| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1rem.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1rem.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
ply1rem.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 4 |
|
ply1rem.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 5 |
|
ply1rem.m |
⊢ − = ( -g ‘ 𝑃 ) |
| 6 |
|
ply1rem.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 7 |
|
ply1rem.g |
⊢ 𝐺 = ( 𝑋 − ( 𝐴 ‘ 𝑁 ) ) |
| 8 |
|
ply1rem.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 9 |
|
ply1rem.1 |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 10 |
|
ply1rem.2 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 11 |
|
ply1rem.3 |
⊢ ( 𝜑 → 𝑁 ∈ 𝐾 ) |
| 12 |
|
ply1rem.4 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 13 |
|
ply1rem.e |
⊢ 𝐸 = ( rem1p ‘ 𝑅 ) |
| 14 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 15 |
9 14
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 16 |
|
eqid |
⊢ ( Monic1p ‘ 𝑅 ) = ( Monic1p ‘ 𝑅 ) |
| 17 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
| 18 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 11 16 17 18
|
ply1remlem |
⊢ ( 𝜑 → ( 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ∧ ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) = 1 ∧ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { ( 0g ‘ 𝑅 ) } ) = { 𝑁 } ) ) |
| 20 |
19
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) |
| 21 |
|
eqid |
⊢ ( Unic1p ‘ 𝑅 ) = ( Unic1p ‘ 𝑅 ) |
| 22 |
21 16
|
mon1puc1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ ( Monic1p ‘ 𝑅 ) ) → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
| 23 |
15 20 22
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) |
| 24 |
13 1 2 21 17
|
r1pdeglt |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) ) |
| 25 |
15 12 23 24
|
syl3anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) ) |
| 26 |
19
|
simp2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ 𝐺 ) = 1 ) |
| 27 |
25 26
|
breqtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) < 1 ) |
| 28 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 29 |
27 28
|
breqtrdi |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) < ( 0 + 1 ) ) |
| 30 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 31 |
|
nn0leltp1 |
⊢ ( ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ≤ 0 ↔ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) < ( 0 + 1 ) ) ) |
| 32 |
30 31
|
mpan2 |
⊢ ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ ℕ0 → ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ≤ 0 ↔ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) < ( 0 + 1 ) ) ) |
| 33 |
29 32
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ ℕ0 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ≤ 0 ) ) |
| 34 |
|
elsni |
⊢ ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ { -∞ } → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) = -∞ ) |
| 35 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 36 |
|
mnfle |
⊢ ( 0 ∈ ℝ* → -∞ ≤ 0 ) |
| 37 |
35 36
|
ax-mp |
⊢ -∞ ≤ 0 |
| 38 |
34 37
|
eqbrtrdi |
⊢ ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ { -∞ } → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ≤ 0 ) |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ { -∞ } → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ≤ 0 ) ) |
| 40 |
13 1 2 21
|
r1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → ( 𝐹 𝐸 𝐺 ) ∈ 𝐵 ) |
| 41 |
15 12 23 40
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 𝐸 𝐺 ) ∈ 𝐵 ) |
| 42 |
17 1 2
|
deg1cl |
⊢ ( ( 𝐹 𝐸 𝐺 ) ∈ 𝐵 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 43 |
41 42
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 44 |
|
elun |
⊢ ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ ( ℕ0 ∪ { -∞ } ) ↔ ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ ℕ0 ∨ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ { -∞ } ) ) |
| 45 |
43 44
|
sylib |
⊢ ( 𝜑 → ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ ℕ0 ∨ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ { -∞ } ) ) |
| 46 |
33 39 45
|
mpjaod |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ≤ 0 ) |
| 47 |
17 1 2 6
|
deg1le0 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐹 𝐸 𝐺 ) ∈ 𝐵 ) → ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ≤ 0 ↔ ( 𝐹 𝐸 𝐺 ) = ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ) ) ) |
| 48 |
15 41 47
|
syl2anc |
⊢ ( 𝜑 → ( ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐹 𝐸 𝐺 ) ) ≤ 0 ↔ ( 𝐹 𝐸 𝐺 ) = ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ) ) ) |
| 49 |
46 48
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 𝐸 𝐺 ) = ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ) ) |
| 50 |
|
eqid |
⊢ ( quot1p ‘ 𝑅 ) = ( quot1p ‘ 𝑅 ) |
| 51 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 52 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 53 |
1 2 21 50 13 51 52
|
r1pid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → 𝐹 = ( ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ( +g ‘ 𝑃 ) ( 𝐹 𝐸 𝐺 ) ) ) |
| 54 |
15 12 23 53
|
syl3anc |
⊢ ( 𝜑 → 𝐹 = ( ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ( +g ‘ 𝑃 ) ( 𝐹 𝐸 𝐺 ) ) ) |
| 55 |
54
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) = ( 𝑂 ‘ ( ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ( +g ‘ 𝑃 ) ( 𝐹 𝐸 𝐺 ) ) ) ) |
