Metamath Proof Explorer


Theorem ply1rem

Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout ). If a polynomial F is divided by the linear factor x - A , the remainder is equal to F ( A ) , the evaluation of the polynomial at A (interpreted as a constant polynomial). (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses ply1rem.p P=Poly1R
ply1rem.b B=BaseP
ply1rem.k K=BaseR
ply1rem.x X=var1R
ply1rem.m -˙=-P
ply1rem.a A=algScP
ply1rem.g G=X-˙AN
ply1rem.o O=eval1R
ply1rem.1 φRNzRing
ply1rem.2 φRCRing
ply1rem.3 φNK
ply1rem.4 φFB
ply1rem.e E=rem1pR
Assertion ply1rem φFEG=AOFN

Proof

Step Hyp Ref Expression
1 ply1rem.p P=Poly1R
2 ply1rem.b B=BaseP
3 ply1rem.k K=BaseR
4 ply1rem.x X=var1R
5 ply1rem.m -˙=-P
6 ply1rem.a A=algScP
7 ply1rem.g G=X-˙AN
8 ply1rem.o O=eval1R
9 ply1rem.1 φRNzRing
10 ply1rem.2 φRCRing
11 ply1rem.3 φNK
12 ply1rem.4 φFB
13 ply1rem.e E=rem1pR
14 nzrring RNzRingRRing
15 9 14 syl φRRing
16 eqid Monic1pR=Monic1pR
17 eqid deg1R=deg1R
18 eqid 0R=0R
19 1 2 3 4 5 6 7 8 9 10 11 16 17 18 ply1remlem φGMonic1pRdeg1RG=1OG-10R=N
20 19 simp1d φGMonic1pR
21 eqid Unic1pR=Unic1pR
22 21 16 mon1puc1p RRingGMonic1pRGUnic1pR
23 15 20 22 syl2anc φGUnic1pR
24 13 1 2 21 17 r1pdeglt RRingFBGUnic1pRdeg1RFEG<deg1RG
25 15 12 23 24 syl3anc φdeg1RFEG<deg1RG
26 19 simp2d φdeg1RG=1
27 25 26 breqtrd φdeg1RFEG<1
28 1e0p1 1=0+1
29 27 28 breqtrdi φdeg1RFEG<0+1
30 0nn0 00
31 nn0leltp1 deg1RFEG000deg1RFEG0deg1RFEG<0+1
32 30 31 mpan2 deg1RFEG0deg1RFEG0deg1RFEG<0+1
33 29 32 syl5ibrcom φdeg1RFEG0deg1RFEG0
34 elsni deg1RFEG−∞deg1RFEG=−∞
35 0xr 0*
36 mnfle 0*−∞0
37 35 36 ax-mp −∞0
38 34 37 eqbrtrdi deg1RFEG−∞deg1RFEG0
39 38 a1i φdeg1RFEG−∞deg1RFEG0
40 13 1 2 21 r1pcl RRingFBGUnic1pRFEGB
41 15 12 23 40 syl3anc φFEGB
42 17 1 2 deg1cl FEGBdeg1RFEG0−∞
43 41 42 syl φdeg1RFEG0−∞
44 elun deg1RFEG0−∞deg1RFEG0deg1RFEG−∞
45 43 44 sylib φdeg1RFEG0deg1RFEG−∞
46 33 39 45 mpjaod φdeg1RFEG0
47 17 1 2 6 deg1le0 RRingFEGBdeg1RFEG0FEG=Acoe1FEG0
48 15 41 47 syl2anc φdeg1RFEG0FEG=Acoe1FEG0
49 46 48 mpbid φFEG=Acoe1FEG0
50 eqid quot1pR=quot1pR
51 eqid P=P
52 eqid +P=+P
53 1 2 21 50 13 51 52 r1pid RRingFBGUnic1pRF=Fquot1pRGPG+PFEG
54 15 12 23 53 syl3anc φF=Fquot1pRGPG+PFEG
55 54 fveq2d φOF=OFquot1pRGPG+PFEG
56 eqid R𝑠K=R𝑠K
57 8 1 56 3 evl1rhm RCRingOPRingHomR𝑠K
58 10 57 syl φOPRingHomR𝑠K
59 rhmghm OPRingHomR𝑠KOPGrpHomR𝑠K
60 58 59 syl φOPGrpHomR𝑠K
61 1 ply1ring RRingPRing
62 15 61 syl φPRing
63 50 1 2 21 q1pcl RRingFBGUnic1pRFquot1pRGB
64 15 12 23 63 syl3anc φFquot1pRGB
65 1 2 16 mon1pcl GMonic1pRGB
66 20 65 syl φGB
67 2 51 ringcl PRingFquot1pRGBGBFquot1pRGPGB
68 62 64 66 67 syl3anc φFquot1pRGPGB
69 eqid +R𝑠K=+R𝑠K
70 2 52 69 ghmlin OPGrpHomR𝑠KFquot1pRGPGBFEGBOFquot1pRGPG+PFEG=OFquot1pRGPG+R𝑠KOFEG
