Metamath Proof Explorer


Theorem fta1glem1

Description: Lemma for fta1g . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses fta1g.p
|- P = ( Poly1 ` R )
fta1g.b
|- B = ( Base ` P )
fta1g.d
|- D = ( deg1 ` R )
fta1g.o
|- O = ( eval1 ` R )
fta1g.w
|- W = ( 0g ` R )
fta1g.z
|- .0. = ( 0g ` P )
fta1g.1
|- ( ph -> R e. IDomn )
fta1g.2
|- ( ph -> F e. B )
fta1glem.k
|- K = ( Base ` R )
fta1glem.x
|- X = ( var1 ` R )
fta1glem.m
|- .- = ( -g ` P )
fta1glem.a
|- A = ( algSc ` P )
fta1glem.g
|- G = ( X .- ( A ` T ) )
fta1glem.3
|- ( ph -> N e. NN0 )
fta1glem.4
|- ( ph -> ( D ` F ) = ( N + 1 ) )
fta1glem.5
|- ( ph -> T e. ( `' ( O ` F ) " { W } ) )
Assertion fta1glem1
|- ( ph -> ( D ` ( F ( quot1p ` R ) G ) ) = N )

Proof

Step Hyp Ref Expression
1 fta1g.p
 |-  P = ( Poly1 ` R )
2 fta1g.b
 |-  B = ( Base ` P )
3 fta1g.d
 |-  D = ( deg1 ` R )
4 fta1g.o
 |-  O = ( eval1 ` R )
5 fta1g.w
 |-  W = ( 0g ` R )
6 fta1g.z
 |-  .0. = ( 0g ` P )
7 fta1g.1
 |-  ( ph -> R e. IDomn )
8 fta1g.2
 |-  ( ph -> F e. B )
9 fta1glem.k
 |-  K = ( Base ` R )
10 fta1glem.x
 |-  X = ( var1 ` R )
11 fta1glem.m
 |-  .- = ( -g ` P )
12 fta1glem.a
 |-  A = ( algSc ` P )
13 fta1glem.g
 |-  G = ( X .- ( A ` T ) )
14 fta1glem.3
 |-  ( ph -> N e. NN0 )
15 fta1glem.4
 |-  ( ph -> ( D ` F ) = ( N + 1 ) )
16 fta1glem.5
 |-  ( ph -> T e. ( `' ( O ` F ) " { W } ) )
17 1cnd
 |-  ( ph -> 1 e. CC )
18 isidom
 |-  ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) )
19 domnnzr
 |-  ( R e. Domn -> R e. NzRing )
20 18 19 simplbiim
 |-  ( R e. IDomn -> R e. NzRing )
21 7 20 syl
 |-  ( ph -> R e. NzRing )
22 nzrring
 |-  ( R e. NzRing -> R e. Ring )
23 21 22 syl
 |-  ( ph -> R e. Ring )
24 18 simplbi
 |-  ( R e. IDomn -> R e. CRing )
25 7 24 syl
 |-  ( ph -> R e. CRing )
26 eqid
 |-  ( R ^s K ) = ( R ^s K )
27 eqid
 |-  ( Base ` ( R ^s K ) ) = ( Base ` ( R ^s K ) )
28 9 fvexi
 |-  K e. _V
29 28 a1i
 |-  ( ph -> K e. _V )
30 4 1 26 9 evl1rhm
 |-  ( R e. CRing -> O e. ( P RingHom ( R ^s K ) ) )
31 25 30 syl
 |-  ( ph -> O e. ( P RingHom ( R ^s K ) ) )
32 2 27 rhmf
 |-  ( O e. ( P RingHom ( R ^s K ) ) -> O : B --> ( Base ` ( R ^s K ) ) )
33 31 32 syl
 |-  ( ph -> O : B --> ( Base ` ( R ^s K ) ) )
34 33 8 ffvelrnd
 |-  ( ph -> ( O ` F ) e. ( Base ` ( R ^s K ) ) )
35 26 9 27 7 29 34 pwselbas
 |-  ( ph -> ( O ` F ) : K --> K )
36 35 ffnd
 |-  ( ph -> ( O ` F ) Fn K )
37 fniniseg
 |-  ( ( O ` F ) Fn K -> ( T e. ( `' ( O ` F ) " { W } ) <-> ( T e. K /\ ( ( O ` F ) ` T ) = W ) ) )
38 36 37 syl
 |-  ( ph -> ( T e. ( `' ( O ` F ) " { W } ) <-> ( T e. K /\ ( ( O ` F ) ` T ) = W ) ) )
39 16 38 mpbid
 |-  ( ph -> ( T e. K /\ ( ( O ` F ) ` T ) = W ) )
40 39 simpld
 |-  ( ph -> T e. K )
41 eqid
 |-  ( Monic1p ` R ) = ( Monic1p ` R )
42 1 2 9 10 11 12 13 4 21 25 40 41 3 5 ply1remlem
 |-  ( ph -> ( G e. ( Monic1p ` R ) /\ ( D ` G ) = 1 /\ ( `' ( O ` G ) " { W } ) = { T } ) )
43 42 simp1d
 |-  ( ph -> G e. ( Monic1p ` R ) )
44 eqid
 |-  ( Unic1p ` R ) = ( Unic1p ` R )
45 44 41 mon1puc1p
 |-  ( ( R e. Ring /\ G e. ( Monic1p ` R ) ) -> G e. ( Unic1p ` R ) )
46 23 43 45 syl2anc
 |-  ( ph -> G e. ( Unic1p ` R ) )
47 eqid
 |-  ( quot1p ` R ) = ( quot1p ` R )
48 47 1 2 44 q1pcl
 |-  ( ( R e. Ring /\ F e. B /\ G e. ( Unic1p ` R ) ) -> ( F ( quot1p ` R ) G ) e. B )
49 23 8 46 48 syl3anc
 |-  ( ph -> ( F ( quot1p ` R ) G ) e. B )
50 peano2nn0
 |-  ( N e. NN0 -> ( N + 1 ) e. NN0 )
51 14 50 syl
 |-  ( ph -> ( N + 1 ) e. NN0 )
52 15 51 eqeltrd
 |-  ( ph -> ( D ` F ) e. NN0 )
53 3 1 6 2 deg1nn0clb
 |-  ( ( R e. Ring /\ F e. B ) -> ( F =/= .0. <-> ( D ` F ) e. NN0 ) )
54 23 8 53 syl2anc
 |-  ( ph -> ( F =/= .0. <-> ( D ` F ) e. NN0 ) )
55 52 54 mpbird
 |-  ( ph -> F =/= .0. )
56 39 simprd
 |-  ( ph -> ( ( O ` F ) ` T ) = W )
57 eqid
 |-  ( ||r ` P ) = ( ||r ` P )
58 1 2 9 10 11 12 13 4 21 25 40 8 5 57 facth1
 |-  ( ph -> ( G ( ||r ` P ) F <-> ( ( O ` F ) ` T ) = W ) )
59 56 58 mpbird
 |-  ( ph -> G ( ||r ` P ) F )
60 eqid
 |-  ( .r ` P ) = ( .r ` P )
61 1 57 2 44 60 47 dvdsq1p
 |-  ( ( R e. Ring /\ F e. B /\ G e. ( Unic1p ` R ) ) -> ( G ( ||r ` P ) F <-> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) )
62 23 8 46 61 syl3anc
 |-  ( ph -> ( G ( ||r ` P ) F <-> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) )
63 59 62 mpbid
 |-  ( ph -> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) )
64 63 eqcomd
 |-  ( ph -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) = F )
65 1 ply1crng
 |-  ( R e. CRing -> P e. CRing )
66 25 65 syl
 |-  ( ph -> P e. CRing )
67 crngring
 |-  ( P e. CRing -> P e. Ring )
68 66 67 syl
 |-  ( ph -> P e. Ring )
69 1 2 41 mon1pcl
 |-  ( G e. ( Monic1p ` R ) -> G e. B )
70 43 69 syl
 |-  ( ph -> G e. B )
71 2 60 6 ringlz
 |-  ( ( P e. Ring /\ G e. B ) -> ( .0. ( .r ` P ) G ) = .0. )
72 68 70 71 syl2anc
 |-  ( ph -> ( .0. ( .r ` P ) G ) = .0. )
73 55 64 72 3netr4d
 |-  ( ph -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) =/= ( .0. ( .r ` P ) G ) )
74 oveq1
 |-  ( ( F ( quot1p ` R ) G ) = .0. -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) = ( .0. ( .r ` P ) G ) )