| 56 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐾 ) = ( 𝑅 ↑s 𝐾 ) |
| 57 |
8 1 56 3
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
| 58 |
10 57
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
| 59 |
|
rhmghm |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) → 𝑂 ∈ ( 𝑃 GrpHom ( 𝑅 ↑s 𝐾 ) ) ) |
| 60 |
58 59
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 GrpHom ( 𝑅 ↑s 𝐾 ) ) ) |
| 61 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 62 |
15 61
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 63 |
50 1 2 21
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ( Unic1p ‘ 𝑅 ) ) → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ) |
| 64 |
15 12 23 63
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ) |
| 65 |
1 2 16
|
mon1pcl |
⊢ ( 𝐺 ∈ ( Monic1p ‘ 𝑅 ) → 𝐺 ∈ 𝐵 ) |
| 66 |
20 65
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 67 |
2 51
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ∈ 𝐵 ) |
| 68 |
62 64 66 67
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ∈ 𝐵 ) |
| 69 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ↑s 𝐾 ) ) = ( +g ‘ ( 𝑅 ↑s 𝐾 ) ) |
| 70 |
2 52 69
|
ghmlin |
⊢ ( ( 𝑂 ∈ ( 𝑃 GrpHom ( 𝑅 ↑s 𝐾 ) ) ∧ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ∈ 𝐵 ∧ ( 𝐹 𝐸 𝐺 ) ∈ 𝐵 ) → ( 𝑂 ‘ ( ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ( +g ‘ 𝑃 ) ( 𝐹 𝐸 𝐺 ) ) ) = ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ( +g ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ) ) |
| 71 |
60 68 41 70
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ( +g ‘ 𝑃 ) ( 𝐹 𝐸 𝐺 ) ) ) = ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ( +g ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ) ) |
| 72 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) |
| 73 |
3
|
fvexi |
⊢ 𝐾 ∈ V |
| 74 |
73
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 75 |
2 72
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 76 |
58 75
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 77 |
76 68
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 78 |
76 41
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 79 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 80 |
56 72 9 74 77 78 79 69
|
pwsplusgval |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ( +g ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ) = ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ) ) |
| 81 |
55 71 80
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) = ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ) ) |
| 82 |
81
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) = ( ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ) ‘ 𝑁 ) ) |
| 83 |
56 3 72 9 74 77
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) : 𝐾 ⟶ 𝐾 ) |
| 84 |
83
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) Fn 𝐾 ) |
| 85 |
56 3 72 9 74 78
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) : 𝐾 ⟶ 𝐾 ) |
| 86 |
85
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) Fn 𝐾 ) |
| 87 |
|
fnfvof |
⊢ ( ( ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) Fn 𝐾 ∧ ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) Fn 𝐾 ) ∧ ( 𝐾 ∈ V ∧ 𝑁 ∈ 𝐾 ) ) → ( ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ) ‘ 𝑁 ) = ( ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ‘ 𝑁 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) ) ) |
| 88 |
84 86 74 11 87
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ) ‘ 𝑁 ) = ( ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ‘ 𝑁 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) ) ) |
| 89 |
|
eqid |
⊢ ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) = ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) |
| 90 |
2 51 89
|
rhmmul |
⊢ ( ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ∧ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝐺 ) ) ) |
| 91 |
58 64 66 90
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝐺 ) ) ) |
| 92 |
76 64
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 93 |
76 66
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 94 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 95 |
56 72 9 74 92 93 94 89
|
pwsmulrval |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝐺 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∘f ( .r ‘ 𝑅 ) ( 𝑂 ‘ 𝐺 ) ) ) |
| 96 |
91 95
|
eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∘f ( .r ‘ 𝑅 ) ( 𝑂 ‘ 𝐺 ) ) ) |
| 97 |
96
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ‘ 𝑁 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∘f ( .r ‘ 𝑅 ) ( 𝑂 ‘ 𝐺 ) ) ‘ 𝑁 ) ) |
| 98 |
56 3 72 9 74 92
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) : 𝐾 ⟶ 𝐾 ) |
| 99 |
98
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) Fn 𝐾 ) |
| 100 |
56 3 72 9 74 93
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) : 𝐾 ⟶ 𝐾 ) |
| 101 |
100
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐺 ) Fn 𝐾 ) |
| 102 |
|
fnfvof |
⊢ ( ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) Fn 𝐾 ∧ ( 𝑂 ‘ 𝐺 ) Fn 𝐾 ) ∧ ( 𝐾 ∈ V ∧ 𝑁 ∈ 𝐾 ) ) → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∘f ( .r ‘ 𝑅 ) ( 𝑂 ‘ 𝐺 ) ) ‘ 𝑁 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑁 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑁 ) ) ) |
| 103 |
99 101 74 11 102