71 60 68 41 70 syl3anc φOFquot1pRGPG+PFEG=OFquot1pRGPG+R𝑠KOFEG
72 eqid BaseR𝑠K=BaseR𝑠K
73 3 fvexi KV
74 73 a1i φKV
75 2 72 rhmf OPRingHomR𝑠KO:BBaseR𝑠K
76 58 75 syl φO:BBaseR𝑠K
77 76 68 ffvelcdmd φOFquot1pRGPGBaseR𝑠K
78 76 41 ffvelcdmd φOFEGBaseR𝑠K
79 eqid +R=+R
80 56 72 9 74 77 78 79 69 pwsplusgval φOFquot1pRGPG+R𝑠KOFEG=OFquot1pRGPG+RfOFEG
81 55 71 80 3eqtrd φOF=OFquot1pRGPG+RfOFEG
82 81 fveq1d φOFN=OFquot1pRGPG+RfOFEGN
83 56 3 72 9 74 77 pwselbas φOFquot1pRGPG:KK
84 83 ffnd φOFquot1pRGPGFnK
85 56 3 72 9 74 78 pwselbas φOFEG:KK
86 85 ffnd φOFEGFnK
87 fnfvof OFquot1pRGPGFnKOFEGFnKKVNKOFquot1pRGPG+RfOFEGN=OFquot1pRGPGN+ROFEGN
88 84 86 74 11 87 syl22anc φOFquot1pRGPG+RfOFEGN=OFquot1pRGPGN+ROFEGN
89 eqid R𝑠K=R𝑠K
90 2 51 89 rhmmul OPRingHomR𝑠KFquot1pRGBGBOFquot1pRGPG=OFquot1pRGR𝑠KOG
91 58 64 66 90 syl3anc φOFquot1pRGPG=OFquot1pRGR𝑠KOG
92 76 64 ffvelcdmd φOFquot1pRGBaseR𝑠K
93 76 66 ffvelcdmd φOGBaseR𝑠K
94 eqid R=R
95 56 72 9 74 92 93 94 89 pwsmulrval φOFquot1pRGR𝑠KOG=OFquot1pRGRfOG
96 91 95 eqtrd φOFquot1pRGPG=OFquot1pRGRfOG
97 96 fveq1d φOFquot1pRGPGN=OFquot1pRGRfOGN
98 56 3 72 9 74 92 pwselbas φOFquot1pRG:KK
99 98 ffnd φOFquot1pRGFnK
100 56 3 72 9 74 93 pwselbas φOG:KK
101 100 ffnd φOGFnK
102 fnfvof OFquot1pRGFnKOGFnKKVNKOFquot1pRGRfOGN=OFquot1pRGNROGN
103 99 101 74 11 102 syl22anc φOFquot1pRGRfOGN=OFquot1pRGNROGN
104 snidg NKNN
105 11 104 syl φNN
106 19 simp3d φOG-10R=N
107 105 106 eleqtrrd φNOG-10R
108 fniniseg OGFnKNOG-10RNKOGN=0R
109 101 108 syl φNOG-10RNKOGN=0R
110 107 109 mpbid φNKOGN=0R
111 110 simprd φOGN=0R
112 111 oveq2d φOFquot1pRGNROGN=OFquot1pRGNR0R
113 98 11 ffvelcdmd φOFquot1pRGNK
114 3 94 18 ringrz RRingOFquot1pRGNKOFquot1pRGNR0R=0R
115 15 113 114 syl2anc φOFquot1pRGNR0R=0R
116 112 115 eqtrd φOFquot1pRGNROGN=0R
117 97 103 116 3eqtrd φOFquot1pRGPGN=0R
118 117 oveq1d φOFquot1pRGPGN+ROFEGN=0R+ROFEGN
119 ringgrp RRingRGrp
120 15 119 syl φRGrp
121 85 11 ffvelcdmd φOFEGNK
122 3 79 18 grplid RGrpOFEGNK0R+ROFEGN=OFEGN
123 120 121 122 syl2anc φ0R+ROFEGN=OFEGN
124 88 118 123 3eqtrd φOFquot1pRGPG+RfOFEGN=OFEGN
125 49 fveq2d φOFEG=OAcoe1FEG0
126 eqid coe1FEG=coe1FEG
127 126 2 1 3 coe1f FEGBcoe1FEG:0K
128 41 127 syl φcoe1FEG:0K
129 ffvelcdm coe1FEG:0K00coe1FEG0K
130 128 30 129 sylancl φcoe1FEG0K
131 8 1 3 6 evl1sca RCRingcoe1FEG0KOAcoe1FEG0=K×coe1FEG0
132 10 130 131 syl2anc φOAcoe1FEG0=K×coe1FEG0
133 125 132 eqtrd φOFEG=K×coe1FEG0
134 133 fveq1d φOFEGN=K×coe1FEG0N
135 fvex coe1FEG0V
136 135 fvconst2 NKK×coe1FEG0N=coe1FEG0
137 11 136 syl φK×coe1FEG0N=coe1FEG0
138 134 137 eqtrd φOFEGN=coe1FEG0
139 82 124 138 3eqtrd φOFN=coe1FEG0
140 139 fveq2d φAOFN=Acoe1FEG0
141 49 140 eqtr4d φFEG=AOFN