| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsq1p.p |
|
| 2 |
|
dvdsq1p.d |
|
| 3 |
|
dvdsq1p.b |
|
| 4 |
|
dvdsq1p.c |
|
| 5 |
|
dvdsq1p.t |
|
| 6 |
|
dvdsq1p.q |
|
| 7 |
1 3 4
|
uc1pcl |
|
| 8 |
7
|
3ad2ant3 |
|
| 9 |
3 2 5
|
dvdsr2 |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
eqcom |
|
| 12 |
|
simprr |
|
| 13 |
|
simprl |
|
| 14 |
|
simpl1 |
|
| 15 |
1
|
ply1ring |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
ringgrp |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
simpl2 |
|
| 20 |
|
simpr |
|
| 21 |
8
|
adantr |
|
| 22 |
3 5
|
ringcl |
|
| 23 |
16 20 21 22
|
syl3anc |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
3 24 25
|
grpsubeq0 |
|
| 27 |
18 19 23 26
|
syl3anc |
|
| 28 |
27
|
biimprd |
|
| 29 |
28
|
impr |
|
| 30 |
29
|
fveq2d |
|
| 31 |
|
simpl1 |
|
| 32 |
|
eqid |
|
| 33 |
32 1 24
|
deg1z |
|
| 34 |
31 33
|
syl |
|
| 35 |
30 34
|
eqtrd |
|
| 36 |
32 4
|
uc1pdeg |
|
| 37 |
36
|
3adant2 |
|
| 38 |
37
|
nn0red |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
mnfltd |
|
| 41 |
35 40
|
eqbrtrd |
|
| 42 |
6 1 3 32 25 5 4
|
q1peqb |
|
| 43 |
42
|
adantr |
|
| 44 |
13 41 43
|
mpbi2and |
|
| 45 |
44
|
oveq1d |
|
| 46 |
12 45
|
eqtr4d |
|
| 47 |
46
|
expr |
|
| 48 |
11 47
|
biimtrid |
|
| 49 |
48
|
rexlimdva |
|
| 50 |
10 49
|
sylbid |
|
| 51 |
6 1 3 4
|
q1pcl |
|
| 52 |
3 2 5
|
dvdsrmul |
|
| 53 |
8 51 52
|
syl2anc |
|
| 54 |
|
breq2 |
|
| 55 |
53 54
|
syl5ibrcom |
|
| 56 |
50 55
|
impbid |
|