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ∘f ( .r ‘ 𝑅 ) ( 𝑂 ‘ 𝐺 ) ) ‘ 𝑁 ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑁 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑁 ) ) ) |
| 104 |
|
snidg |
⊢ ( 𝑁 ∈ 𝐾 → 𝑁 ∈ { 𝑁 } ) |
| 105 |
11 104
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ { 𝑁 } ) |
| 106 |
19
|
simp3d |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝐺 ) “ { ( 0g ‘ 𝑅 ) } ) = { 𝑁 } ) |
| 107 |
105 106
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { ( 0g ‘ 𝑅 ) } ) ) |
| 108 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ 𝐺 ) Fn 𝐾 → ( 𝑁 ∈ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { ( 0g ‘ 𝑅 ) } ) ↔ ( 𝑁 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑁 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 109 |
101 108
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ ( ◡ ( 𝑂 ‘ 𝐺 ) “ { ( 0g ‘ 𝑅 ) } ) ↔ ( 𝑁 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑁 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 110 |
107 109
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝐾 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑁 ) = ( 0g ‘ 𝑅 ) ) ) |
| 111 |
110
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑁 ) = ( 0g ‘ 𝑅 ) ) |
| 112 |
111
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑁 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑁 ) ) = ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑁 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 113 |
98 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑁 ) ∈ 𝐾 ) |
| 114 |
3 94 18
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑁 ) ∈ 𝐾 ) → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑁 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 115 |
15 113 114
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑁 ) ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 116 |
112 115
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ) ‘ 𝑁 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑁 ) ) = ( 0g ‘ 𝑅 ) ) |
| 117 |
97 103 116
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ‘ 𝑁 ) = ( 0g ‘ 𝑅 ) ) |
| 118 |
117
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ‘ 𝑁 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) ) ) |
| 119 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 120 |
15 119
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 121 |
85 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) ∈ 𝐾 ) |
| 122 |
3 79 18
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) ∈ 𝐾 ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) ) = ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) ) |
| 123 |
120 121 122
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) ) = ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) ) |
| 124 |
88 118 123
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ∘f ( +g ‘ 𝑅 ) ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ) ‘ 𝑁 ) = ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) ) |
| 125 |
49
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) = ( 𝑂 ‘ ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ) ) ) |
| 126 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) = ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) |
| 127 |
126 2 1 3
|
coe1f |
⊢ ( ( 𝐹 𝐸 𝐺 ) ∈ 𝐵 → ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) : ℕ0 ⟶ 𝐾 ) |
| 128 |
41 127
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) : ℕ0 ⟶ 𝐾 ) |
| 129 |
|
ffvelcdm |
⊢ ( ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) : ℕ0 ⟶ 𝐾 ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ∈ 𝐾 ) |
| 130 |
128 30 129
|
sylancl |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ∈ 𝐾 ) |
| 131 |
8 1 3 6
|
evl1sca |
⊢ ( ( 𝑅 ∈ CRing ∧ ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ∈ 𝐾 ) → ( 𝑂 ‘ ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ) ) = ( 𝐾 × { ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) } ) ) |
| 132 |
10 130 131
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ) ) = ( 𝐾 × { ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) } ) ) |
| 133 |
125 132
|
eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) = ( 𝐾 × { ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) } ) ) |
| 134 |
133
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) = ( ( 𝐾 × { ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) } ) ‘ 𝑁 ) ) |
| 135 |
|
fvex |
⊢ ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ∈ V |
| 136 |
135
|
fvconst2 |
⊢ ( 𝑁 ∈ 𝐾 → ( ( 𝐾 × { ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) } ) ‘ 𝑁 ) = ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ) |
| 137 |
11 136
|
syl |
⊢ ( 𝜑 → ( ( 𝐾 × { ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) } ) ‘ 𝑁 ) = ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ) |
| 138 |
134 137
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 𝑁 ) = ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ) |
| 139 |
82 124 138
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) = ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ) |
| 140 |
139
|
fveq2d |
⊢ ( 𝜑 → ( 𝐴 ‘ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ) = ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐹 𝐸 𝐺 ) ) ‘ 0 ) ) ) |
| 141 |
49 140
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 𝐸 𝐺 ) = ( 𝐴 ‘ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑁 ) ) ) |