| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fta1g.p |
|
| 2 |
|
fta1g.b |
|
| 3 |
|
fta1g.d |
|
| 4 |
|
fta1g.o |
|
| 5 |
|
fta1g.w |
|
| 6 |
|
fta1g.z |
|
| 7 |
|
fta1g.1 |
|
| 8 |
|
fta1g.2 |
|
| 9 |
|
fta1glem.k |
|
| 10 |
|
fta1glem.x |
|
| 11 |
|
fta1glem.m |
|
| 12 |
|
fta1glem.a |
|
| 13 |
|
fta1glem.g |
|
| 14 |
|
fta1glem.3 |
|
| 15 |
|
fta1glem.4 |
|
| 16 |
|
fta1glem.5 |
|
| 17 |
|
1cnd |
|
| 18 |
|
isidom |
|
| 19 |
|
domnnzr |
|
| 20 |
18 19
|
simplbiim |
|
| 21 |
7 20
|
syl |
|
| 22 |
|
nzrring |
|
| 23 |
21 22
|
syl |
|
| 24 |
18
|
simplbi |
|
| 25 |
7 24
|
syl |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
9
|
fvexi |
|
| 29 |
28
|
a1i |
|
| 30 |
4 1 26 9
|
evl1rhm |
|
| 31 |
25 30
|
syl |
|
| 32 |
2 27
|
rhmf |
|
| 33 |
31 32
|
syl |
|
| 34 |
33 8
|
ffvelcdmd |
|
| 35 |
26 9 27 7 29 34
|
pwselbas |
|
| 36 |
35
|
ffnd |
|
| 37 |
|
fniniseg |
|
| 38 |
36 37
|
syl |
|
| 39 |
16 38
|
mpbid |
|
| 40 |
39
|
simpld |
|
| 41 |
|
eqid |
|
| 42 |
1 2 9 10 11 12 13 4 21 25 40 41 3 5
|
ply1remlem |
|
| 43 |
42
|
simp1d |
|
| 44 |
|
eqid |
|
| 45 |
44 41
|
mon1puc1p |
|
| 46 |
23 43 45
|
syl2anc |
|
| 47 |
|
eqid |
|
| 48 |
47 1 2 44
|
q1pcl |
|
| 49 |
23 8 46 48
|
syl3anc |
|
| 50 |
|
peano2nn0 |
|
| 51 |
14 50
|
syl |
|
| 52 |
15 51
|
eqeltrd |
|
| 53 |
3 1 6 2
|
deg1nn0clb |
|
| 54 |
23 8 53
|
syl2anc |
|
| 55 |
52 54
|
mpbird |
|
| 56 |
39
|
simprd |
|
| 57 |
|
eqid |
|
| 58 |
1 2 9 10 11 12 13 4 21 25 40 8 5 57
|
facth1 |
|
| 59 |
56 58
|
mpbird |
|
| 60 |
|
eqid |
|
| 61 |
1 57 2 44 60 47
|
dvdsq1p |
|
| 62 |
23 8 46 61
|
syl3anc |
|
| 63 |
59 62
|
mpbid |
|
| 64 |
63
|
eqcomd |
|
| 65 |
1
|
ply1crng |
|
| 66 |
25 65
|
syl |
|
| 67 |
|
crngring |
|
| 68 |
66 67
|
syl |
|
| 69 |
1 2 41
|
mon1pcl |
|
| 70 |
43 69
|
syl |
|
| 71 |
2 60 6
|
ringlz |
|
| 72 |
68 70 71
|
syl2anc |
|
| 73 |
55 64 72
|
3netr4d |
|
| 74 |
|
oveq1 |
|
| 75 |
74
|
necon3i |
|
| 76 |
73 75
|
syl |
|
| 77 |
3 1 6 2
|
deg1nn0cl |
|
| 78 |
23 49 76 77
|
syl3anc |
|
| 79 |
78
|
nn0cnd |
|
| 80 |
14
|
nn0cnd |
|
| 81 |
2 60
|
crngcom |
|
| 82 |
66 49 70 81
|
syl3anc |
|
| 83 |
63 82
|
eqtrd |
|
| 84 |
83
|
fveq2d |
|
| 85 |
|
eqid |
|
| 86 |
42
|
simp2d |
|
| 87 |
|
1nn0 |
|
| 88 |
86 87
|
eqeltrdi |
|
| 89 |
3 1 6 2
|
deg1nn0clb |
|
| 90 |
23 70 89
|
syl2anc |
|
| 91 |
88 90
|
mpbird |
|
| 92 |
|
eqid |
|
| 93 |
85 92
|
unitrrg |
|
| 94 |
23 93
|
syl |
|
| 95 |
3 92 44
|
uc1pldg |
|
| 96 |
46 95
|
syl |
|
| 97 |
94 96
|
sseldd |
|
| 98 |
3 1 85 2 60 6 23 70 91 97 49 76
|
deg1mul2 |
|
| 99 |
84 15 98
|
3eqtr3d |
|
| 100 |
|
ax-1cn |
|
| 101 |
|
addcom |
|
| 102 |
80 100 101
|
sylancl |
|
| 103 |
86
|
oveq1d |
|
| 104 |
99 102 103
|
3eqtr3rd |
|
| 105 |
17 79 80 104
|
addcanad |
|