𝐵 ) → 𝐹 ∈ 𝐵 ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑞 ∈ 𝐵 ) |
| 21 |
8
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑞 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
| 22 |
3 5
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝑞 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑞 · 𝐺 ) ∈ 𝐵 ) |
| 23 |
16 20 21 22
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝑞 · 𝐺 ) ∈ 𝐵 ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 25 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
| 26 |
3 24 25
|
grpsubeq0 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ( 𝑞 · 𝐺 ) ∈ 𝐵 ) → ( ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑞 · 𝐺 ) ) = ( 0g ‘ 𝑃 ) ↔ 𝐹 = ( 𝑞 · 𝐺 ) ) ) |
| 27 |
18 19 23 26
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑞 · 𝐺 ) ) = ( 0g ‘ 𝑃 ) ↔ 𝐹 = ( 𝑞 · 𝐺 ) ) ) |
| 28 |
27
|
biimprd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝐹 = ( 𝑞 · 𝐺 ) → ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑞 · 𝐺 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 29 |
28
|
impr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑞 · 𝐺 ) ) = ( 0g ‘ 𝑃 ) ) |
| 30 |
29
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑞 · 𝐺 ) ) ) = ( ( deg1 ‘ 𝑅 ) ‘ ( 0g ‘ 𝑃 ) ) ) |
| 31 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → 𝑅 ∈ Ring ) |
| 32 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
| 33 |
32 1 24
|
deg1z |
⊢ ( 𝑅 ∈ Ring → ( ( deg1 ‘ 𝑅 ) ‘ ( 0g ‘ 𝑃 ) ) = -∞ ) |
| 34 |
31 33
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 0g ‘ 𝑃 ) ) = -∞ ) |
| 35 |
30 34
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑞 · 𝐺 ) ) ) = -∞ ) |
| 36 |
32 4
|
uc1pdeg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐶 ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) ∈ ℕ0 ) |
| 37 |
36
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) ∈ ℕ0 ) |
| 38 |
37
|
nn0red |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) ∈ ℝ ) |
| 39 |
38
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) ∈ ℝ ) |
| 40 |
39
|
mnfltd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → -∞ < ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) ) |
| 41 |
35 40
|
eqbrtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑞 · 𝐺 ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) ) |
| 42 |
6 1 3 32 25 5 4
|
q1peqb |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( 𝑞 ∈ 𝐵 ∧ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑞 · 𝐺 ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) ) ↔ ( 𝐹 𝑄 𝐺 ) = 𝑞 ) ) |
| 43 |
42
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → ( ( 𝑞 ∈ 𝐵 ∧ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑞 · 𝐺 ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) ) ↔ ( 𝐹 𝑄 𝐺 ) = 𝑞 ) ) |
| 44 |
13 41 43
|
mpbi2and |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → ( 𝐹 𝑄 𝐺 ) = 𝑞 ) |
| 45 |
44
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) = ( 𝑞 · 𝐺 ) ) |
| 46 |
12 45
|
eqtr4d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ ( 𝑞 ∈ 𝐵 ∧ 𝐹 = ( 𝑞 · 𝐺 ) ) ) → 𝐹 = ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) |
| 47 |
46
|
expr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝐹 = ( 𝑞 · 𝐺 ) → 𝐹 = ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) |
| 48 |
11 47
|
biimtrid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝑞 · 𝐺 ) = 𝐹 → 𝐹 = ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) |
| 49 |
48
|
rexlimdva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ∃ 𝑞 ∈ 𝐵 ( 𝑞 · 𝐺 ) = 𝐹 → 𝐹 = ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) |
| 50 |
10 49
|
sylbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐺 ∥ 𝐹 → 𝐹 = ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) |
| 51 |
6 1 3 4
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 𝑄 𝐺 ) ∈ 𝐵 ) |
| 52 |
3 2 5
|
dvdsrmul |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ ( 𝐹 𝑄 𝐺 ) ∈ 𝐵 ) → 𝐺 ∥ ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) |
| 53 |
8 51 52
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝐺 ∥ ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) |
| 54 |
|
breq2 |
⊢ ( 𝐹 = ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) → ( 𝐺 ∥ 𝐹 ↔ 𝐺 ∥ ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) |
| 55 |
53 54
|
syl5ibrcom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 = ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) → 𝐺 ∥ 𝐹 ) ) |
| 56 |
50 55
|
impbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐺 ∥ 𝐹 ↔ 𝐹 = ( ( 𝐹 𝑄 𝐺 ) · 𝐺 ) ) ) |