75 74 necon3i
 |-  ( ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) =/= ( .0. ( .r ` P ) G ) -> ( F ( quot1p ` R ) G ) =/= .0. )
76 73 75 syl
 |-  ( ph -> ( F ( quot1p ` R ) G ) =/= .0. )
77 3 1 6 2 deg1nn0cl
 |-  ( ( R e. Ring /\ ( F ( quot1p ` R ) G ) e. B /\ ( F ( quot1p ` R ) G ) =/= .0. ) -> ( D ` ( F ( quot1p ` R ) G ) ) e. NN0 )
78 23 49 76 77 syl3anc
 |-  ( ph -> ( D ` ( F ( quot1p ` R ) G ) ) e. NN0 )
79 78 nn0cnd
 |-  ( ph -> ( D ` ( F ( quot1p ` R ) G ) ) e. CC )
80 14 nn0cnd
 |-  ( ph -> N e. CC )
81 2 60 crngcom
 |-  ( ( P e. CRing /\ ( F ( quot1p ` R ) G ) e. B /\ G e. B ) -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) = ( G ( .r ` P ) ( F ( quot1p ` R ) G ) ) )
82 66 49 70 81 syl3anc
 |-  ( ph -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) = ( G ( .r ` P ) ( F ( quot1p ` R ) G ) ) )
83 63 82 eqtrd
 |-  ( ph -> F = ( G ( .r ` P ) ( F ( quot1p ` R ) G ) ) )
84 83 fveq2d
 |-  ( ph -> ( D ` F ) = ( D ` ( G ( .r ` P ) ( F ( quot1p ` R ) G ) ) ) )
85 eqid
 |-  ( RLReg ` R ) = ( RLReg ` R )
86 42 simp2d
 |-  ( ph -> ( D ` G ) = 1 )
87 1nn0
 |-  1 e. NN0
88 86 87 eqeltrdi
 |-  ( ph -> ( D ` G ) e. NN0 )
89 3 1 6 2 deg1nn0clb
 |-  ( ( R e. Ring /\ G e. B ) -> ( G =/= .0. <-> ( D ` G ) e. NN0 ) )
90 23 70 89 syl2anc
 |-  ( ph -> ( G =/= .0. <-> ( D ` G ) e. NN0 ) )
91 88 90 mpbird
 |-  ( ph -> G =/= .0. )
92 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
93 85 92 unitrrg
 |-  ( R e. Ring -> ( Unit ` R ) C_ ( RLReg ` R ) )
94 23 93 syl
 |-  ( ph -> ( Unit ` R ) C_ ( RLReg ` R ) )
95 3 92 44 uc1pldg
 |-  ( G e. ( Unic1p ` R ) -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( Unit ` R ) )
96 46 95 syl
 |-  ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( Unit ` R ) )
97 94 96 sseldd
 |-  ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( RLReg ` R ) )
98 3 1 85 2 60 6 23 70 91 97 49 76 deg1mul2
 |-  ( ph -> ( D ` ( G ( .r ` P ) ( F ( quot1p ` R ) G ) ) ) = ( ( D ` G ) + ( D ` ( F ( quot1p ` R ) G ) ) ) )
99 84 15 98 3eqtr3d
 |-  ( ph -> ( N + 1 ) = ( ( D ` G ) + ( D ` ( F ( quot1p ` R ) G ) ) ) )
100 ax-1cn
 |-  1 e. CC
101 addcom
 |-  ( ( N e. CC /\ 1 e. CC ) -> ( N + 1 ) = ( 1 + N ) )
102 80 100 101 sylancl
 |-  ( ph -> ( N + 1 ) = ( 1 + N ) )
103 86 oveq1d
 |-  ( ph -> ( ( D ` G ) + ( D ` ( F ( quot1p ` R ) G ) ) ) = ( 1 + ( D ` ( F ( quot1p ` R ) G ) ) ) )
104 99 102 103 3eqtr3rd
 |-  ( ph -> ( 1 + ( D ` ( F ( quot1p ` R ) G ) ) ) = ( 1 + N ) )
105 17 79 80 104 addcanad
 |-  ( ph -> ( D ` ( F ( quot1p ` R ) G ) ) = N )